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Abstract 

Background:  Understanding how the digestibility of lignocellulosic biomass is affected by its morphology is essen-
tial to design efficient processes for biomass deconstruction. In this study, we used a model based on a set of partial 
differential equations describing the evolution of the substrate morphology to investigate the interplay between 
experimental conditions and the physical characteristics of biomass particles as the reaction proceeds. Our model 
carefully considers the overall quantity of cellulase present in the hydrolysis mixture and explores its interplay with the 
available accessible cellulose surface.

Results:  Exploring the effect of various experimental and structural parameters highlighted the significant role of 
internal mass transfer as the substrate size increases and/or the enzyme loading decreases. In such cases, diffusion of 
cellulases to the available cellulose surface limits the rate of glucose release. We notably see that increasing biomass 
loading, while keeping enzyme loading constant should be favored for both small- (R < 300 µm ) and middle-ranged 
(300 < R < 1000 µm ) substrates to enhance enzyme diffusion while minimizing the use of enzymes. In such cases, 
working at enzyme loadings exceeding the full coverage of the cellulose surface (i.e. eI>1) does not bring a significant 
benefit. For larger particles (R > 1000 µm ), increases in biomass loading do not offset the significant internal mass 
transfer limitations, but high enzyme loadings improve enzyme penetration by maintaining a high concentration 
gradient within the particle. We also confirm the well-known importance of cellulose accessibility, which increases 
with pretreatment.

Conclusions:  Based on the developed model, we are able to propose several design criteria for deconstruction pro-
cess. Importantly, we highlight the crucial role of adjusting the enzyme and biomass loading to the wood particle size 
and accessible cellulose surface to maintain a strong concentration gradient, while avoiding unnecessary excess in 
cellulase loading. Theory-based approaches that explicitly consider the entire lignocellulose particle structure can be 
used to clearly identify the relative importance of bottlenecks during the biomass deconstruction process, and serve 
as a framework to build on more detailed cellulase mechanisms.
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Background
Faced with global warming, one of society’s main chal-
lenges for the twenty-first century is to develop sus-
tainable alternatives to current non-renewable and 
carbon-emitting resources. While lignocellulosic 
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biomass appears to be an attractive alternative carbon 
source to fossil feedstocks as low-cost biomass residues 
are widely available [1], biomass conversion to fuels and 
chemicals still requires further development to become 
economically feasible [2]. An important bottleneck for 
the biochemical transformation of lignocellulosic sub-
strates into value-added chemicals is the initial hydrol-
ysis of complex carbohydrates to simple sugars [3], 
which can further be processed to obtain the desired 
final products [4, 5]. The high-cost of this procedure 
is related to the resulting yields of monosaccharides, 
the rate of hydrolysis, and quantity of the enzymes 
required. These factors are always heavily influenced 
by the physicochemical, structural and compositional 
properties of the substrate itself, as well as its interac-
tions with enzymes.

In their untreated native state, biomass polysaccharides 
have a low digestibility. For this reason, a pretreatment 
step is required to disrupt the lignin and hemicellulose 
matrix hindering cellulases’ access to the cellulose fib-
ers and improve depolymerization rates [6–9]. Particle 
size reduction, porosity changes, disruption of lignin 
structure as well as cellulose accessibility, crystallinity, 
degree of polymerization, shielding by hemicellulose and 
packing of the cellulose fibers have all been highlighted 
as parameters affecting digestibility to various degree 
and at different stages of the hydrolytic process [10–12]. 
Along with the impact of biomass structure, many other 
mechanisms have been reported to explain limitations in 
the efficiency of the digestive process including: enzymes’ 
intrinsic thermal sensitivity [13, 14], inhibition from both 
hydrolysis products or residual compounds from the pre-
treatment step [15–17], slowing kinetics through pore 
entrapment and/or surface jamming [18, 19], reduced 
processivity [20–22] as well as unproductive binding to 
lignin [23, 24], and inadequacy of the enzyme cocktail 
composition to promote synergism [25, 26]. Two notable 
phenomena that are well known but poorly understood, 
at least quantitatively, are the decrease in hydrolysis 
rates observed as the reaction proceeds [27–30] and the 
similar decrease in rates with increased solid loading 
[31, 32]. Given their importance for industrial scale-up, 
this lack of understanding impedes the implementation 
of economically viable biomass-to-biofuels pathways. 
Of the factors influencing enzymatic deconstruction, 
no single one can fully explain hydrolysis trends. Study-
ing enzymatic hydrolysis is notably complicated (i) by 
the difficulty of experimentally investigating each factor 
independently, as targeted modifications of one param-
eter usually impact the others, and (ii) by the experimen-
tal observations being highly dependent on the substrate 
native structure and treatment history, as well as the 
composition of the enzyme cocktail that is used.

In this context, a theory-based model coupled to 
experimental observations could help untangle the 
complex relationship between substrate specificities 
and digestibility and help develop design principles for 
both pretreatment and enzyme cocktail design. Sig-
nificant modeling efforts have focused on detailed cel-
lulase–cellulose interactions describing the hydrolysis 
kinetics of cellulosic substrates and have highlighted 
the role of cellulose ultrastructure and its evolution 
over the course of hydrolysis as well as on enzyme syn-
ergism [33–37]. Other modeling strategies have incor-
porated the effect of the entire lignocellulosic structure 
on the biomass deconstruction, mainly in an implicit 
way. Specifically, the impact of mass transfer arising 
from biomass particle size and/or loading have been 
incorporated or considered through the use of empiri-
cally trained artificial neural networks [32], addition of 
corrective kinetic terms in fractal-like kinetic modeling 
[38], or phenomenological description of the hydrolytic 
process [39].

