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Abstract

Acanthamoeba is an opportunistic free-living amoeba that can cause blinding keratitis and fatal brain infection. Early
diagnosis, followed by aggressive treatment is a pre-requisite in the successful treatment but even then the prognosis
remains poor. A major drawback during the course of treatment is the ability of the amoeba to enclose itself within a
shell (a process known as encystment), making it resistant to chemotherapeutic agents. As the cyst wall is partly made
of cellulose, thus cellulose degradation offers a potential therapeutic strategy in the effective targeting of trophozoite
encased within the cyst walls. Here, we present a comprehensive report on the structure of cellulose and cellulases, as

focus so that they can be explored to their fullest.

well as known cellulose degradation mechanisms with an eye to target the Acanthamoeba cyst wall. The disruption
of the cyst wall will make amoeba (concealed within) susceptible to chemotherapeutic agents, and at the very least
inhibition of the excystment process will impede infection recurrence, as we bring these promising drug targets into
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Review

Protists are the largest, unicellular, non-photosynthetic
eukaryotes that lack cell walls and include pathogens of
both animals and humans. Pathogenic and opportunistic
free living protist such as Acanthamoeba spp., Balamuthia
mandrillaris and Naegleria fowleri occur worldwide and
propagate independently in the environment. However
upon accidental encounter with humans, they can pro-
duce disease [1-3]. Acanthamoeba species are now be-
coming increasingly important as human pathogens
causing serious and life threatening infections. They are
well known to cause blinding keratitis as well as granu-
lomatous amoebic encephalitis [4]. The most distressing
aspect of Acanthamoeba infections is their recurrence
owing to the failure of therapy, attributed to the ability of
the parasite to transform into a resistant cyst form [1-3].
Acanthamoeba undergoes two stages during its life cycle:
a metabolically active “trophozoite” stage and a “cyst”
stage with minimal metabolic activity. The trophozoite ag-
gressively feeds on human cells as well as grazes upon
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bacteria, yeast and/or small organic particles and multi-
plies enthusiastically. Exposure to harsh environmental
conditions i.e., in the face of famine, extremes of pH,
temperature, osmolarity and the presence of antimicrobial
drugs, results in cellular differentiation into a resistant cyst
form [5]. During encystment, the trophozoite enfolds itself
into a circular structure surrounded by a cyst wall with
minimal metabolic activity. The transformation of the
trophozoite from a metabolically active form to an inactive
form can impede successful treatment. When encysted,
the trophozoite encloses itself within a shell that makes it
resistant to physiological concentrations of a number of
physical, chemical and radiological conditions and chemo-
therapeutic agents [6,7]. It is envisaged that degradation of
the shell (cyst wall) will allow effective killing of trophozo-
ite within. The cyst wall consists of an ectocyst (laminar,
fibrous outer layer) and an endocyst (fine, fibriler inner
layer) [5,8,9]. Both layers are separated by space except at
opercula in the centre of ostioles which during excystation
serves as the exit point for trophozoite. The mature cyst
therefore consists of a double-walled structure with the
wall serving as a protective barrier to facilitate parasite
survival of hostile conditions. As the cyst wall offers
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resistance to chemotherapeutic agents, it may leave
amoeba viable to re-establish infection following anti-
microbial chemotherapy [6]. Cyst walls remain intact
even with the treatment of SDS plus boiling, EDTA, en-
zymes (including papain, DNase, RNase, amyloglucosi-
dase, proteinase K) and DTT [10]. Resilient nature of
cyst walls suggest that they are composed, at least in
part, of carbohydrates possibly polysaccharides. This is
in agreement with the fact that the carbohydrate analysis
of cysts walls of A. castellanii using GC/MS showed
that they contain 44.4% glucose [10]. The linkage ana-
lysis confirmed the presence of 4-linked glucopyranose
(22.2%) in the cyst walls of A. castellanii which is sug-
gestive of cellulose and is consistent with previous find-
ings [11,12]. Dudley et. al,, [13] observed the inhibition
of Acanthamoeba encystment in the presence of 2,6-
dichlorobenzonitrile, an inhibitor of cellulose synthesis.
Furthermore, the enzymes for the synthesis and break-
down of cellulose have been identified in A. castellanii,
indicating the presence of cellulose in the cyst walls of
this organism [14]. Hence the sturdy nature of Acanth-
amoeba cysts is attributed, in part, to cellulose and sug-
gests that cellulose could serve as a potential target.
Previous work has described cellulose synthesis in Acanth-
amoeba [5,12,14-16]. In agreement with recent studies
[17,18], here it is proposed that cellulose degradation of-
fers a potential therapeutic strategy in effective targeting
of trophozoite encased within the cyst walls. Here, we
present a comprehensive report on the structure of cellu-
lose and cellulases, as well as known cellulose degradation
mechanisms with an eye to target Acanthamoeba cyst
wall. It is envisaged that the disruption of cyst wall will
make amoeba (concealed within) susceptible to chemo-
therapeutic agents, and at the very least inhibition of
excystment process would impede infection recurrence
and undoubtedly be of potential value in therapy.

What is cellulose?

Cellulose is the most abundant biopolymer on earth, a
product of solar energy due to its origin from photosyn-
thetic process. It is a major component of plant biomass
and also produced in considerable amounts by green algae
(Valonia and Micrasterias), slime mold Dictyostelium,
bacteria (Acetobacter xylinum), sea animals (Halocynthia)
and other animals such as tunicates etc. [19,20]. An excep-
tional feature of cellulose which is also relatively unusual
in the polysaccharide world is its crystalline structure
[20,21]. Cellulose is basically a linear polymer of (-1,4
linked glucose units (Figure 1), which are assembled at the
site of its synthesis requiring the action of cellulose syn-
thase and UDP. The B-1,4 linked D-glucose units are
arranged in alternate orientation with respect to one
another so that the repeating unit is cellobiose rather
than glucose. Degree of polymerization in a cellulose
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Figure 1 Beta-D-glucose is the basic subunit of cellulose, which
is an important component of the cyst wall of Acanthamoeba.

molecule varies from 100 to 14,000 residues depending
on the source of cellulose [22]. Unlike starch, cellulose
is a straight chain polymer with no coiling and rod-like
conformation that provokes spontaneous crystallization
of the molecule [19]. Approximately 30 individual mol-
ecules of cellulose are assembled into larger units called
elementary fibrils (protofibrils), which in turn are packed
into larger units called microfibrils [20,21]. The chains in
the microfibrils are held together by hydrogen bonds giv-
ing them a high tensile strength. It is this inter- and intra-
chain hydrogen bonding between multiple parallel layers
of cellulose that results in the formation of tightly packed
microfibrils. The microfibrils then associate into crystal-
line cellulose fibers [22,23].

