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Abstract 

Background:  Lignocellulosic biomass is a promising resource of renewable biochemicals and biofuels. However, the 
presence of inhibitors existing in lignocellulosic hydrolysates (LCH) is a great challenge to acetone-butanol-ethanol 
(ABE) fermentation by Clostridium acetobutylicum. In particular, phenolic compounds (PCs) from LCH severely block 
ABE production even at low concentrations. Thus, it is urgent to gain insight into the intracellular metabolic distur-
bances caused by phenolic inhibitors and elucidate the underlying mechanisms to identify key industrial bottlenecks 
that undermine efficient ABE production.

Results:  In this study, a time-course of ABE fermentation by C. acetobutylicum in the presence of four typical PCs 
(syringaldehyde, vanillin, ferulic acid, and p-coumaric acid) was characterized, respectively. Addition of PCs caused 
different irreversible effects on ABE production. Specifically, syringaldehyde showed the greatest inhibition to butanol 
production, followed by vanillin, ferulic acid, and p-coumaric acid. Subsequently, a weighted gene co-expression net-
work analysis (WGCNA) based on RNA-sequencing data was applied to identify metabolic perturbations caused by 
four LCH-derived PCs, and extract the gene modules associated with extracellular fermentation traits. The hub genes 
in each module were subjected to protein–protein interaction analysis and enrichment analysis. The results showed 
that functional modules were PC-dependent and shared some unique features. Specifically, p-coumaric acid caused 
the most extensive transcriptomic disturbances, particularly affecting the gene expressions of ribosome proteins and 
the assembly of flagella, DNA replication, repair, and recombination; the addition of syringaldehyde caused significant 
metabolic disturbances on the gene expressions of ribosome proteins, starch and sucrose metabolism; vanillin mainly 
disturbed purine metabolism, sporulation and signal transduction; and ferulic acid caused a metabolic disturbance on 
glycosyl transferase-related gene expressions.

Conclusion:  This study uncovers novel insights into the inhibitory mechanisms of PCs for the first time and provides 
guidance for future metabolic engineering efforts, which establishes a powerful foundation for the development of 
phenol-tolerant strains of C. acetobutylicum for economically sustainable ABE production with high productivity from 
lignocellulosic biomass.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Biotechnology for Biofuels

*Correspondence:  liubin1981@nankai.edu.cn; huangdi@nankai.edu.cn
3 TEDA Institute of Biological Sciences and Biotechnology, Tianjin 
Key Laboratory of Microbial Functional Genomics, Nankai University, 
Tianjin 300457, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13068-020-01802-z&domain=pdf


Page 2 of 15Liu et al. Biotechnol Biofuels          (2020) 13:163 

Background
The exacerbation of global economic, social, and envi-
ronmental problems due to the exhaustion of petroleum 
resources renders the production of renewable energy 
from low-cost plant biomass increasingly important, 
which has aroused intensive attention from govern-
ments and researchers worldwide [1, 2]. Lignocellulose, 
the most abundant renewable and low-cost biomass, is a 
promising substrate for biofuel production. Lignocellu-
lose can be converted into either butanol or ethanol, and 
among these second generation vehicle biofuels, butanol 
displays better performance [3–5] due to its higher 
energy density, higher combustion heat, better engine 
compatibility, and decreased corrosivity [2].

Lignocellulosic feedstocks are usually pretreated with 
acids, bases, steam, and other harsh conditions, chang-
ing their physical properties to overcome the “recalci-
trance” of lignocellulosic biomass, prior to utilization by 
microorganisms such as Clostridium spp. [6, 7]. Subse-
quently, pretreated lignocellulosic biomass is hydrolyzed 
into microorganism-accessible monosaccharides (hexose 
and pentose) through enzymatic hydrolysis [8]. Dur-
ing pretreatment and hydrolysis, a wide variety of toxic 
compounds are released from the lignocellulosic mate-
rial [9, 10]. The presence of these compounds inhibits 
cell growth, substrate utilization, and product synthesis, 
significantly depressing the subsequent butanol produc-
tion efficiency [11]. Generally, these compounds are clas-
sified into three categories according to their sources 
and properties, furans (e.g., furfural, 5-hydroxymethyl-
furfural), weak acids (e.g., formic acid, acetic acid), and 
phenolic compounds (PCs; e.g., phenol, catechol, ferulic 
acid, syringaldehyde, vanillin, coumarin, and p-hydroxy-
benzoic acid) [10, 12]. Among them, PCs are more toxic 
than furans to microorganisms such as Escherichia coli 
and Saccharomyces cerevisiae [13], and smaller molecular 
weight PCs show stronger cytotoxicity [14].

Lignocellulosic hydrolysate (LCH) PCs are mainly gen-
erated during lignin depolymerization [15], and their 
types and final concentrations vary greatly from milli-
grams to grams per liter of LCH [16–18], based on the 
source of feedstocks, as well as the technical protocols of 
pretreatment, detoxification, and enzymatic hydrolysis 
[19–21]. The effects of PCs on acetone-butanol-ethanol 
(ABE) fermentation have been well studied [22, 23], but 
their mechanisms of inhibition remain unelucidated 
because of their low concentrations, various molecu-
lar structures, complexity, and difficulty to quantify. 