Here, we use a diffusion–reaction model describing 
the enzymatic hydrolysis of lignocellulosic biomass par-
ticles with a focus on the substrate’s physical evolution 
to evaluate the interplay between cellulose accessibil-
ity to cellulase and glucose release (Fig. 1). Notably, we 
evaluate the effects of experimental conditions, includ-
ing enzyme- and biomass-loadings, on the reaction 
rate. While the morphology of the biomass particle (i.e. 
overall physical properties of the substrate comprising 
porosity, component distribution and size) is explic-
itly incorporated in the model, the enzymatic action 
is reduced to a simple time-dependent Langmuir iso-
therm in which the removal soluble sugars is accounted 
for during the desorption step. Cellulose hydrolysis is 
expressed through a lumped parameter that averages 
several specific cellulase mechanisms, such as proces-
sivity, adsorption mechanisms on the cellulose surface 
and the effect of different enzymes including syner-
gistic effects. While such diffusion–reaction systems 
in evolving porous media have been subject of exten-
sive research efforts in several domains—including the 
modeling of catalyst deactivation [40] or the study of 
mineral deposition in hydrology/geology [41] to only 
cite a few—we used a similar formalism here to describe 
the enzymatic hydrolysis of lignocellulosic biomass. 
Our goal was to provide a detailed modeling framework 
for the structural effects controlling enzymatic hydroly-
sis of lignocellulosic biomass. This approach is meant 
to complement more detailed kinetic models for pure 
cellulosic substrates, notably by highlighting possible 
hindrances stemming from the substrate’s morphology 
in addition to those arising from the cellulose itself.
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Results/discussion
Modeling framework
The detailed derivation of the model used in this study 
can be found in the “Methods” section, which is based 
on a previously published model [42]. Description of all 
parameters and variables used in the model can be found 
in Table 1. In short, we model the enzymatic hydrolysis 
of a porous, non-shrinking cylindrical lignocellulosic 
particle in batch conditions through a system of coupled 
partial differential equations (see Additional file  1: A0). 
This assumption is supported by previous imaging stud-
ies that have observed hollowing out particles by in situ 
confocal microscopy during hydrolysis [42, 43]. These 
equations account for diffusional effects that are influ-
enced by variable enzyme- and biomass-loadings. Experi-
mental inputs include the physical characterization of the 
substrate (porosity, particle size, composition, digestibil-
ity). The physical description of the substrate is comple-
mented by an additional fitted parameter representing 
the pore network tortuosity τ. These inputs and fitted 
parameter allow for the determination of the substrate’s 
cellulose accessibility to cellulases over the course of the 
hydrolysis, i.e. the number of available adsorption sites 
on the accessible cellulose surface. Cellulose hydrolysis is 
implicitly expressed through a fitted parameter Mp rep-
resenting the glucose release per enzyme binding cycle. 
Thus, all cellulose adsorption sites calculated based on 
the aforementioned experimental measurements are con-
sidered equal. Consequently, Mp accounts indistinctly for 
effects related to hydrolysis including: the distinct type 
of enzymes in the cocktail, synergism, individual mech-
anisms of these cellulases and local specificities in the 
cellulose structure (enzyme processivity, differentiated 

adsorption sites, cellulose structural heterogeneities, 
enzyme synergism, etc.) and, as such, represents an over-
all measure of the cellulose’s susceptibility to be digested 
by a given enzyme cocktail. Mathematically, we can dem-
onstrate that this parameter is equivalent to the average 
intrinsic processivity on cellulose for a single enzyme 
within the enzyme cocktail. Interestingly, the values of 
Mp that were estimated here, systematically lie between 
those reported for apparent- and intrinsic-processivity 
for single exoglucanases on crystalline cellulose surfaces 
(see Additional file  1: A1). This result is expected given 
that the average processivity of a cocktail on real biomass 
is expected to be higher than that measured of a single 
endoglucanase (apparent processivity), but lower than 
the value on an ideal polymer (intrinsic processivity).

The following analyses are focused on the early stage 
of hydrolysis, in which the substrate structural changes 
can be assumed to be unchanged aside from their evo-
lution in porosity, which was shown to not be sufficient 
to fully explain the rate slow down [42, 43]. In addition, 
any consequences of enzyme deactivation mechanisms 
can similarly be assumed as minor. This allows us to 
accurately explore these initial effects before evaluat-
ing, in subsequent work, how changes in particle size 
and shape and effects of enzyme deactivation play a role 
in the rate slowdown that is usually observed following 
initial hydrolysis. The following section are organized 
as follows: first, we evaluate the effect of accounting for 
a finite number of enzymes in the system on a dataset 
taken from literature (referred to as DS1) and previously 
discussed within the previous model formulation [29, 
42, 43]. We show the validity of our model to predict ini-
tial rates based on initial cellulose accessibility for this 
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Fig. 1  Schematic representation of the assumed biomass geometry and enzymatic hydrolysis mechanism. Only a fraction of the biomass particle, 
containing all pores accessible to cellulases, is subjected to hydrolysis. Subsequently to their diffusion to the binding sites located at the pore wall, 
enzymes bound to cellulose fibers and catalyze their depolymerization (surface reaction). The integration volume is given by dV = rdrdϕdz
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particular dataset (DS1). We then evaluate in silico how 
changes in experimental conditions would affect early 
hydrolysis rates for one of the substrates included in this 
dataset (DS1). Finally, we discuss how these in silico pre-
dictions predict new experimental data by generating a 
new dataset (referred as DS2) that covers conditions were 
in silico results predicted changes in hydrolysis rates. For 
sake of clarity, we refer throughout the text to the dataset 
extracted from literature as DS1 and the newly generated 
dataset as DS2.

The relationship between enzyme loading and cellulose 
accessibility
In previous work [42, 43], not considering enzyme deple-
tion in the bulk provided rather good predictions of ini-
tial yields and quantitatively confirmed the importance of 

surface accessibility as a key parameter on the hydrolysis. 
However, with the more complicated model developed 
here, we demonstrate that enzyme depletion can strongly 
impact the rate of cellulose hydrolysis especially for spe-
cific biomass structures (Fig. 2). We compare predictions 
from our previous work with those generated using the 
current improved model on the same dataset DS1 [29, 42, 
43] (see Additional file 1: Table S1 in A2).