Cellulose, although it is said to have a crystalline struc-
ture, in nature these fibers are not purely crystalline. In
the physical world, cellulose fibers range from purely
crystalline to purely amorphous forms [20,24]. Depend-
ing on the origin, the degree of cellulose crystallinity can
vary from 0% of that of amorphous, acid swollen cellu-
lose, to 70% of that from cotton, to nearly 100% of that
from Valonia macrophysa [25,26]. The organization of
individual microfibrils in crystalline cellulose is such that
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the component molecules are packed tightly enough to
prevent penetration by enzymes. In addition, cellulose
also contain various irregularities such as twists or voids,
surface micropores, large pits and capillaries etc., increas-
ing the total surface area much larger than that of an
ideally smooth fiber of the same dimensions [20,27-29].
Hence the net effect of this heterogeneity is that the fibers
are partially hydrated when in aqueous medium, allow-
ing the invasion of comparatively larger molecules like
cellulases. Overall, cellulose imparts high tensile strength
to the wall it is contained in, serving as a structural com-
ponent. It is an extracellular polysaccharide and is a part
of the cell wall in plants, algae, bacteria, slime mold
Dictyostelium and other protists such as Acanthamoeba
cyst wall [30-33].

What are cellulases?

Cellulose degradation is carried out by the enzymes
called “cellulases”, responsible for the hydrolysis of B-1,4-
linkages present in cellulose [34,35]. Although chemically
homogenous, cellulose exists in crystalline and amorphous
topologies and no single enzyme is able to hydrolyze cellu-
lose. Its insoluble, crystalline and heterogeneous nature
makes it a resilient and challenging substrate for enzy-
matic hydrolysis [19]. Given the structure of cellulose, it
practically makes it impossible for the enzyme to clasp
cellulose into its substrate site and hence for a single en-
zyme to hydrolyze cellulose. This, together with its associ-
ation with other polymers, makes cellulose containing
material withstand harsh conditions making it hardy and
resistant to degradation, hence its role as a structural
and protective barrier. Cellulose, is therefore only hy-
drolyzed by a variety of simultaneously acting enzymes
interacting with each other to bring complete hydroly-
sis. Consequently, true cellulolytic organisms produce a
multiple-enzyme system [36-38]. These multiple-enzyme
systems act in synergy to bring effective hydrolysis of cel-
lulose. At least three different types of enzyme activities
are required for complete hydrolysis of this polymeric sub-
strate into its monomeric unit [20,39,40]:

e Endoglucanase activity

e Exoglucanase activity (also called cellodextrinase or
cellobiohydrolase)

e [ — glucosidases activity

Only by the cooperation of these activities, enzymes
are able to disrupt the structure at the solid-liquid inter-
face making the individual fiber available for hydrolysis.
Endoglucanases produce random internal cuts within
the amorphous region in the cellulose molecule, yielding
cello-oligosaccharides of various lengths and thereby ge-
nerating new chain ends [20,40]. Exoglucanases act pro-
gressively on the reducing and/or non-reducing ends
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producing either glucose, cellobiose and/or cellooligosac-
charides. These soluble cellodextrins and cellobiose are
then hydrolyzed by B-glucosidases to glucose (Figure 2).
Endoglucanases have an open active site, as they are able
to bind to the interior of the long cellulose fibers [40].
This is in contrast to exocellulase, which have their active
site in a tunnel and hence is consistent with their proces-
sive nature resulting in sequential release of cellobiose
from the end of cellulose chain. The three types of en-
zymes act in a coordinated manner to hydrolyze cellulose.
The amorphous regions within the cellulose fibers are first
attacked by endoglucanase, creating sites for exogluca-
nases to proceed into the crystalline regions of the fiber
[41]. They also tend to act on microcrystalline cellulose, to
apparently peel the cellulose chains off its microcrystalline
structure. Lastly, B-glucosidases split cellobiose to glucose
preventing the build-up of cellobiose which inhibits cello-
biohydrolases. Cellulolytic activity of cellulases, not only
differ in the way they act on cellulose but also in the way
they bind to the crystalline surface of their insoluble sub-
strate. In fact all enzymes that act on insoluble substrates
contain two binding sites: the “active site” which is usually
contained in the catalytic domain of the enzyme and the
“substrate binding site” which is the part of a separately
folded and functionally distinct carbohydrate/cellulose
binding domain [19,35,42-44]. The two domains are sepa-
rated by linker peptide which acts as a flexible arm con-
necting the two parts together. Hence the structure of
most cellulases includes a cellulose binding domain (CBD)
and a catalytic domain (CD) as described below.