Therefore, a systematic investigation on the inhibi-
tory mechanisms of PCs is urgently needed. The recent 
development of various omics technologies provides the 
opportunity for systematic profiling of the metabolic 
response mechanisms of microorganisms under various 
conditions that could be used to eliminate bottlenecks 
affecting target product synthesis. Great efforts have 
been made to dissect the metabolic mechanisms of C. 
acetobutylicum using transcriptomics [24, 25], proteom-
ics [26, 27], and metabolomics [28, 29], providing a tech-
nical basis for dissecting PC inhibitory mechanisms in 
this microorganism.

In this study, we used an integrated strategy based on 
RNA sequencing (RNA-seq) and weighted gene coex-
pression network analysis (WGCNA) to systematically 
dissect gene expression changes in C. acetobutylicum 
under different phenolic stress conditions. Syringalde-
hyde, vanillin, ferulic acid, and p-coumaric acid were 
selected as representative LCH-derived PCs. Using 
WGCNA, genes with similar expression patterns were 
clustered and the association between modules and 
specific traits or phenotypes were analyzed [30, 31]. 
Our results promote fundamental understanding of the 
genetic regulatory mechanisms underlying C. acetobu-
tylicum’s responses to PCs. We also propose novel poten-
tial metabolic engineering targets involved in regulating 
resistance to PC inhibitor stress. The transcriptome-
guided approach demonstrated here could be a promis-
ing strategy to improve complex phenotypes in wild-type 
strains.

Results
Effect of different PCs on fermentation characteristics of C. 
acetobutylicum
In this study, PCs (vanillin (Van), p-coumaric acid 
(Coum), syringaldehyde (Syr), and ferulic acid (Fer)) 
were added during the logarithmic growth phase (12  h, 
Fig.  1). The biomass (measured by assaying the opti-
cal density at 600  nm (OD600)) displayed no signifi-
cant changes between samples from 12 to 24 h, when it 
peaked. The highest OD600 was 8.24 (Van), approximately 
12% higher than in the control sample, while the lowest 
OD600 (7.45) occurred with Syr. However, the ethanol, 
acetone, and butanol production of the PC-treated sam-
ples were lower than those in the control sample at 60 h. 
Among the PC-treated samples, addition of Syr resulted 
in the greatest inhibition of butanol production (66.4% 
of the control), followed by Van (72.7% of the control), 

Keywords:  Phenolic compounds, Clostridium acetobutylicum, Weighted gene co-expression network analysis, RNA 
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indicating that these PCs had notable impacts on fermen-
tation performance.

The acetic acid and butyric acid concentrations peaked 
at 36  h, when these concentrations were much higher 
in the control sample than in the PC-treated samples 
(Fig.  1). The concentrations of these two organic acids 
subsequently decreased rapidly in the control sample, 
such that there were no significant differences between 
the samples at the end of fermentation, indicating that 
the acetic acid and butyric acid in the control sample 
were largely reabsorbed and utilized in the later stage of 
fermentation, promoting ABE synthesis [24, 32].

To compare short-term changes of fermentation char-
acteristics caused by PC stress, a change ratio (CR) was 
used to express the ratio of production at 18 h compared 
to that at 12 h. As shown in Table 1, the CRs of acetone, 
and butyric acid in the treated samples were much lower 
than in the control sample, suggesting that the PCs nega-
tively impacted acetone and butyric acid production. In 
addition, the CRs of acetic acid and the OD600 with Syr, 
and ethanol with Fer and Coum, were greater than in the 
control sample. Interestingly, butanol CRs were larger 
in the treated samples than in the control sample, which 
suggested that the addition of PCs actually promoted 
butanol production in the short term. Taken together, the 
results indicate that the PCs exert different effects on the 
fermentation products.

RNA‑seq analysis of PC‑treated C. acetobutylicum
To further analyze the relationships between PC stresses 
and intracellular metabolic disturbances, we per-
formed a transcriptomic analysis, in which 18 h samples 
treated with each PC were harvested and subjected to 
RNA-sequencing.

To analyze the relationship between gene expression 
profiles and fermentation traits, identify highly synergis-
tic gene sets and candidate biomarker genes or metabolic 
targets, the transcriptomic data were used for WGCNA 
model construction according to gene set connectivity 
[33, 34].
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Fig. 1  Time courses of ABE fermentation by C. acetobutylicum in the presence of four PCs. Each PC was added 12 h after the beginning of 
fermentation. Con, Van, Coum, Syr, and Fer denote the control, vanillin, p-coumaric acid, syringaldehyde, and ferulic acid samples, respectively. Error 
bars represent the standard deviation of three biological replicates

Table 1  Change ratios of  fermentation products 
from 12–18 h

*Change ratio = (Value_18h-Value_12h)/Value_12h. OD600, optical density at 
600 nm. Con, Van, Coum, and Fer denote the control, vanillin, p-coumaric acid, 
syringaldehyde and ferulic acid samples, respectively