Using the fitted parameters ( Mp = 360 and τ = 2 ) from 
the model assuming infinite enzyme loadings (no change 
in the bulk concentration of enzymes), accounting for 
enzyme depletion within the new framework worsens 
early yield predictions for the more severely pretreated 
hardwood, while generating similar results for mildly 
pretreated and native substrates (Fig.  2). For the latter, 
the initial excess cellulases in terms of adsorption sites 

Table 1  List of symbols. Dependent variables (Dep. Var.) refer to variables that are defined by or are calculated directly from 
experimental data

Symbol Description Value Units

bl Biomass loading Dep. Var. [g/cm3]

CE ,0 Initial bulk enzyme concentration Dep. Var. [mol/cm3]

CF
E (r , t) Enzyme concentration in pores or bulk (r = R) Dep. Var. [mol/cm3]

CS
E (r , t) Enzyme concentration adsorbed at the cellulose surface per total cylinder volume V(r) Dep. Var. [mol/cm3]

CS
E ,max(r , t) Maximum enzyme concentration adsorbed at the cellulose surface per total cylinder volume 

V(r)
Dep. Var. [mol/cm3]

Deff
E (r , t) Effective cellulase diffusivity in pores Dep. Var. [cm2/min]

−

D
pore

E

Average cellulase diffusivity in pores Dep. Var [cm2/min]

DE Time independent part of the effective cellulase diffusivity in pores Dep. Var. [cm2/min]

el Enzyme loading in terms of enzyme:initial binding sites molar ratio Dep. Var [molE/molSites]

Hglu Hydrolysis factor for glucose 0.9 [MMcellulose/MMglucose]

kads Cellulase surface adsorption rate [60] 3 · 1010 [cm3/(mol · min)]

kdes Cellulase surface desorption rate [42, 43] 0.068 [1/min]

Mp Average moles of glucose liberated in solution per mole of cellulase during one binding-
reaction cycle

Fitted var. [molglucose/moldesorbing enzyme]

MMglu Molar mass of glucose 180 [g/mol]

n Grid size Dep. Var. [−]

nE ,0 Total number of moles of enzyme in the system Dep. Var. [mol]

r Radial distance Indep. Var. [cm]

R Particle radius Dep. Var. [cm]

Sc Pore cellulose surface Dep. Var [cm2]

Scyl Outer particle surface Dep. Var. [cm2]

t Time Indep. Var. [min]

VB Volume of bulk solution Dep. Var. [cm3]

ε(r , t) Porosity Dep. Var. [cm3
pore/ cm3

biomass]

ε0 Initial porosity Dep. Var. [cm3
pore/ cm3

biomass]

ρ
IV
C

Density of cellulose including void Dep. Var. [g/cm3]

ϕ Angular coordinate Indep. Var. [−]

σ Maximum cellulase surface concentration on cellulose [42, 43] 2.1 · 10−12 [mol/cm2]

τ Tortuosity Fitted var., [−]

z Longitudinal coordinate Indep. Var. [-]
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( el > 2 ) makes the constant enzyme bulk concentration 
hypothesis reasonable. For more digestible substrates, the 
internal mass transfer is slowed by enzyme depletion in 
the bulk and to incomplete initial surface coverage, which 
significantly slows the initial glucose release compared to 
a case where no enzyme depletion is accounted for. As 
we will discuss below (see subsection “High enzyme- and 
biomass-loadings as drivers for enzyme penetration”), 
this fractional coverage of available cellulase binding sites 
can play a significant role in controlling the rate. Due to 
the difference in pretreatment severity and thus porosity, 
a significant difference exists across various substrates in 
number of adsorption sites. As a result, the molar ratio of 
enzyme:initial binding sites can vary significantly for the 
different substrates even if the ratio of enzyme:substrate 
mass is kept constant (0.925 mg/ml) [29] (see Additional 
file 1: Table S1 in A2) (Fig. 2). These differences, in turn, 
lead to significant variations in the maximum possible 
coverage of the enzymes at the start of the reaction, and 
thus can reduce the initial rate for cases where enzyme 
depletion leads to less than full coverage at the beginning 
of the reaction.

Improved predictions were obtained by refitting the 
parameters to the new model. The combined least-square 
fitting of both parameters on the whole set of data led to 
new values of Mp = 755 glucan monomers liberated per 

binding cycle of one enzyme and τ = 2 (see Additional 
file 1: Figure S3 in A3). These parameters allowed for an 
accurate prediction of early glucose yields in good agree-
ment with experimental observations (Fig. 2) (see Addi-
tional file 1: Figure S3 in A3). The significant increase of 
Mp can be attributed to the previous overestimation of 
the number of enzyme present in the system. Assuming 
an infinite number of enzymes in silico when in reality a 
limited quantity was present lead to an underestimation 
of the hydrolytic capacity of the enzyme. Interestingly, 
the pore network complexity had an important impact 
on the predicted early glucose yields for the mildly pre-
treated substrates, while having a more minor influence 
on both native and more severely pretreated substrates 
(see Additional file  1: Figure S3/S4). In the case of the 
low accessibility extreme, the reaction rate was governed 
by a poor cellulose accessibility due to the low porosity 
for the native substrate. For the more severely pretreated 
wood samples, which was the highly accessible extreme, 
the rate was almost purely governed by the surface reac-
tion rate and the pore network complexity played a fairly 
limited role.