Cellulose binding domain (CBD)

In the late 1940s, Reese et al. [45] proposed that the initial
stage of conversion of crystalline cellulose involves the ac-
tion of an unknown non-hydrolytic component termed C;
[now known as Carbohydrate Binding Domain (CBD)].
This C; system makes the substrate more accessible to
the hydrolytic component C, [now known as Catalytic
Domain(CD)], by destabilizing the structure of cellulose
[45,46]. Hence a CBD is defined as an adjoining amino
acid sequence within a carbohydrate active enzyme with a
distinct fold having carbohydrate binding activity. To date,
more than 300 CBD sequences in more than 50 different
species have been identified that have been classified into
64 different families, based on their amino acid sequences,
structure and binding specificity [44]. Not all CBDs bind
cellulose. Many families contain CBDs that bind to other
carbohydrate polymers like chitin, xylan, starch etc. Those
CBDs may be specific for one polymer or may have the
ability to bind to several different polymers. Hence the
presence of CBDs is a general property of carbohydrate
acting enzyme [34,47]. The CBD exists as a single, double
or triple domain in a protein and contains 30 — 200 amino
acids. The location of CBD in a polypeptide chain could
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Figure 2 Classes of enzymes involved in cellulose breakdown. Endoglucanase produce random cuts at an internal position within cellulose
fiber releasing cellooligosaccharides. Exoglucanases/cellobiohydrolase act on chain ends releasing cellobiose which are then acted up on by

be both, C- or N-terminal (Figure 3) or centrally posi-
tioned within the protein. The 3-D structure of several
CBDs in complex with their ligands has been determined
which provides insights into the underlying mechanism of
CBD-ligand recognition and interaction [44]. The data
from these structures hence indicates that CBDs from dif-
ferent families are structurally similar and that their carbo-
hydrate binding capability could be accredited to several
aromatic amino acids that comprise the hydrophobic sur-
face. CBDs in hydrolytic proteins like cellulases are linked
to CDs via relatively unstructured linker sequence rich in
proline and threonine. CBD is thought to function by
bringing the biocatalyst into intimate and prolonged asso-
ciation with its recalcitrant substrate thereby increasing
the rate of catalysis. They are thus considered important
for the initiation and processivity of the enzymes parti-
cularly of exoglucanases [20,45,48]. The removal of CBD

from enzymatic subunit has found to dramatically de-
crease the activity of enzymatic subunit. The essential role
of CBD has been shown for CBHI, a cellobiohydrolase
from Trichoderma reesei [49,50]. The CBHI without the
CBD ie., the core enzyme or the catalytic domain was
found to have a very limited overall action on cellulose.
The catalytic unit was able to initiate the hydrolysis similar
to that of the complete enzyme but this activity ceased
rapidly and it was concluded that without the activity of
binding domain, the hydrolysis would be limited to the
readily accessible and/or amorphous regions of the cel-
lulose. Once these regions are hydrolyzed the available
substrate sites would deplete, terminating the reaction.
However in contrast, in the presence of CBD, the binding
sites were incessantly reformed, allowing a continuous ac-
tivity. CBDs are also thought to direct cellulases to their
new target sites, the regions where catalytic action will be
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Figure 3 Schematic representation of multi-domain organization shown by non-complex cellulases. Cellulose binding domain exist as
single, double or triple domain and could be located on either C- or N terminal of the protein. They are connected to catalytic domain via a
linker sequence rich in proline and threonine. CBD is carbohydrate binding domain, EXG is exoglucanase, CBHII is cellobiohydrolase I, EGB is

most active [34,51,52]. The family 2 CBD once attached
was reported to scan the surface of cellulose without dis-
sociation to access new regions susceptible for hydrolysis.
In addition CBDs also tend to play a role in sloughing off
the cellulose fragments from cellulosic substrates enhan-
cing hydrolysis. They appear to catalyze the disruption
of the non-covalent interactions between the cellulose
chains allowing erosion of the chains on the surface of
the crystal [53,54].

Catalytic domain (CD)

The longest domain within cellulases corresponds to cata-
Iytic cores. Studies of gene deletion, proteolytic truncation
etc., show that they behave as independent entities con-
ferred with catalytic activity and defined specificity to-
wards soluble model substrates [41]. Although the CD of
cellulases exhibit considerable diversity, they have been
grouped into glycoside hydrolase families based on their
amino acid sequence similarities. Glycoside hydrolases are
a group of enzymes which hydrolyze the glycosidic bond
between carbohydrates or between a carbohydrate and a
non-carbohydrate moiety [20,55]. The enzymes in the
same family contain similar basic fold based on the idea
that a direct relationship exists between amino acid se-
quence and the folding of the protein. Based on this classi-
fication, enzymes having different substrate specificities
are sometimes found in the same family; for example,
family 5 contains cellulase, xylanases and mannanases, in-
dicating an evolutionary divergence to acquire new speci-
ficities. On the other hand, enzymes with same substrate
specificity are found in different families; for example, cel-
lulases are found in 11 (5, 6, 7, 8, 9, 12, 44, 45, 48, 61 and
74) different families. This classification which contains
more than 5000 glycoside hydrolases are grouped into 130
families. The classification of glycoside hydrolase into
structurally determined families provides valuable insights
into the structural features of the enzymes, which are

more informative than the substrate specificity which was
the basis of old IUBMB classification. The 3-D structure
of one member of the family can be used to infer the
structure of other members of the same family. This clas-
sification also defines the domains of the enzymes and
thus resolves the contradiction about substrate specificity
for multifunctional enzymes [20]. It also sheds light on the
evolution of the glycoside hydrolases; as for example,
some families are deeply rooted evolutionarily, such as
family 9, which contains cellulases of fungi, bacteria, ani-
mals and plants. However this is in contrast to family 7
which contains hydrolases of fungal origin only and family
8 which contains only bacterial hydrolases. In addition,
cellulases from several families and hence from several dif-
ferent folds are found in the same organism; for example,
Cellulomonas thermocellum contain endoglucanase and
exoglucanase from families 5, 8, 9 and 48. Cellulases are
hence a complex group of enzymes that seems to have
evolved through concurrence from a repertoire of basic
folds. In addition, the extensive diversity within the cellu-
lase families reflects the heterogeneity of cellulose and
associated polysaccharide within plant material and a
variety of environment where hydrolysis takes place.
Proteolytic truncation of CBDs led to the determination
of the 3D structures of a variety of CDs by X-ray crys-
tallography. The CD of Trichoderma reesei cellobiohy-
drolase II (CBH II), belonging to glycosyl hydrolase
family 6, is a large a/p protein with 5 a-helices and 7
B-strands. The active site is an enclosed tunnel located
at the C-terminal end of a pB-barrel through which the
cellulose chain threads [56]. This structure was con-
firmed in endoglucanase II from Thermomonospora fusca,
another family 6 member [57]. The 3D structures of cata-
lytic cores of both these enzymes are very similar. How-
ever, closer examination reveals a major difference in the
degree of active site accessibility to the substrate cor-
responding to the major difference in their endo- and
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exo- mode of action [58]. In endoglucanase, the substrate
tend to lie in an open cleft which can accommodate cel-
lulose anywhere along the chain, whereas exoglucanase
forms an enclosed tunnel in order to allow cellulose
chains to be threaded releasing cellobiose or cellooligo-
saccharides. The hydrolysis of p 1,4-glycosidic bond pro-
ceeds via general acid—base catalysis requiring a proton
donor and a nucleophile or a base [59,60]. The hydrolysis
product can either result in overall retention or inversion
of the configuration of the carbon at anomeric position.
The stereochemical course of hydrolysis has been deter-
mined for several glucanases belonging to different fam-
ilies [61-66]. For example, members of the family 5, 7 and
11 proceeds via retention of the anomeric configuration,
whereas enzymes of family 6 and 9 proceeds via inversion
mechanism. Generally the overall 3D structure and stereo-
specificity of hydrolysis are conserved within the family.