Con Van Syr Fer Coum

Acetone 4.29 − 0.18 0.72 0.08 0.23

Ethanol 0.38 0.04 0.04 0.94 1.03

Butanol 2.74 5.64 3.55 4.38 3.35

Acetic acid 1.13 0.87 4.90 0.91 0.92

Butyric acid 1.62 1.14 − 0.20 1.21 1.25

Glucose − 0.30 − 0.21 − 0.26 − 0.23 − 0.24

OD600 0.12 0.10 0.25 0.10 0.11
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WGCNA model construction
Soft threshold determination and network topology analysis 
of adjacency matrices based on WGCNA
In WGCNA, the soft-threshold process transforms 
the correlation matrix to generate a series of adjacency 
matrices that mimics the scale-free topology, a phenom-
enon observed in gene expression networks and in a 
variety of complex biological systems in which the distri-
bution of gene relationships follows a power decay law, 
i.e., genes with the highest numbers of connections occur 
least frequently [35]. A gradient method was applied to 
evaluate the scale-free fit index and the mean connectiv-
ity degree of different coexpression modules with power 
values ranging from 1 to 20. The optimal power value was 
18 when the scale-free fit index was > 0.9 (Fig. 2a), meet-
ing the requirements of WGCNA modeling and enabling 
further analysis. To ensure high reliability of the results, 
the minimum gene number of each module was set to 10.

Gene clustering and module‑trait relationships
Figure  2b depicts the clustering dendrogram of all 
expressed genes. Based on clustering and dynamic prun-
ing using the topological overlap measure (TOM), 3,911 
correlated genes were clustered into 14 modules marked 

by different colors. Module-trait relationships were ana-
lyzed using correlations between the module eigengenes 
and 12 fermentation traits (specific increasing rates of 
Acetone, Butanol, Ethanol, Acetate, Butyrate, Sugar, 
OD600 as well as the conditions of Con, Van, Syr, Fer, and 
Coum), which enabled the identification of coexpres-
sion modules with significant correlations to fermenta-
tion traits. We considered the WGCNA modules with 
correction coefficients > 0.65 and p ≤ 0.001 to be highly 
associated with fermentation traits, and identified 24 
module-trait relationships (Fig. 2c).

For each gene expression profile, the gene significance 
(GS) was calculated as the absolute value of the correla-
tion between the expression profile and each external 
trait; and the module membership (MM) was defined as 
the correlation between the expression profile and each 
module eigengene. By calculating GS and MM values, 
genes that are highly significant for each trait and have 
high MMs in interesting modules can be identified. Scat-
terplots of GS vs. MM in each module are shown in Fig. 3 
and additional details on the GS and MM are provided in 
Table SII (Additional file 1). GS and MM were correlated, 
illustrating that genes that were significantly associated 

Fig. 2  Construction of the WGCNA model. a Network topology analysis for adjacency matrices with different soft threshold powers. Red numbers 
indicate the soft‐threshold power corresponding to the correlation coefficient square value and mean connectivity. The linear model fit (R2) 
between log(p(k)) and log(k) was calculated from each adjacency matrix, where k = the connectivity and p(k) = the proportion of genes with 
connectivity k. b Clustering dendrogram of all expressed genes. Each row corresponds to a module eigengene and each column to a fermentation 
phenotype. c Module-traits relationships identified by WGCNA. Each cell contains the corresponding correlation in the first line and the p-value 
in the second line. Modules are colored as in the legend. Green and red denote negative and positive correlations, respectively. The grey module 
represents a collection of genes that could not be grouped into other modules
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with a fermentation trait were also important elements of 
modules.

Functional enrichment analysis of hub genes
Hub genes located in their respective modules, have a 
high likelihood of being critical components, and are 
representative of the module’s overall function within 
the network. In this study, genes with GS and MM values 
both > 0.5 were defined as the hub genes in their respec-
tive modules. WGCNA modules, related traits, eigengene 
counts, and hub genes are summarized in Table  2. Hub 
genes in each WGCNA module that were highly associ-
ated with the fermentation traits were subjected to gene 
ontology (GO) and Kyoto Encyclopedia of Genes and 
Genome (KEGG) pathway enrichment analysis with the 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID). The results are shown in Fig. 4 and a 
further dissection is carried out as below.