Even though pore connectivity has been shown to 
increase (i.e. decreasing tortuosity) with the severity of 
acid-pretreatment of populus substrates (0.1  M sulfuric 
acid (SA) / 160  °C / 5–60  min) [44] and similar treat-
ments increase cellulose digestibility [10–12], no clear 
trends were predicted by the fitting of τ and Mp for indi-
vidual substrates (see Figure S4 in Additional file 1:A3).

In addition, a single set of fitted parameters allowed 
us to accurately predict initial rates for a range of acid-
diluted pretreated substrates, suggesting that simi-
lar modifications in the pore network structure and 
cellulose susceptibility to digestion occur independently 
to pretreatment severity (Fig.  2) (see Additional file  1: 
Figures  S3/S4 in A3). However, this explanation should 
be treated cautiously, as no information on the particle 
size distribution after pretreatment was available and 
predictions were based on the size of the native substrate 
(with diameter of 25µm ). Even though this important 
structural factor can play a significant role on early glu-
cose yield (see section “Role of particle size reduction on 
internal mass transfer”), it seems unlikely to drastically 
shift predictions in this case, as the already small size of 
the native particle is expected to exhibit low diffusional 
resistance.

High enzyme‑ and biomass‑loadings as drivers for enzyme 
penetration
To evaluate the model’s predicted effect of experimen-
tal parameters on the course of the reaction, cellulose 
depolymerization was run in silico for relevant ranges 
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of enzyme- and biomass-loading, using as model sub-
strate an acid-pretreated mixed hardwood from dataset 
DS1 (dilute acid pretreatment (DAP) at 220 °C for 7.8 s) 
(Fig. 3). This substrate had a small particle size (assumed 
to be 25µm , due to sieving) with a high digestibility 
(> 80% glucose yield after 24 h).

For such small particles, both internal and external mass 
transfers are expected to be minimally limiting the rate 
(see Additional file  1: A4). Nevertheless, varying enzyme 
loadings for a fixed solid loading—in this case 2%—
strongly affects the course of hydrolysis (Fig.  2). When 
the amount of cellulase is low compared to the number of 
adsorption sites ( el < 1 ), a specific pattern in the glucose 
release emerges; up until the surface is completely covered 
with enzymes, the rate of cellulose degradation is limited 
by the number of adsorbed cellulases, which is controlled 
by the quantity of free enzymes in the pore lumen (Fig. 3a, 
b). Once the number of enzymes matches the available 
amount of adsorption sites in the system, the rate rapidly 
increases to match the maximum surface reaction rate. 
This rate only decreases once the quantity of remaining 
accessible cellulose decreases significantly, towards the 
end of hydrolysis. This initial rate transition becomes less 
noticeable with increasing enzyme loading, as the surface 
becomes saturated more rapidly.

For systems where the initial number of enzymes 
matches or exceeds the number of adsorption sites on the 

cellulose surface ( el ≥ 1 ), further increasing the cellulase 
loading only slightly improves the rate of glucose release. 
This slight improvement in rate is due to the increase in 
enzyme concentration gradient in the particle within the 
30  min of this multi-hour reaction. Glucose generation 
is almost solely reaction-limited for this particle size, as 
the entire available cellulose surface is rapidly covered 
leading to this small effect. Without deactivation mecha-
nisms, the model shows that, at a certain point, working 
with large enzyme excesses does not improve perfor-
mance. Importantly, the model allows to clearly extract 
diffusion effects from these other enzymatic phenomena, 
which we are currently implementing into the model to 
compare with future experimental work.

To illustrate these effects of change in enzyme load-
ing at constant biomass loading, a set of experimental 
data DS2 was generated on DAP-pretreated beech wood 
(1% SA/160  °C/30  min) by varying the molar ratio of 
enzyme:initial binding sites (from el = 0.3 to 2 in terms of 
surface initial coverage, corresponding to 13− 85FPU/g ) 
for a set biomass loading of 7% dry matter (DM) (Fig. 4). 
Wet sieving after pretreatment ensured a narrow particle 
size distribution around 400µm and cellulose accessible 
surface was determined by solute exclusion to be about 
24m2

/g (see “Methods” section). Using the set of param-
eters Mp = 755 and τ = 2 fitted on data set DS1 from the 
literature [29, 42, 43] (see subsection “The relationship 
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between enzyme loading and cellulose accessibility”), 
predicted early glucose yields showed good agreement 
with experimental data DS2, even when working in 
“enzyme-limited” conditions (Fig. 4). Our ability to accu-
rately capture this kinetic data demonstrated the depend-
ence of the rate on enzyme coverage and the dependence 
of this coverage on enzyme loading.

However, a larger deviation between predicted and 
observed glucose yields was observed in the case where 
a high molar ratio of enzyme:initial binding sites ( el = 2 ) 
was used to hydrolyze the 400µm diameter DAP-pre-
treated beech wood sample (Fig.  4). This deviation is 
most likely reflecting the limitations of the assumptions 
underlying the quantification of both available cellu-
lases and cellulose adsorption sites (i.e. double-slit pore 
geometry, enzyme surface footprint, homogeneous dis-
tribution of component throughout the particle, no dis-
tinction between different cellulases constituting the 
enzyme cocktail) which affected our estimate of mini-
mum enzyme loading required to get the maximal initial 
rate. In this case, the decrease in predicted yields suggests 
an underestimation of the number of accessible adsorp-
tion sites. Interestingly, the initial number of adsorp-
tion sites for all substrates was estimated between 0.12 
and 1.5µmol/g of cellulose, which is on the lower end of 
productive binding measured on cellulosic substrates by 
Cel7A adsorption ( 0.1 to 10µmol/g) [45]. Recent adsorp-
tion measurements on lignocellulosic substrates, using 
two different types of recombinant CMB-proteins on 

stream exploded pretreated birch/beech wood mixtures, 
have led to protein coverage of cellulose up to 20µmol/g 
of cellulose [46], with individual coverage by specific 
CBM-recombinant varying between 5.1 and 13.5µmol/g 
of cellulose. While these lower estimates could rational-
ize the mismatch observed at higher enzyme loading, 
other structure- or enzyme-related simplifications could 
contribute to both over and underestimating the true 
enzyme loading.