Cellulose degradation mechanisms
There are at least four different known strategies for cel-
lulose degradation as described below.

Non-Complexed cellulolysis

In this system, a set of six to ten individual cellulases
(with or without CBDs) are produced. They do not form
stable complexes. It is mostly observed in aerobic orga-
nisms that secrete soluble extracellular cellulolytic en-
zymes [38,67]. The enzymes attack cellulose, resulting in
the release of sugars which are eventually taken up by
the cells and metabolized (Figure 4). The best studied
non-complexed cellulase systems are those of aerobic
fungi such as Trichoderma reesei [45,68-70]. T. reesei
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cellulases system consists of five endoglucanases (EGI,
EGIL, EGIII, EGIV and EGV), two exoglucanases (CBHI
and CBHII) and two [-glucosidases (BGLI and BGLII)
[71]. Despite the fact that endoglucanases are the main
components responsible for decreasing the degree of po-
lymerization of cellulose, they only represent less than
20% of the total cellulase activity of the system [20].
They cleave the cellulose chain internally at relatively
amorphous regions creating new chain ends susceptible
to the action of cellobiohydrolases, the principal compo-
nent of the system. The cellobiohydrolases, CBHI and
CBHII, constitute about 60 and 20% of the total cellulase
activity respectively [72]. The 3D structure of CBHI as
determined by X-ray crystallography, shows the presence
of 4 surface loops, 50 A in length giving rise to a tunnel,
whereas CBHII has been shown to have two surface
loops of 20 A [56,73]. These tunnels are essential for the
processive nature of these enzymes and helps in clea-
vage of cellulose chain from reducing (CBHI) and non-
reducing (CBHII) ends [74-76]. Cellobiose is the major
end product of cellobiohydrolase activity, the hydrolysis
of which is facilitated by the two p-glucosidases which in
turn help to elevate the pressure of feedback inhibition
(Figure 5). It is noteworthy that BGLI and BGLII both
have been isolated from culture supernatants of T. reesei,
however a large fraction of these enzymes remain bound
to the surface of the cell [77,78]. This may help to limit
the loss of degradation product to the competing mi-
crobes present in the surrounding environment. The cel-
lulase system of thermophilic fungus, Humicola insolens
is homologous to that of 7. reesei system with minor dif-
ferences. The system consists of two cellobiohydrolases,

-
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sugars which are eventually taken up by the cells and metabolized.

Figure 4 Hydrolysis of cellulose by non-complexed cellulase system. The enzymes are secreted extracellularly resulting in the release of
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down by exoglucanases into cellobiose. The hydrolysis of cellobiose is then mediated by 3 — glucosidases releasing glucose.
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CBHI & CBHII and five endoglucanases including EGI,
EGIL, EGIIL EGV & EGVI [79]. Among aerobic bacteria,
the best studied cellulolytic species are from the genera
Cellulomonas and Thermobifida. Cellulomonas are Gram
positive, non-spore-forming, facultative anaerobic actino-
mycete that belongs to the Coryneform group of bacteria
[80,81]. They produce at least four endoglucanases (CenA,
CenB, CenC and CenD), two exoglucanases (CbhA and
CbhB) and an exoglucanse with a xylanase activity (Cex)
[82-84]. The system resembles those of aerobic fungi
(Figure 6). Similarly, a major soil cellulose degrader T.
fusca, is a thermophilic filamentous bacterium contain-
ing 6 cellulases including three endoglucanases (E1, E2
and E5), two exoglucanases (E3 and E6) and an unusual
cellulase (E4) with both exo-/endo- activity [20,85]. The
ability of cellulolytic filamentous fungi (and actinomy-
cete bacteria) to penetrate cellulosic materials through
hyphae enables them to release cellulases in confined
cavities within cellulosic materials. These free cellulases
therefore suffice for the efficient hydrolysis of cellulose
under such conditions [86]. In contrast anaerobic bac-
teria lack the ability of effective penetration of cellulosic
substrates and thus have to find an alternative approach
for cellulose degradation in order to gain access (in the
presence of other competing microorganisms) to the
products of cellulose hydrolysis with the limited ATP
available for the synthesis of cellulases. This, in part,
could have resulted in the development of ‘complexed
cellulase system’ which positions the anaerobic organ-
ism close to the site of hydrolysis.