Biomass (OD600) and sugar (glucose)
As shown in Fig.  2c, the specific growth rate (rOD600) 
was highly negatively associated with the purple and 
black modules, while the opposite trend was observed 
for the specific consumption rate of sugar (rSugar), 
indicating that sugar consumption supported biomass 
synthesis. Enriched GO terms for rOD600 genes were 
de novo pyrimidine nucleobase biosynthetic process 
(GO:0006207) and de novo UMP biosynthetic pro-
cess (GO:0044205), while glucosylceramidase activity 
(GO:0004348), de novo pyrimidine nucleobase biosyn-
thetic process (GO:0006207), sphingolipid metabolic 
process (GO:0006665), and de novo UMP biosynthetic 
process (GO:0044205) were enriched by the rSugar-
related gene modules. Glucosylceramidase activity and 
the sphingolipid metabolic process are related to mem-
brane lipid metabolic processes. Two KEGG metabolic 
pathways were enriched by the OD600-related gene 
modules, namely cysteine and methionine metabolism 

Fig. 3  Module membership (MM) and gene significance (GS) in selected modules. Each color represents a selected WGCNA module. In each plot, 
the y-axis represents the GS of a fermentation trait and the x-axis represents the MMs of selected modules that were highly associated with those 
traits (correction coefficient  > 0.65 and p ≤ 0.001)
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(cac00270) and alanine, aspartate, and glutamate 
metabolism (cac00250).

ABE production
The specific production rate of acetone (rAcetone) was 
positively associated with the purple and black modules. 
Four GO terms were enriched, and were consistent with 
those enriched in the sugar-related modules. In addition, 
the KEGG pathway cysteine and methionine metabolism 
(cac00270) was also enriched.

The specific production rate of butanol (rButanol) was 
positively associated with the black and salmon modules. 
Two GO terms (GO:0004348, glucosylceramidase activ-
ity; GO:0006665, sphingolipid metabolic process) and 
two KEGG pathways (cac00270, cysteine and methionine 

metabolism; cac02020, two-component system) were 
enriched in the black module; however, hub genes of the 
salmon module were not enriched for any GO terms or 
KEGG pathways. Five genes in this module (KDP operon 
transcriptional regulatory protein KdpE (CA_C3677), 
potassium-transporting ATPase subunit C (CA_C3680), 
methyl-accepting chemotaxis protein (CA_C3476), 
d-alanyl-d-alanine carboxypeptidase (CA_C3297), and 
anaerobic C4-dicarboxylate transporter (CA_C3500)) are 
involved in the two-component system, a signaling path-
way that regulates many bacterial characteristics, such 
as virulence, pathogenicity, symbiosis, motility, nutrient 
uptake, secondary metabolite production, metabolic reg-
ulation, and cell division. These systems regulate physio-
logical processes in response to environmental or cellular 
parameters and enable adaptation to changing conditions 
[36], consistent with the view that butanol production 
results in the deterioration of fermentation.

The specific rate value of ethanol (rEthanol) was nega-
tively associated with the brown module. In this module, 
seven enriched GO terms were identified (GO:0005978, 
glycogen biosynthetic process; GO:0006189, de novo 
IMP biosynthetic process; GO:0006412, translation; 
GO:0006605, protein targeting; GO:0015833, peptide 
transport; GO:0043952, protein transport by the Sec 
complex; GO:0065002, intracellular protein transmem-
brane transport), as well as five enriched KEGG pathways 
(cac00230, purine metabolism; cac00270, cysteine and 
methionine metabolism; cac00670, one carbon pool by 
folate; cac01100, metabolic pathways; cac01110, biosyn-
thesis of secondary metabolites).

In ABE metabolic pathways, ethanol is closely related 
to C2 compounds, such as acetic acid, acetyl-P, and 
acetyl-CoA in primary metabolism. Butanol is derived 
from butyric acid, butyryl-P, and butyryl-CoA. Acetone is 
the decarboxylated product of acetoacetic acid, a branch 
pathway in the synthesis of butyric acid. The critical 
genes that regulate ABE synthesis are contained in the sol 
operon [37]. However, module-trait relationship analysis 
demonstrated no obvious links between ABE production 
and known ABE pathways, suggesting that ABE synthesis 
may be subjected to complex metabolic regulation.

Organic acid production
The specific production rate of acetate (rAcetate) 
was negatively associated with the blue module 
(GO:0006412, translation; GO:0003735, structural 
constituent of ribosome; GO:0019843, rRNA bind-
ing; ribosome; GO:0005840, transcription, DNA-tem-
plated; GO:0043565, sequence-specific DNA binding; 
GO:0071973, bacterial-type flagellum-dependent cell 
motility; GO:0031514, motile cilium; cac02040, flagellar 
assembly; cac03010, ribosome) and the turquoise module 

Table 2  Summary of  the  relationships between  traits 
and WGCNA modules

*   The table shows WGCNA modules that were highly associated with the 
fermentation characteristics (correction coefficient  > 0.65 and p ≤ 0.001) and 
the gene counts in each module. The specific rates of acetone, butanol, ethanol, 
acetate, butyrate, sugar, and biomass are represented by rAcetone, rButanol, 
rEthanol, rAcetate, rButyrate, rSugar, and rOD600, respectively. Con, Van, Coum, 
Syr, and Fer denote the control, vanillin, p-coumaric acid, syringaldehyde, and 
ferulic acid samples, respectively. + Positive correlation, − negative correlation. 
Eigengenes in the magenta, tan, and green-yellow modules were not 
significantly related to any traits