By contrast to variations in enzyme loadings, changes 
in biomass loadings, where the enzyme-to-biomass ratio 
is kept constant, showed more limited effects on the 
course of hydrolysis when considering in silico variations 
on the substrates featured in dataset DS1 (Fig. 3c). When 
working at a relatively high molar ratio of enzyme:initial 
binding sites ( el = 1 ), the reaction was mainly controlled 
by the rate of enzyme adsorption and desorption with 
diffusion from bulk only playing a limited role. A higher 
biomass loading increased the mass transfer rate by accel-
erating the saturation of the cellulose surface because 
of the higher enzyme gradient within the particle. How-
ever, this phenomenon only marginally improved the rate 
of glucose release in the first few minutes of hydrolysis 
(Fig. 3d). In cases where the molar ratio of enzyme:initial 
binding sites was low ( el = 0.1 ), increasing the concen-
tration gradient by increasing the biomass loading was 
beneficial at hydrolysis times beyond 5 h (Fig. 3c), which 
is when the system becomes more diffusion limited after 
initially being almost entirely reaction-limited due to the 
low surface coverage. To test the ability of the model to 
predict early glucose yields upon changes to biomass 
loadings, enzymatic hydrolysis was performed at a high 
loading of 15%DM with a molar ratio of enzyme:initial 
binding sites of 1.5 for the DAP-pretreated beech sub-
strate generated in this study (dataset DS2) (Fig. 4). The 
model was able to capture the significant increase in 
glucose titers observed experimentally, confirming the 
beneficial effect of working at relatively high concentra-
tions of both biomass and enzyme to drive internal mass 
transfer (Fig. 4). In this case, unaccounted adverse effects 
related to change in rheological properties [47, 48] and 
increased enzyme deactivation [31, 48–50] that might 
have occurred when decreasing amount of free water in 
the system, did not appear to limit the glucose release. 
However, such effects are expected to become more pro-
nounced as the biomass loading increases even more, and 
not taking them into account might further limit a mod-
el’s predictive ability.

Role of particle size reduction on internal mass transfer
In this last part, we integrate the role of mass transfer 
effects as the substrate’s size increases. To illustrate 

Fig. 4  Comparison of predicted initial glucose yields and those 
measured experimentally from the DS2 dataset for a range of dilute 
acid-pretreated beech wood substrates (1% SA/160 °C/30 min) (see 
Additional file 1: A2). Experiments and corresponding simulations 
were performed over a range of enzyme:initial binding sites molar 
ratios (0.1–2), biomass loadings (7 and 15%DM), and particle sizes 
(diameter ranging from 100 to 2075µm ). Standard errors were 
obtained by propagating the uncertainties associated with pore 
volume measurements (see Additional file 1: A14)
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this, we can assume the same model substrate from 
dataset DS1 (DAP at 220  °C for 7.8  s), but vary the 
particle radius in silico to assess the effects on glucose 
release (Fig. 5).

Similar to contradictory results from the literature [32, 
47, 48], the important role played by the substrate’s size 
on the hydrolysis rate depends on the experimental con-
ditions. While increasing enzyme- and biomass-loading 
favors the enzyme penetration into the substrate by 
reinforcing the concentration gradient throughout the 
particle, their effect varies with particle size (Fig. 5a, b). 
Compared to particles with radius set in silico to an inter-
mediate value, changing biomass loading had limited 
effects for both small ( R < 10µm ) and large ( R ≥ 0.1cm ) 
particles (Fig.  5a). Increasing solid loading leads to 
increasing enzyme concentration in the bulk when the 
enzyme-to-substrate ratio is kept constant. However, for 
the larger particles, this extra driving force is not suffi-
cient to compensate for increasing internal mass transfer 
limitations. In such cases, working at enzyme loadings 
beyond full coverage of adsorption sites helps compen-
sate for limited enzyme penetration into the substrates by 
maintaining high enzyme concentration in solution and 
thus limiting any enzyme depletion in the bulk through-
out the reaction (Fig. 5b).

These important internal mass transfer limitations 
could contribute to the lag sometimes observed experi-
mentally in the glucose release as the dry matter loads are 
increased [48]. In such cases, the progressive liquefac-
tion of the substrate could be reducing large particles to 
smaller sizes which would transition the overall process 
from a system that is severely limited by internal mass 

transfer to one that is less so. This would translate to an 
accelerating hydrolysis rate.

When compared to experimental results for the newly 
generated dataset DS2 on DAP-pretreated beech wood 
(1% SA/160  °C/30  min) ranging from 100 to 2075 μm 
in radius (see Additional file 1: A2), the model provided 
reasonable predictions for early glucose yields (Fig.  4). 
As previously observed, predictions considering higher 
enzyme loadings exhibit larger deviations from experi-
mental values. However, by contrast to the 400 μm parti-
cle discussed above, predictions for the smaller substrate 
considered (100 μm) at high enzyme loadings overesti-
mated observed yields. In this case, other phenomena, 
such as deposition of lignin on the cellulose surface or 
enzyme jamming, may counterbalance the initial under-
estimation of binding sites.

Overall, even though mismatches occur in the more 
extreme cases of experimental conditions tested, the 
strong correlations obtained when predicting early glu-
cose yields over a range of data sets using a single set of 
fitted parameters validate core modeling assumptions. In 
this regard, the modeling results can aid in the design of 
efficient hydrolysis process. For example, while increas-
ing enzyme loading allows rapid degradation of cellulose 
in relatively small sized substrates, this only works to a 
point. Loading more cellulases than there are available 
adsorption sites brings only little benefit. In contrast, 
for larger size substrates exhibiting important diffu-
sional resistance, high enzyme loadings that are beyond 
full coverage appear beneficial to increase early glucose 
release. Tailoring of enzyme quantity to cellulose acces-
sibility is thus not only important for improving process, 
but also to compare the pretreatment’s ability to promote 
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cellulose degradation. For the latter, since glucose release 
observed for a given substrate will strongly depend on 
the enzyme’s ability to completely cover the initial cel-
lulose surface, one should consider comparing systems 
based on enzyme loadings reported per available surface 
area instead of per mass of cellulose.