Complexed cellulolysis

The complexed cellulase system is mostly utilized by
anaerobic microorganisms and consists of large protein
complexes called cellulosome usually attached to the
surface of the organism [20,41,87,88] (Figure 7). The term

was first coined by Lamed and coworkers in 1983 [89]
while studying the cellulase system of Clostridium ther-
mocellum. Cellulosome help anchor bacteria to cellulose
resulting in localized release of hydrolysis products which
are taken up by the cells. Cellulosomes contain numerous
kinds of cellulases and related enzyme subunits which are
held together by a unique scaffoldin subunits. Scaffoldins
are very large, modular polypeptides that hold the mul-
timolecular complex together. They contain a CBD, one
or more conserved hydrophilic modules (the function of
which is not known) and most importantly multiple cop-
ies of cohesin domains. The cellulosomal enzyme subunits
are known to contain a dockerin domain, which mediates
the integration of enzymes into the cellulosome complex.
Dockerins of the enzymatic subunits are involved in a very
stable type of binding interaction with the cohesins of the
scaffoldin subunit. There is little or no specificity in the
binding of various cohesins and the dockerins in the cellu-
losomes. The CBD helps in the recognition and binding of
the scaffoldin subunit to the cellulosic substrate, hence, if
the cellulosome is implanted in the cell surface, the CBD
of scaffoldin results in the binding of the entire cell to
its insoluble substrate, cellulose [42]. Cellulosomes vary
in size from 2 — 16 MDa, however in case of polycellu-
losomes, size can extend up to 100 MDa [19,90]. The
scaffolding subunit of cellulosome is sometimes heavily
glycosylated with carbohydrate content varying from 6 —
13% and protects the cellulosome from proteolytic enzymes
while playing a role in cohesion-dockerin recognition
[91]. Under electron microscope cellulosome appears like
a fist that opens to spread the catalytic domains allowing
it to attach to its substrate [20,42]. Hence these complexes
are stable enough to remain bound to bacterial cell while
flexible enough to tightly bind to cellulose. Among cel-
lulolytic anaerobes the best characterized example of cel-
lulosome is that of Clostridium thermocellum, a Gram
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down by exoglucanases into cellobiose. The hydrolysis of cellobiose is then mediated by {3 — glucosidases releasing glucose.
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positive, sporogenic, strictly anaerobic thermophilic bac-
terium. The cellulosome structure of C. thermocellum has
been studied via a combination of various biochemical,
structural and genetic analysis [90,92]. The scaffoldin,
CipA, of C. thermocellum is 197 kDa multimodular pro-
tein containing nine cohesins, four hydrophilic modules
(X-modules) and a CBD belonging to family III. The gen-
ome encodes for at least 9 endoglucanases (CelA, CelB,
CelD, CelE, CelF, CelG, CelH, CelN, CelP), 4 exogluca-
nases (CbhA, CelK, CelO, CelS), 5 hemicellulases (XynA,
XynB, XynV, XynY, XynZ), 1 chitinase (ManA) and 1
lichenase (LicB) that have dockerin moiety and can associ-
ate with CipA’s cohesion moieties to form a cellulosome.

It is noteworthy that cellulosomal components do not
only include cellulases but hemicellulases as well, the en-
zymes responsible for the breakdown of other polymers
associated with cellulose in the natural environment. The
probable pathway for cellulose degradation by this organ-
ism is shown in Figure 8. The exact composition of cellu-
losome and the assembly of CD on scaffoldin vary with
the extracellular environment and the presence of parti-
cular polysaccharides. However CelS, a major processive
exocellulase with preference for crystalline as well as
amorphous cellulose is always present [93]. Evidence
suggests that cellulolysis in rumen bacteria and fungi also
proceeds via cellulosomes. Ruminococcus flavefaciens, a

Bacterial cell

_~Scaffoldin protein

Carbohydrate
binding module

@@ cellobiose
o B-glucosidase

Y exoglucanase

L@ '@ @@ @ @@ Cellulose fiber

@ endoglucanase @@ glucose

immediately taken up by the cells and metabolized.

Figure 7 Hydrolysis of cellulose by complexed cellulase system. The cellulase components are associated tightly forming multiprotein
complexes called “cellulosome” and are found attached to bacterial cells. Components of hydrolysis are released in the vicinity of cells which are
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Figure 8 Cellulose degradation by Clostridium thermocellum. Cellulose is attacked by various endoglucanases present in cellulosome
releasing cellotetraose and/or cellodextrins. These cellooligosaccharides are then attacked by exoglucanases within cellulosome releasing
cellobiose which is eventually converted to glucose by 3 — glucosidase.

ruminal bacterium when grown in the presence of cellu-
losic material like cellobiose, a protuberance on the cell
surface with production of 1.5 MDa cellulosome like
structure is observed which suggests the production of
cellulosome [94]. In addition, the isolation of 250 kDa pro-
tein from Ruminococcus albus, another rumin bacterium
indicates the presence of a large scaffoldin [95]. Anaerobic
cellulolytic fungi are only found in the rumen of herbivor-
ous animals where they actively produce cellulases. Esca-
lating evidence shows that anaerobic fungi also employ
cellulosomal machinery for the hydrolysis of cellulose.
The isolation of high molecular weight complexes with
binding affinity for microcrystalline cellulose from Piro-
myces sp. strain E2 in addition to the presence of con-
served non-catalytic repeat sequence, probably serving a
docking function, have also been identified in Priomyces
as well as Neocallimastix species [96,97]. Cellulolysis via
cellulosome is generally a highly efficient process and may
have a number of advantages including:

e DPresence of correct ratio between components of
cellulosomal machinery optimizes synergism.

e Optimum spacing and organization of individual
components maximizes synergy by avoiding non-
productive binding.

e Competition between different components is
limited due to the binding of the whole complex to
a single site.

o The presence of enzymes with different specificity in
one complex avoids the halt in the process on
depletion of one structural type of cellulose.