Trait WGCNA module Hub gene count/
total gene count

Effect (Trait 
vs. module)

rButanol Black 83/183 +
Salmon 16/17 +

rButyrate Black 108/183 +
Salmon 14/17 +

rSugar Black 80/183 +
Purple 27/32 +

rAcetone Black 94/183 +
Purple 24/32 +

rOD600 Black 100/183 –

Purple 27/32 –

rAcetate Blue 590/1016 –

Turquoise 298/1104 –

rEthanol Brown 299/514 –

Red 152/190 –

Con Black 70/183 +
Coum Blue 911/1016 –

Green 227/282 –

Fer Green 225/282 +
Syr Yellow 49/296 –

Turquoise 196/1104 +
Red 152/190 +

Van Purple 27/32 –

Pink 10/68 –

Brown 323/514 +
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(GO:0006810, transport), demonstrating that rAcetate 
was highly related to protein biosynthesis, flagellar 
assembly, and transportation. The specific production 
rate of butyrate (rButyrate) was positively associated with 
the black module (cac00270, cysteine and methionine 
metabolism and alanine; cac00250, aspartate and gluta-
mate metabolism) and the salmon module (no enriched 
terms), which were involved in amino acid metabolism.

PC stresses
As shown in Fig.  2c, treatment with each PC corre-
sponded to different WGCNA modules, indicating that 
these PCs caused different metabolic disturbance to the 
strain. In detail, the control condition was highly associ-
ated with the black module, with hub genes enriched in 
the KEGG pathways cysteine and methionine metabo-
lism (cac00270) and alanine, aspartate, and glutamate 
metabolism (cac00250).

Van treatment was associated with the purple 
(GO:0006207, de novo pyrimidine nucleobase biosyn-
thetic process; GO:0044205, de novo UMP biosyn-
thetic process), pink (no enriched terms), and brown 
(GO:0006189, de novo IMP biosynthetic process; 
cac01100, metabolic pathways; cac00670, one carbon 
pool by folate; cac00230, purine metabolism; cac01110, 
biosynthesis of secondary metabolites) modules, suggest-
ing effects on nucleic acid metabolism.

Syr treatment was associated with the yellow 
(GO:0030245,cellulose catabolic process; GO:0000272, 

polysaccharide catabolic process; GO:0008810, cel-
lulase activity; GO:0030248, cellulose binding; 
GO:0004553, hydrolase activity, hydrolyzing O-glycosyl 
compounds; cac01100, metabolic pathways), turquoise 
(GO:0016740, glycosyl transferase activity), and red 
(GO:0043952, protein transport by the Sec complex; 
GO:0065002, intracellular protein transmembrane 
transport; GO:0006605, protein targeting; GO:0006412, 
translation; GO:0015833, peptide transport; cac00270, 
cysteine and methionine metabolism) modules, sug-
gesting effects on cellulose catabolism and protein 
transport.

Coum treatment was negatively related to the blue 
(GO:0006412, translation; GO:0071973, bacterial-type 
flagellum-dependent cell motility; GO:0005840, ribo-
some; GO:0005737, cytoplasm; GO:0019843, rRNA 
binding; GO:0003735, structural constituent of ribo-
some; GO:0003700, transcription factor activity, 
sequence-specific DNA binding; GO:0003924, GTPase 
activity; GO:0043565, sequence-specific DNA binding; 
GO:0000287, magnesium ion binding; cac02040, flagel-
lar assembly; cac03010, ribosome; cac00760, nicotinate 
and nicotinamide metabolism; cac00521, streptomycin 
biosynthesis) and green (GO:0006629, lipid metabolic 
process; GO:0003755, peptidyl-prolyl cis–trans isomer-
ase activity; cac00240, pyrimidine metabolism) modules, 
suggesting that its addition causes metabolic perturba-
tions related to protein synthesis, flagellar assembly, and 
lipid metabolism.

Fig. 4  GO (a) and KEGG (b) enrichment based on the hub genes in each module. The enriched items with FDR < 0.05 were acceptable
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Fer treatment was positively associated with the green 
module (GO:0003755, peptidyl-prolyl cis–trans isomer-
ase activity; cac01100, metabolic pathways; cac00240, 
pyrimidine metabolism; cac00780, biotin metabolism).

To deeply explore the internal characteristics of the 
gene modules, protein–protein interaction (PPI) analysis 
was carried out.

PPI analysis of hub genes under different PC stresses
PPI networks represent webs of protein complexes 
formed by biochemical events and/or electrostatic forces 
that serve distinct biological functions while complexed. 
We performed the PPI analysis with the hub genes of all 
modules associated to each PC, obtaining the PC-spe-
cific interaction networks (Fig.  5). Using the STRING 

database, predicted functional associations between hub 
proteins with each treatment were identified based on 
known interactions (experimentally determined inter-
actions from curated databases), predicted interactions 
(gene neighborhoods, gene fusions, and gene co-occur-
rences), and other evidence (text mining, coexpression, 
protein homology). As the result, sixteen high density 
subnetworks reveal the existence of highly intercon-
nected gene sets that were biologically related to PC 
stress and were coexpressed, suggesting that they may 
play important roles under specific conditions. Informa-
tion of the 16 subnetworks is listed in Table 3 and addi-
tional details regarding the PPI network are provided in 
Table SIII (Additional file 2). 