Conclusions
We presented a substrate-focused modeling framework 
based on pore diffusion and surface reaction for the 
enzymatic hydrolysis of lignocellulosic biomass to evalu-
ate the relative impact of the substrate properties on its 
digestibility. We demonstrated that the model was robust 
enough to predict initial glucose release rates for a range 
of substrates and experimental conditions with a sin-
gle set of fitted parameters ( Mp = 755 and τ = 2 ), which 
could be used as a decent first approximation when 
attempting to predict other substrate–enzyme systems. 
As such, it constitutes a basis to further investigate the 
role of particle morphology evolution throughout hydrol-
ysis and later stage kinetics by introducing additional 
mechanisms, as the evolution of surface accessibility 
could not solely capture late trend hydrolysis. Implic-
itly expressing the enzymatic hydrolysis of a cocktail 
through the use of a single processivity parameter and 
not accounting for the evolution of the substrate’s sur-
face’s physical properties with time beyond composition 
was sufficient to reveal the effects of internal mass trans-
fer limitations. However, an improved understanding of 
the detailed mechanism of the surface–enzyme interac-
tions could help make the model more accurate. In silico 
results highlighted the importance of mass transfer in 
controlling cellulose depolymerization when the num-
ber of adsorption sites on the cellulose surface outnum-
bered available cellulases, especially as the substrate size 
increased. These modeling results highlight the impor-
tance of considering multiple process parameters simul-
taneously and tailoring experimental conditions to the 
substrate specificities when designing an enzymatic reac-
tion to maximize rates and discussing pretreatment effi-
ciencies. Therefore, modeling can play an important role 
in designing industrial processes where maximizing rates 
while minimizing enzyme consumption will play a key 
economic role.

Methods
Model derivation
The particle geometry and several associated assump-
tions were based on a previously described model, 
which has been extensively described elsewhere [42, 43] 
with several improvements. Below, the derivation of the 
new working equations is presented while summarizing 
the key hypotheses that were previously described. All 

symbols are defined and summarized in Table 1. Briefly, 
biomass fragments are modeled as a non-shrinking, 
porous cylinder of radius R containing uniformly distrib-
uted lignin, hemicellulose and cellulose, with a defined 
fraction of its volume being susceptible to hydrolysis 
(Fig. 1) [42, 43]. In addition to assumptions made for the 
particle morphology, a stepwise model for the enzymatic 
degradation is used: the enzyme that has reached the 
enzyme surface through pore diffusion, can adsorb, react 
and desorb (Fig. 1). Pore diffusion refers to internal mass 
transfer that, based on initial calculations, is much more 
significant than external mass transfer, which is ignored 
in this work (see Additional file 1: A4). For convenience, 
we account for the loss of soluble cellulose oligomers at 
the desorption step. From the substrate’s perspective, 
the enzymatic process translates as a change in biomass 
porosity. Importantly, two significant improvements are 
made over the previous model: (1) we now include the 
effect of enzyme depletion in the bulk solution, which, 
as we will show, can be influential at lower enzyme load-
ings and for larger particles; and (2), we include the effect 
of enzyme dilution caused by the increase in porosity. 
Interestingly, the latter inclusion only has a significant 
effect for cases where the former inclusion has a signifi-
cant effect, which demonstrates the importance of cou-
pling these two effects, and of their inclusion for studying 
low enzyme loadings. Finally, the consequences of prod-
ucts released in solution, such as inhibition or crowding 
within pores, as well as the action of specific enzymes 
and mechanisms of action, are not accounted for.

Within this framework, the set of equations describing 
the simultaneous diffusion and reaction of enzymes in 
the accessible portion of the particle is obtained by per-
forming a mole balance over a thin cylindrical segment 
� =

{

(r,ϕ, z) ∈ R
3
: r ≤ r ≤ r + dr, 0 ≤ ϕ ≤ 2π , 0 ≤ z ≤ LA

}

 
of volume dV (r) , which contains both the biomass and 
the pores. The concentration of enzymes in the pores 
CF
E (r, t) in this domain is:

where ε(r, t) is the porosity. Three mechanisms affect 
the time evolution of the enzyme’s fluid concentration: 
the diffusion into the particle, the adsorption–desorp-
tion process from the cellulose surface, and the dilution 
of enzymes within pores due to more void being created 
during hydrolysis. All these effects are described math-
ematically below.

First, using Fick’s first law and assuming that the radius 
R of the particle is much smaller than its length LA , which 
allows us to ignore end effects, the diffusion contribution 
to the enzyme balance over a cylinder slice is expressed as:

(1)
d

dt

[

ε(r, t)CF
E (r, t)

]

,
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where the right-hand side of Eq. (2) is the development of 
the derivative on the left. In this equation, DE is the time-
independent part of the effective diffusivity Deff

E (r, t) 
parameter that is based on the average pore diffusivity 
−

D
pore

E  and tortuosity τ of the pore network as well as the 
evolving porosity ε(r, t) [51],

The removal of enzymes from solution through adsorp-
tion can be accounted for by including the term describ-
ing the change in enzyme surface concentration 
(

∂CS
E (r,t)
∂t

)

 . With all these terms combined, the mass bal-

ance of free enzymes in solution becomes:

In Eq. (4), the accumulation of free enzymes in solution 
is equated to a diffusion term, an adsorption term and a 
dilution term arising from the rearrangement of Eq.  (1). 
Both the time evolution of porosity and bound enzymes 
remain to be defined. The latter is described by a time-
dependent Langmuir isotherm, with the concentration of 
enzymes at the cellulose surface given by: 

where ki designates the adsorption ( i = ads ) or desorp-
tion ( i = des ) rate constant and CS

E,max(r, t) is the maxi-
mum concentration of enzymes bound to the surface 
at a given time t (see Additional file 1: A5). Within this 
formulation, no complexation/decomplexation steps 
are directly represented. Values for both adsorption and 
desorption rate constants were found in the literature 
[42, 43, 60] and fell within ranges of other reported esti-
mates (see Additional file  1: A6). In addition, sensitiv-
ity analyses were carried out on both rate constants, as 
well as the enzyme diffusivity parameter and combined 

(2)

∇r

[

ε(r, t)DE∇rC
F
E (r, t)

]

= DE

[

∂
2CF

E
(r, t)

∂r
2

+

1

r

∂CF
E
(r, t)

∂r

+

1

ε(r, t)

∂ε(r, t)

∂r

∂CF
E
(r, t)

∂r

]

,

(3)D
eff
E (r, t) =

ε(r, t)
−

D
pore

E

τ
= ε(r, t)DE .

(4)

∂CF
E
(r, t)

∂t
= DE

[

∂
2CF

E
(r, t)

∂r
2

+

1

r

∂CF
E
(r, t)

∂r

+

1

ε(r, t)

∂ε(r, t)

∂r

∂CF
E
(r, t)

∂r

]

−

∂C
S
E
(r, t)

∂t

−

CF
E
(r, t)

ε(r, t)

∂ε(r, t)

∂t
.

(5)

∂C
S
E
(r, t)

∂t
= kadsC

F
E (r, t)

[

C
S
E,max(r, t)− C

S
E(r, t)

]

− kdesC
S
E(r, t),

fitted parameter Mp and τ (see Additional file  1: A7). 
Results show that, when keeping Mp constant, changes 
in the desorption rate constant strongly impact glucose 
release for cases where hydrolysis is kinetically limited 
(i.e. for substrates that are not diffusion limited due to 
low cellulose accessibility). In such systems, the glucose 
release depends almost exclusively on the reaction rate, 
and more particularly the catalytic rate constant, that we 
show to be equivalent to the combination of Mp and the 
desorption rate constant in our formulation (see Eq. A.4 
in Additional file1: A1). In contrast, glucose release is less 
sensitive to the kinetic parameters for systems where the 
internal diffusion is significantly impacted by the particle 
physical properties. The total number of adsorption sites 
is defined as the available cellulose surface multiplied by 
a parameter σ , which defines the moles of enzyme bind-
ing sites per surface unit. The latter is determined based 
on geometrical considerations, assuming a spherical 
footprint with a diameter of 51Å for the cellulase on the 
surface.

As the reaction proceeds and the accessible cellulose 
is hydrolyzed, the available surface for enzyme binding 
is assumed to gradually decrease together with the cel-
lulose content. As the decrease of cellulose content is 
directly proportional to the increase in porosity (i.e. the 
dissolution of cellulose into soluble sugars during the 
enzymatic hydrolysis increases the internal volume), the 
available number of binding sites on the cellulose surface 
decreases linearly with the increase in porosity as cellu-
lose is consumed. While potential particle fragmentation 
and particle swelling resulting from enzymatic action 
might change the available cellulose surface, both of 
these mechanisms are assumed to have minor effect on 
the available cellulose surface at early hydrolysis times 
compared to the surface erosion mechanism considered 
here. Based on the infinite slit model for biomass pores, 
the initial cellulose surface area is computed from pore 
volumes assuming that only two flat pore wall areas con-
tribute to the overall accessible surface for pores larger 
than twice the diameter of a cellulase and that only one 
wall contributes to the surface area for pores with widths 
between one and two cellulase diameters [42, 43] (see 
Additional file 1: Figure S7 in A8).

Since cellulose hydrolysis is accounted for as enzymes 
detach from the surface, the time evolution of the poros-
ity, which tracks the progression of hydrolysis, can be 
equated to the rate of enzyme desorption: 

where Mp represents the moles of glucose released in 
solution per binding cycle and per mole of enzyme. Here, 

(6)
∂ε(r, t)

∂t
=

kdesC
S
E(r, t)MpMMgluHglu

ρ
IV
C

,
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the term is expressed as mass of cellulose degraded per 
binding cycle per mole of enzyme through the hydrolysis 
factor Hglu and molar mass of glucose MMglu , and ρIV

C  is 
the total cellulose density (accounting for both accessible 
and inaccessible pore volume, i.e. with diameter smaller 
than one of a cellulase). The system of coupled partial dif-
ferential equations (PDEs) composed of Eqs. (4), (5) and 
(6) describing the diffusion of enzymes inside a porous 
biomass particle and its subsequent hydrolysis can then 
be solved if defined boundary (BC) and initial (IC) con-
ditions are provided. Assuming that all enzymes are ini-
tially contained in the bulk solution VB , we have

The depletion of enzymes in the bulk solution is here 
accounted for by integrating the flux of enzymes pass-
ing through the biomass particle external surface Scyl 
(see Additional file 1: A9). Coupled to a no-flux bound-
ary condition at the center of the particle, as longitudi-
nal diffusion is neglected, the boundaries conditions are 
expressed as:

Here, any external mass transfer phenomena are dis-
regarded. Also, because the external surface usually 
represents only a small fraction of the accessible cellu-
lose surface area, and because it is difficult to measure, 
enzyme adsorption on the external surface of the bio-
mass particle is neglected (see Additional file 1: A10).