Cellulolysis without processive cellulases

The third strategy appears to be utilized by at least two
very efficient cellulose degraders: Cytophaga hutchinsonii,
an aerobic soil cellulolytic organism and Fibrobacter succi-
nogenes, an anaerobic ruminal bacterium [34,35,88]. These
organisms do not seem to encode for any processive cellu-
lases. Up until recently, the presence of processive cellu-
lase was considered mandatory for effective degradation
of crystalline cellulose. Examination of C. hutchinsonii ge-
nome sequence reveals the presence of clusters of genes
responsible for degradation of cellulose [38]. In addition
to genes encoding probable B endoglucanases, there are
genes encoding possible 3 glucosidases but no recogni-
zable exoglucanases/cellobiohydrolases. In addition, most
cellulases of C. hutchinsonii do not contain CBD indicat-
ing the absence of any processive cellulases [34,98]. As de-
scribed above, cellulases generally consist of a CD, a CBD
and the linker, joining the two [53,99]. Since to date these
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features were considered mandatory for the efficient deg-
radation of cellulose by other cellulose degraders, C.
hutchinsonii may therefore have a novel mechanism for
cellulose degradation. The genome sequence of the
major cellulolytic rumen bacterium F. succinogenes has
been determined [34]. It does not seem to possess any
processive cellulases nor does it seem to encode for
dockerin domains or a scaffoldin gene, as does other
anaerobes [100,101]. Furthermore, none of the cellulases
from these organisms have much activity on crystalline
cellulose [35,38,102]. However both these organisms grow
very rapidly on cellulose. They have a unique requirement
of physical association with their carbon source and are
only able to grow when tightly bound to cellulose. In
addition, none of these organisms secrete free cellulases
or produce cellulosomes. Hence there appears to be a
novel strategy for cellulose utilization by these organisms.
One possible mechanism for cellulose digestion by these
bacteria might be the one used by starch degrading bacter-
ium, Bacteroides thetaiotaomicron [34]. In this model, cel-
lulose is bound to a protein complex present in the outer
membrane and the individual molecules are transported
into the periplasmic space, where they are degraded by
cellulases. In this model, individual cellulose molecules
would be readily degraded by endoglucanases and hence
excludes the requirement for processive cellulases. This
hypothesis also fulfills the unique requirement of these
bacteria to be in direct contact with their insoluble sub-
strate for efficient digestion [34,35,38].

Cellulolysis via non-hydrolytic enzymes

Lastly, some non-hydrolytic enzymes i.e., oxidative en-
zymes have also been reported to be associated with cel-
lulose degradation [103]. This system is most thoroughly
studied in white-rot fungi, however some cellulolytic
bacteria have also been discovered which tend to degrade
cellulose via oxidative enzyme strategy [97,103,104]. In
addition to hydrolytic enzymes, occasional non-hydrolytic
enzymes have also been cited in the literature to be in-
volved in cellulose degradation [103,104]. These include
oxidative enzymes such as cellobiose:quinone oxidore-
ductase (CBQ), cellobiose dehydrogenase and cellobiose
oxidase (CBO) [103,105-107]. These enzymes oxidize
cellobiose and/or higher cellodextrin reducing ends to
their corresponding lactones which can then be used by
organisms as their source of carbon [97,104,108]. After
the discovery of oxidative enzymes as potential candi-
date involved in cellulose degradation [103], research
has mostly been focused on enzymes from white rot
fungi. To date, there is little knowledge about oxidative
systems in bacteria [97,104]. The possible role played
by these oxidizing enzymes in cellulose degradation
may be to alleviate the inhibitory effect of cellobiose on
cellobiohydrolase action, to regulate the synthesis of
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enzymes involved in cellulose degradation and/or in the
metabolism of cellobiose itself [97]. In addition since
these enzymes are most commonly found in wood rot-
ting fungi, it is suggested that oxidases might also gen-
erate H,O, required by lignin-degrading enzymes like
peroxidases and laccases for the degradation of lignin
in natural environment.

Synergy and competition among cellulose degrading
system

The cellulase degradation system has been shown to have
a higher collective activity than the sum of the activities of
individual enzymes, a phenomenon called synergy [40,46].
Four forms of synergism have been reported:

e Synergism between endoglucanase and
exoglucanase, called endo-exo synergy

e Synergism between exoglucanases, called exo-exo
synergy

e Synergism between exoglucanase and p —
glucosidase to remove cellobiose that inhibits
exoglucanase

e Synergism between catalytic and carbohydrate
binding domains

Fujita et al., [109] reported the synergistic hydrolysis of
amorphous cellulose by a yeast strain co-displaying endo-
glucanase II (EGII) and cellobiohydrolase II (CBHII)
from Trichoderma reesei and Aspergillus aculeatus -
glucosidase 1 (BGL1). They observed higher hydrolytic
activity by the strain co-displaying EGII and CBHII
(1.3 mM reducing sugar were released in 60 hours) on
amorphous cellulose than the strain displaying only EGII
(0.5 mM reducing sugars were released in 60 hours) with
the main hydrolysis product been cellobiose. The co-
display of BGL1 along with EGII and CBHII resulted in
direct production of ethanol from amorphous cellulose.
Ethanol was not produced from amorphous cellulose in
the presence of only EGII and CBHIIL. Zhou and Ingram
[110] observed synergism between two endoglucanases
CelY and CelZ from Erwinia chrysanthemi. They observed
about 1.8 fold synergy when the enzymes were used in
combination. The synergy was due to the difference in
substrate preference. CelY hydrolyzed CMC to fragments
averaging 10.7 glucosyl units but was unable to hydrolyze
cellotetraose and cellopentaose. On the other hand CelZ
readily hydrolyzed soluble cellooligosaccharides and amor-
phous cellulose to produce cellobiose and cellotriose as
major end product. Hydrolysis of CMC by CelZ resulted
in fragments averaging 3.6 glucosyl units. In combination
both enzymes hydrolyzed CMC to fragments averaging
2.3 glucosyl units. Synergy was also observed after the se-
quential addition of CelY and CelZ (after heat inactiva-
tion of CelY) showing that synergy does not require the
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simultaneous presence of both the enzymes. However
no synergy was observed when CelZ was used as the
first enzyme, hence showing that only CelY can act in-
dependently to modify the substrate to make it more
accessible to CelZ. By conventional definition, exocellu-
lases releases cellobiose from non-reducing ends of cel-
lulose chain, which does not explain exo-exo synergy
and would hence compete for limited number of hydroly-
sis sites, instead of cooperating to give synergistic hydro-
lysis. Enzymatic hydrolysis would be insufficient if the
enzymes only act at non-reducing ends, since half the
chain ends would be unused. Hence this traditional model
was questioned followed by the report describing two exo-
glucanases from Aspergillus aculeatus, one of which at-
tacks from reducing end and the other from non-reducing
end of cellulose chain. Similarly two different classes of
cellobiohydrolases in Trichoderma reesei, CBHI (makes
up 60% of total cellulolyticproteins) acting from reducing
end of the chain and CBHII (makes up 20% of total cellu-
lolytic proteins) acting from non-reducing end can achieve
complete solubilisation, although slow, of cellulose with-
out the help of endoglucanases [40]. Hence these data
suggests that the observed exo-exo synergy could be due
to the interaction between non-reducing end attacking
and reducing end attacking exocellulases.