Fig. 5  Protein-protein interactions between hub genes affected by each PC treatment. PPI networks of genes affected by a Coum, b Fer, c Syr, and 
d Van treatment. Each network contains hub genes from highly-associated WGCNA modules. Subnetworks extracted by MCODE are presented in 
different colors and numbered to differentiate them from other genes. Network nodes K-core value < 5 have been hidden
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p‑Coumaric acid‑associated PPI subnetworks
A total of 990 hub genes from the blue and green mod-
ules of the WGCNA were used to construct the PPI 

network. Using the MCODE algorithm, nine dense 
regions with high internal connectivity (subnetworks 
SN-1 ~ SN-9 in Fig. 5) were identified. The genes in each 

Table 3  Enrichment of the PPI subnets (Coum, SN.1 ~ SN9; Syr, SN.10 ~ SN.11; Fer, SN.12 ~ SN.13; Van, SN.14 ~ SN.16)

a  The genes in each subnet were enriched in GO, KEGG and UniProt databases, and the items with minimum FDR (< 0.05) was listed

Subnet Enrichment itema Function annotation FDR

SN.1 BP GO:0044267 Cellular protein metabolic process 8.85E − 38

MF GO:0003735 Structural constituent of ribosome 5.39E − 33

CC GO:0005840 Ribosome 4.22E − 33

KEGG cac03010 Ribosome 3.87E − 35

UniProt KW-0687 Ribonucleoprotein 1.82E − 35

SN.2 BP GO:0006261 DNA-dependent DNA replication 4.78E − 02

SN.3 KEGG cac02040 Flagellar assembly 1.15E − 23

UniProt KW-0282 Flagellum 5.41E − 17

SN.4 BP GO:0006281 DNA repair 6.64E − 06

MF GO:0140097 Catalytic activity, acting on DNA 3.03E − 02

CC GO:1990391 DNA repair complex 4.70E − 03

KEGG cac03440 Homologous recombination 1.70E − 03

UniProt KW-0234 DNA repair 2.15E − 07

SN.5 CC GO:0005737 Cytoplasm 2.03E − 02

KEGG cac01230 Biosynthesis of amino acids 2.70E − 03

SN.6 BP GO:0090304 Nucleic acid metabolic process 8.50E − 04

MF GO:0008144 Drug binding 8.97E − 05

CC GO:0005737 Cytoplasm 9.30E − 03

KEGG cac00970 Aminoacyl-tRNA biosynthesis 1.20E − 03

UniProt KW-0030 Aminoacyl-tRNA synthetase 1.20E − 03

SN.7 KEGG cac00523 Polyketide sugar unit biosynthesis 6.80E − 04

UniProt KW-0808 Transferase 5.10E − 03

SN.8 KEGG cac01130 Biosynthesis of antibiotics 3.56E − 06

UniProt KW-0501 Molybdenum cofactor biosynthesis 2.06E − 02

SN.9 UniProt KW-0418 Kinase 6.50E − 04

SN.10 BP GO:0034645 Cellular macromolecule biosynthetic process 9.66E − 13

MF GO:0003735 Structural constituent of ribosome 2.38E − 13

CC GO:0005840 Ribosome 2.08E − 13

KEGG cac03010 Ribosome 1.15E − 13

SN.11 KEGG cac00500 Starch and sucrose metabolism 5.14E − 06

UniProt KW-0732 Signal 8.54E − 09

SN.12 None

SN.13 UniProt KW-0808 Transferase 4.20E − 02

SN.14 BP GO:0009260 Ribonucleotide biosynthetic process 3.64E − 06

MF GO:0016879 Ligase activity, forming carbon–nitrogen bonds 8.81E − 07

KEGG cac00230 Purine metabolism 8.75E − 13

UniProt KW-0658 Purine biosynthesis 1.76E − 17

SN.15 BP GO:0030435 Sporulation resulting in formation of a cellular spore 3.17E − 05

MF GO:0016987 Sigma factor activity 5.00E − 04

UniProt KW-0749 Sporulation 6.55E − 06

SN.16 BP GO:1901564 Organonitrogen compound metabolic process 2.30E − 03

MF GO:0016758 Transferase activity, transferring hexosyl groups 6.30E − 03

KEGG cac00400 Phenylalanine, tyrosine and tryptophan biosynthesis 5.52E − 05

UniProt KW-0133 Cell shape 2.51E − 06
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subnetwork were enriched in GO, KEGG and UniProt 
databases, and the items with minimum FDR (< 0.05) was 
listed in Table 3. Enrichment analysis demonstrated that 
these subnetworks were associated with ribosome, DNA 
replication, flagellum, cytoplasm and biosynthesis of 
amino acids, kinase, glycosyl transferase, purine metab-
olism, sporulation and as well as several other cellular 
functions, suggesting wide effects on cellular metabolism 
caused by the addition of p-coumaric acid.