Parameters extracted from literature include: adsorp-
tion and desorption rate constants and cellulase dif-
fusivity in bulk solution. Parameters fitted to the data 
include: tortuosity and average mass of cellulose liber-
ated per binding cycle. The remaining variables are cal-
culated based on available experimental data, including: 
the measured initial accessible pore volume and cellulose 
fraction, used to compute initial cellulose surface area, 
and final glucose yield, used to predict the amount of cel-
lulose that can be hydrolyzed.

The enzyme el - and biomass bl-loading are two key 
experimental parameters, and are used to define the initial 
enzyme bulk concentration:

(7)

IC







CF
E (r, 0) = 0 ∀ r �= R
Cs
E(r, 0) = 0 ∀ r

ε(r, 0) = ε0 ∀ r �= R

CF
E (R, 0) = CF

E,0 = nFE,0/VB

ε(R, 0) = 1.

(8)
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



∂CF
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�

�

�

�

r=R

= −

Scyl
VBulk

ε(R, t)DE
∂CF

E (r,t)
∂r

�

�

�

�

r=R
∂CF

E (r,t)
∂t

�

�

�

�

r=0
= 0

∂ε(r,t)
∂t

�

�

�

r=0
= 0.

Here, the enzyme loading is expressed in terms of the 
initial moles of adsorption sites per mass of substrate, i.e. 
an enzyme loading of 2 corresponds to twice the amount 
of enzymes required to cover all initially accessible bind-
ing sites on the cellulose surface. The calculation results are 
used to chart the time-course of enzymatic hydrolysis.

Numerical implementation
Numerical solutions for the system of PDEs are obtained 
using the Method of Lines [52], in which all but one vari-
able are discretized, leading to a system of decoupled 
ordinary differential equations (ODEs) for which effi-
cient solvers exist. Here, the spatial coordinate represent-
ing the particle radius is partitioned into n regions, with 
layer n+ 1 representing the surrounding bulk solution. 
The resulting 3(n+ 1 ) coupled ODEs, mirroring the ini-
tial PDEs system, are then solved in a dimensionless form 
(see Additional file  1: A5) using the ODE solver ode15s 
[53] in Matlab [54]. The correctness of the implemented 
algorithm was evaluated by ensuring conservation of 
enzymes (within < 2% of the initial loading) over the time-
course of the simulation (see Additional file 1: Figure S8 
in A11).

Pretreated beech wood
Air-dried beech wood (Fagus sylvatica) chips collected 
from Zollikofen (Switzerland) were first milled to pass 
through a 2-mm screen. These particles were further 
sieved and those between 250 and 450µm in diameter 
were retained as the so-called native substrate. This 
substrate was further processed using dilute acid—
1wt% sulfuric acid (SA/Merck, 100,732) at 160  °C—in 
60 ml glass reactors at a loading of 2 g of dry substrate 
per 20 ml acid solution for 30 min, followed by Büch-
ner filtration and extensive washing with purified water 
(Milli-Q grade). To allow fiber swelling, wood particles 
were pre-soaked overnight at 4 °C in the pretreatment 
solution. Wet pretreated wood sample was wet sieved 
( 300− 500µm diameter) under purified water (Milli-
Q grade) and then kept for a maximum of 2 weeks in 
sealed plastic bags at 4 °C prior to further utilization, 
to avoid drying and degradation. A schematic repre-
sentation of the experimental process is summarized in 
Fig. 6.

Composition analysis of the pretreated wood sample 
was performed according to the LAP procedure pub-
lished by the National Renewable Energy Laboratory [55] 
(see Additional file 1: A12).

(9)CF
E,0 =

nFE,0
VB

=

el
∫ R
0SC(r, t = 0)drσ

bl
.
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Enzymatic hydrolysis
Enzymatic hydrolysis was carried out in a citrate buffer 
(pH = 4.8/Sigma, C1909, 71,402) as described previously 
[56] using a commercial enzyme blend (150 FPU/g, Cellic 
CTec2, Novozyme, Denmark/Sigma, SAE0020) at various 
molar ratio of enzyme:initial binding sites correspond-
ing to ratios of 0.1–2. In addition, tetracycline (Sigma, 
87,128) and cycloheximide (Sigma, C7698) were added 
to the reaction medium to avoid undesired bacterial and 
fungal growth, respectively. Protein content was assayed 
to 55.1 mg protein/ml according to the Bradford method 
[57] using the commercially available Pierce Coomassie 
protein assay kit (ThermoFisher, 23,200).

Pore size distribution
To avoid any change in porosity that might occur due 
to hornification during drying, pore size distribution 
was determined in wet conditions using a modified 
batch solute exclusion technique [58, 59]. A series of 
suitably sized PEGs as well as glucose (Sigma, G8270) 
were used as molecular probes (see Additional file  1: 
Table S3 in A13). Wet wood samples ( mwood,wet = 0.4g  ) 
were incubated with the probe solution in ultrapure 
water ( Vprobe = 0.35ml, Cprobe,init = 50g/L ) for 3 h with 
occasional mixing, followed by which, the supernatant 
was recovered by centrifugation (2500 rpm or ~ 1000g, 
15 min) through 3µm centrifugal filters. The resulting 
solution was further diluted with Milli-Q water and 
the final probe concentration Cprobe,final was measured 
using a refractive index detector (Viscotek VE 3580) 
connected to a syringe pump—with an injection vol-
ume of 3 ml at 0.5 ml/min at a detection temperature of 
35 °C. The remaining solids were then washed and dried 
to record the dry weight and moisture content xwat . For 

each set of recorded data, the refractive index of a blank 
solution obtained by incubation of the wood samples 
with Milli-Q water was used to correct the signal for 
any soluble material that could interfere with quantifi-
cation before computing pore volumes (see Additional 
file  1: A13). Prior to any measurements on the native 
substrate, the particles were soaked for at least 48 h to 
allow fiber swelling, with daily water changes to avoid 
bacterial/fungal contamination.
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