Most cellulases are composed of CD and CBD that
function independently but act synergistically in the
disruption and hydrolysis of cellulose fibres. The CBD
makes the substrate more accessible to hydrolytic do-
main by bringing the catalytic module in close proxim-
ity to boost hydrolysis [20,45,48]. It is also considered
to play a role in sloughing off the cellulose fragments
from the surface of cellulose by splitting of the cross
linkages. It is also worth mentioning that cellulose de-
graders always seem to produce multiple enzymes of
each class. As an example Trichoderma reesei cellulase
system consists of two exoglucanases (CBHI and CBHII),
five endoglucanases (EGI, EGIL, EGIIL, EGIV and EGV)
and two B-glucosidases (BGLI and BGLII) [71]. Humicola
insolens produces at least seven cellulases including two
cellobiohydrolases (CBHI and CBHII) and five endogluca-
nases (EGI, EGII, EGIII, EGV and EGVI) [79]. Thermobi-
fida fusca contains three endoglucanases (E1, E2 and E5),
two exoglucanases (E3 and E6) and a cellulase with both
endo-exo activity (E4) [20,85]. The secretion of multiple
cellulases of same class could be due to the heterogenous
nature of their substrate. As cellulose structure varies
from being purely crystalline to purely amorphous with all
degrees of order in between, hence some of these enzymes
are more effective towards one form of cellulose while
others are more effective towards other forms. In addi-
tion, it also indicates that although each individual B
1,4-glucosidic bond is chemically identical, the complex
nature of the substrate and the environment in which
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they are present shows that they are not in identical
context. Hence therefore one might expect to observe
synergy between cellulases of same class as well as of
different classes. The combination of these enzymes thus
acts synergistically to hydrolyse cellulose. In addition to
cellulase these organisms may also possess enzymes to de-
grade other polysaccharides associated with cellulose such
as hemicelluloses, presumably because their breakdown is
required to gain access to cellulose fibres [38].

With regard to synergy between cellulases, synergy is
observed in some cases but not in other. Anderson et al.,
[111] reported synergistic effect by a mixture of cel45A,
cel6A (an endoglucanse and an exoglucanase respectively
from Humicola insolens) and B-glucosidase from Penicil-
lium brasilianum on amorphous cellulose. However on
crystalline cellulose, these enzymes seem to rather inhibit
each other owing to the competition for binding sites on
cellulose. Whereas some other studies [112,113] with dif-
ferent enzymes showed synergistic effect on crystalline
cellulose but not on amorphous cellulose.

Cellulolytic protists

Most cellulolytic protists are anaerobes, found in the ru-
men responsible for the degradation of plant material
[36]. Cellulolytic flagellated protists are the major cellu-
lose degraders present in the hind gut of lower termites.
In addition, the hind gut of wood eating cockroaches
harbor many symbiotic protists responsible for the di-
gestion of cellulose rich diets [36,114,115]. The protists
tend to endocytose cellulose particles into their food va-
cuoles whereby, cellulases produced by protists degrade
cellulose [116]. However cellulases from protists have
hardly been characterized at molecular level due to the
difficulty in culturing the anaerobic gut protist commu-
nity. So far only a limited number of species have been
cultured axenically although culture independent tech-
niques have led some advancement in identifying and
characterizing cellulases from gut protists [117,118]. Using
PCR, fifteen full-length cDNA clones were isolated and se-
quenced from the protist community of termite, Reticuli-
termes sepratus. They were found to be identical to family
45 cellulases and were originated from hypermastigote
protists. Unlike other bacterial and fungal cellulases, the
cellulolytic enzymes from protist consist of catalytic do-
main only [119]. Ancillary domains like cellulose or CBD
were not present in these enzymes. The ingested cellulosic
material is crunched and ground by the host increasing
the surface of cellulose [120]. The cellulosic material is
then selectively endocytosed into the food vacuole where
it is degraded further by cellulases [119,121]. As men-
tioned earlier, the role of CBD is to anchor the enzyme to
its substrate thereby increasing the concentration of en-
zyme at the surface of the polysaccharide. High enzyme
concentration around the substrate in the food vacuole
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together with increased surface area of the ground and
crunched cellulose may compensate for the lack of CBD
in protist cellulases.