Interestingly, SN-4 contained 18 genes that could be 
divided into two subnetworks (Fig.  5), one associated 
with DNA damage and repair, the other including the 
neighborhood genes CA_C2007 ~ CA_C20015 and CA_
C20019. Among them, glycosyl transferase (CA_C2007), 
3-oxoacyl-ACP synthase (pksF, CA_C2008), 3-hydroxy-
acyl-CoA dehydrogenase (mmgB, CA_C2009), Fe-S 
oxidoreductase (CA_C2010), 3-oxoacyl-ACP synthase 
(fabH, CA_C2011), enoyl-CoA hydratase (fadB, CA_
C2012), esterase (CA_C2014), and malonyl CoA-ACP 
transacylase (CA_C2019) are associated with the fatty 
acid biosynthetic process. In additions, we noted spoT 
and obg, which encode the (p)guanosine 3′-diphosphate 
5′-diphosphate (ppGpp) synthetase and GTPase (binding 
GTP, GDP, and possibly (p)ppGpp with moderate affin-
ity); in eubacteria ppGpp is a mediator of the response to 
changes in nutritional abundance, which coordinates a 
variety of cellular activities [38].

Syringaldehyde‑associated PPI subnetworks
A total of 263 hub genes from the blue and green mod-
ules of WGCNA were used to construct the PPI net-
work, and two dense regions (SN-10 and SN-11) were 
extracted. SN-10 contained 16 hub genes which were 
enriched in ribosomal proteins. SN-11 contained 9 hub 
genes, which were enriched in starch and sucrose metab-
olism and signal transduction. Further analysis showed 
that CA_C0910, CA_C0911, CA_C0912, CA_C0913, 
CA_C0915 and CA_C0916 encode the cellulosomal pro-
teins. The cellulosome is a cellulase system that exist in 
cellulolytic microorganisms such as C. thermocellum, 
C. cellulolyticum, and C. cellulovorans [39]. Cellulase 
and hemicellulase form a multienzyme complex struc-
ture through an anchorage-adhesion mechanism. Cel-
lulosomes are attached to the bacterial cell wall by cell 
adhesion proteins, but lack cellulolytic activity in C. ace-
tobutylicum [40].

Ferulic acid‑associated PPI subnetworks
A total of 156 hub genes from the blue and green mod-
ules of the WGCNA were used to construct the PPI net-
work, and two dense regions (SN-12 and SN-13) with 
extensive internal connections were extracted (Table  2). 

SN-12 contained seven hub genes that were clustered 
because of gene co-occurrence, but lacked annotations 
or descriptions. SN-13 contained seven genes that clus-
tered by gene neighborhood, among which CA_C3068, 
CA_C3069, CA_C3070, CA_C3071 were related to glyco-
syl transferase.

Vanillin‑associated PPI subnetworks
A total of 241 hub genes from the blue and green mod-
ules of the WGCNA were used to construct the PPI net-
work. Three dense regions (SN-14, SN-15, and SN-16) 
were extracted (Fig.  5). SN-14 contained 13 hub genes 
that were enriched for roles in purine metabolism. SN-15 
contained seven hub genes that were enriched for roles in 
sporulation, which was considered to be associated with 
the deterioration of fermentation [41, 42]. SN-16 con-
tained 17 hub genes which were involved with organoni-
trogen compound metabolic process, glycosyl transferase 
activity, phenylalanine, tyrosine and tryptophan biosyn-
thesis and cell shape (Table 3).

Discussion
PCs widely exist in LCH and have strong toxic-
ity to microorganisms. For ABE production, several 
research groups have examined PC-induced inhibition 
of Clostridia [10, 43, 44]. Cho et  al. [10] assessed the 
inhibitory effects of six PCs (p-coumaric acid, ferulic 
acid, 4-hydroxybenzoic acid, vanillic acid, vanillin, and 
syringaldehyde) on C. beijerinckii. At 1  g/L, the tested 
PCs inhibited cell growth by 64 ~ 74% and completely 
inhibited butanol production. Ezeji et  al. [43] evaluated 
the impact of PCs on C. beijerinckii growth and butanol 
production, and found that > 0.3 g/L ferulic acid was most 
toxic to C. beijerinckii growth and completely inhibited 
butanol production, followed by syringaldehyde. Chen 
et al. [44] established a mathematical model to evaluate 
the inhibitory effects of phenolic derivatives on ABE fer-
mentation by C. saccharoperbutylacetonicum.

In this study, due to the low doses used, the four PCs 
did not show significant inhibitory effects on biomass 
and sugar consumption, but caused different irrevers-
ible effects on ABE fermentation (Fig. 1), indicating that 
under these conditions, C. acetobutylicum survived by 
regulating intracellular metabolism to cope with envi-
ronmental stress, but at the expense of fermentation 
performance.