Coptotermes formasanus, a wood-feeding termite har-
bours three symbiotic parabasalian flagelates including
Spirotrichonympha leidyi, Holomastigotoides mirabile and
Pseudotrichonympha grassii [119,122]. These flagellates
play an essential role in the digestion of cellulose rich
diet. P. grassii is however found to utilize high molecu-
lar weight cellulose particles whereas; H. mirabile and
S. leidyi tend to degrade low molecular weight cellooli-
gosaccharides [119,123]. Nakashima et al., [122] isolated a
novel cellulase gene, PgCBH-homos from the flagellated
protist P. grassii. On the basis of amino acid sequence,
PgCBH-homos is found to be similar to GHF 7 (Glycosyl
hydrolase family 7) members that mainly consists of fun-
gal cellulases. However clones similar to GHF7 have been
detected in Dictyostelium discoideum, the social amoebae
of the cellular slime mold (Dictyostelium discoideum
c¢DNA Project at [124]. On the basis of their tertiary struc-
tures and the catalytic mode of action, GHF 7 members
are subdivided into two groups: endoglucanases and cello-
biohydrolases. PgCBH-homo however has shown to con-
sist of regions similar to Cel7A from Trichoderma reesei, a
processive cellobiohydrolase forming a tunnel shaped ac-
tive site [122]. Hence it was predicted to have similar 3D
structure to Cel7A and probably functions as a processive
cellulase active against crystalline cellulose. The enzyme
was also found to contain signal sequence at N-terminal
corresponding to the fact that the enzymes could be se-
creted into the food vacuole after endocytosis of wood
particles. Another cellulase gene coding for an endogluca-
nase CFP-EGI, from symbiotic protist Spirotrichonympha
leidyi present in the hind gut of lower termite Copto-
termes formasanus was cloned, expressed and character-
ized [119]. It's a 33.6 kDa protein and shows sequence
similarity with members of GHF 5, a large and growing
family of glycosyl hydrolases comprising of endogluca-
nases, xylanases, mannanases and 1,3-exoglucanases of
both aerobic and anaerobic origins. In addition hydrolases
of GHF 5 are very diverse and belongs to both prokaryotes
and eukaryotes including bacteria, fungi, nematodes, pro-
tists and insects. The heterologous CFP-EGI was found to
have an optimum pH of 5.8-6.0 and an optimum tem-
perature of 70°C. In 2010, Todoka et. al., heterologously
expressed and characterized a cellulase, RsSymEG, from
a symbiotic protist of the lower termite, Reticulitermes
speratus. The amino acid sequence of RsSymEG indi-
cates that it is a GHF 7 cellulase. The lack of insertion
sequence responsible for the formation of a tunnel shaped
active site conserved among GHF7 CBHs, indicate that
RsSymEG is an endoglucanase similar to that of Cel7B,
an endoglucanase from Trichoderma reesei. However
unlike Cel7B, no CBD was detected in RsSymEG and
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the optimum temperature and pH was found to be 45°C
and 6.5 respectively. In addition chromatographic analysis
revealed that the preferred substrate for RsSymEG is cello-
dextrin which is broken down into cellobiose and glucose.
Using PCR, 11 different cellulases from symbiotic protists
of four different termites were cloned in Saccharomyces
cerevisiae [125]. The cellulases belong to 3 different glyco-
syl hydrolase families i.e., GHF 5, 7 & 45 and were found
to be more efficient than EG I, a major endoglucanase
from Trichoderma reesei, in degrading carboxymethyl cel-
lulose. The presence of cellulases from a variety of differ-
ent glycosyl hydrolase family corresponds to the fact that
various cellulases act in synergism to bring efficient hy-
drolysis of polymeric cellulose [116]. Unlike anaerobic
rumen protists that degrade cellulose, Dictyostelium dis-
coideum, the amoebae of the cellular slime mold under
harsh conditions transforms into a microcyst, containing
cellulose rich cell wall [126-129]. Their cell wall mainly
consists of four layers: 1, 2a, 2b and 3. Middle layers i.e.,
layer 2a and 2b are mainly composed of cellulose fibrils
and layer 3 i.e, the inner most layer is at least made up of
two components: cellulose and proteins [129,130]. As
mentioned earlier the cellulose in their cell wall serves as
the structural component and help survive hostile condi-
tions. The inability of Dictyostelium mutants to synthesize
cellulose results in the failure to form viable spores [33].
The spores remain dormant until the conditions are fa-
vourable which then stimulates spore germination. The
germination is characterized by the activation of spore,
budding of the cell wall with swelling of the entire spore
and finally, lysis of the cell wall with simultaneous emer-
gence of an amoeba [131]. Cellulolytic activity in D. discoi-
deum, first observed by Rosness [127], plays a significant
role in the germination process by causing lysis of the cell
wall, hence allowing the emergence of the viable amoeba.
Rosness observed the degradation of acid swollen cellulose
to glucose by extracts from D. discoideum at the sorocarp
stage of development. The cellulase activity was found to
increase rapidly during aging of sorocarp and therefore
the cellulases are thought to play a central role in the
germination process of this organism. Latter Jones et al.
[132], partially characterized two cellulolytic enzymes
in this organism released during swelling stage of ger-
mination. During this stage the layers 1, 2a and 2b are
ruptured and this hence suggests that cellulases during
this stage act to degrade layers 2a and 2b celluloses and
eventually diffuse into the extracellular medium after
the rupture of the cell wall.

Conclusions

With the completion of the Acanthamoeba genome, en-
zymes for the synthesis and breakdown of cellulose have
been identified in A. castellanii which are likely to par-
ticipate in the morphogenesis in this group of organism
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[133,134]. Based on sequence data, cellulases of A. castel-
lanii appear to be similar to bacterial proteins and belong
to the glycosyl hydrolase family 5, while that of D. discoi-
deum belong to glycosyl hydrolase family 9. Cellulases of
GH family 5 are mainly endoglucanase which randomly
cut cellulose chain in the middle releasing short chain
oligosaccharides like cellodextrins. However, a complete
identification, characterization, and localization of en-
zymes in Acanthamoeba with B-glucanase activity, which
are likely necessary in morphogenetic events as well as
controlled hydrolysis of the cyst wall remain unclear.
Based on the known enzymes involved in various cellulose
degradation systems, future studies should be carried out
to specifically address the following question.

What is the specific structure of cellulose in Acanth-
amoeba? how are cellulose fibers in Acanthamoeba orga-
nized, ranging from crystalline to amorphous forms? and
what is the specific combination of cellulases that can
disrupt Acanthamoeba cyst wall integrity. These are im-
portant questions as in patient tissues, Acanthamoeba
form cysts and are resistant to chemotherapy, leading to
recurrence of infection after treatment. It is envisaged
that the disruption of cyst wall will make amoeba (con-
cealed within) susceptible to available chemotherapeutic
agents. ‘Associative’ therapy should therefore act in con-
junction and thus may augment the potency of other
compounds, resulting in the improved treatment with
reduced infection recurrence. Also cellulose is a struc-
tural component limited to some bacteria, protists and
higher plants. Consequently, a specific cellulose degrader
(i.e., cellulase) should ideally have no and/or minimal
effect on non-target (human) cells. Studies should there-
fore focus on testing the use of these molecules/com-
pounds iz vivo which may aid in the improved therapy
against Acanthamoeba infections. These are important
questions as in patient tissues, Acanthamoeba form cysts
and are resistant to chemotherapy, leading to recurrence
of infection after treatment. In addition, a thorough un-
derstanding of cellulose degradation mechanisms and/
or identification of components that can interfere with
this process would undoubtedly be of potential value in
therapy.
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