Generally, ABE fermentation can be divided into two 
stages, acidogenesis and solventogenesis. In the acido-
genesis stage, large amounts of acetic acid and butyric 
acid are generated, accompanied with biomass accumula-
tion, while in the solventogenesis stage the organic acids 
are reabsorbed and utilized by the cells to produce etha-
nol and butanol. With respect to metabolic pathways, 
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butyric acid and acetic acid are the precursors of butanol 
and ethanol, respectively, so the levels of these organic 
acids and their corresponding alcohols are closely related. 
In the WGCNA models (Fig. 2c), we found that butanol 
production was highly related to the black and salmon 
modules, which were linked with butyric acid produc-
tion in the module-trait correlation analysis. However, 
hub gene functional enrichment analysis revealed differ-
ences. Butanol production was associated with the two-
component system, sphingolipid metabolic process, and 
glucosylceramidase activity, which are involved in cellu-
lar stress responses, while butyric acid was related to ala-
nine, aspartate, and glutamate metabolism.

Similarly, acetic acid production was closely related to 
flagellar assembly (cell mobility) and ribosome function 
(protein synthesis), while ethanol was related to specific 
secondary metabolic activities, such as the biosynthesis 
of glycogen and secondary metabolites. Moreover, bio-
logical functions closely related to acetone and butanol 
were similar. The sphingolipid metabolic process and 
glucosylceramidase activity are both related to cellular 
membrane lipid metabolism. These analyses indicate that 
as a systematic method for describing gene association 
patterns among different samples, WGCNA can be used 
to identify highly synergistic gene sets and identify candi-
date biomarker genes or metabolic targets by associating 
gene sets and phenotypes.

Some other microorganisms, e.g., S. cerevisiae, can 
convert PCs into less toxic compounds, achieving 
detoxification at the cost of reduced product synthesis 
[14], which was a in situ detoxification by the oxidore-
ductive pathway [45]. Larsson et  al. [14] evaluated the 
influence of hydroxy-methoxy-benzaldehydes, diphe-
nols/quinones, and phenylpropane derivatives on S. 

cerevisiae cell growth and ethanol formation. Aromatic 
alcohols were detected as the reduction products of 
their corresponding aldehydes. In another report, Shen 
et  al. [46] reported upregulated oxidoreductase and 
antioxidant activities when S. cerevisiae was exposed 
to vanillin. However, in our study, no significant cor-
relation between PCs and any oxidoreductive metab-
olism-related KEGG pathways, GO terms, or protein 
complexes were observed, indicating that the effects 
of PCs on C. acetobutylicum were distinct from their 
effects on S. cerevisiae.

Systems biology methods provides a global perspec-
tive on the effects of inhibitors on microbial metabo-
lism. In this study, a WGCNA strategy based on 
RNA-seq transcriptomics was applied to identify the 
metabolic perturbations in gene expression caused by 
four LCH-derived PCs, and extract the metabolic mod-
ules associated with extracellular fermentation charac-
teristics. Several gene sets that were highly associated 
with fermentation traits were identified and analyzed 
for enriched biological functions. Based on WGCNA, 
hub gene enrichment, and PPI analysis, four PCs 
exerted effects on cell metabolism via both different 
and shared targets.

PCs had significant effects on important physiologi-
cal processes. As shown in Fig. 6, a potential metabolic 
mechanism in response to lignocellulose-derived PCs 
stress was proposed. In general, p-coumaric acid has 
an effect mainly on the assembly of ribosome, flagella, 
DNA replication, repair, and recombination; syringal-
dehyde on ribosome protein gene expressions, starch 
and sucrose metabolism; vanillin mainly on purine 
metabolism, sporulation and signal transduction, orga-
nonitrogen compound metabolic process; ferulic acid 

Coum

Syr

Fer

Van

Purine Metabolism

Sporulation and 
Signal Transduction

Flagella

DNA Replication, Repair, 
Recombination  

Cytoplasm

Organonitrogen Compound 
Metabolic Process

Ribosome

Starch and Sucrose Metabolism

Glycosyl 
Transferase

Fig. 6  Metabolic response mechanism of C. acetobutylicum to lignocellulose-derived PCs
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mainly on the gene expression of glycosyl transferase. 
These results suggest that PCs may interfere with the 
fermentation profiles by different intracellular meta-
bolic disturbances.

Conclusions
In summary, we have performed an in-depth analysis 
of key pathway responses to various lignocellulose-
derived PCs. Our results indicate that precise regula-
tion of these pathways or bottleneck steps are essential 
for strain development and aid in the improved ABE 
production from LCH.

Methods
Media and strain cultivation
Spores of C. acetobutylicum ATCC 824 were bought 
from the American Type Culture Collection (ATCC, 
Maryland, USA) and stored at −80  °C. Reinforced 
Clostridium medium was used for seed cultivation [47]. 
Fermentation was performed in P2 medium contain-
ing 50 g/L glucose, 0.5 g/L K2HPO4, 2.2 g/L ammonium 
acetate, 0.5 g/L KH2PO4, 0.2 g/L MgSO4·7H2O, 0.01 g/L 
FeSO4·7H2O, 0.01  g/L NaCl, 0.01  g/L MnSO4·H2O, 
1  mg/L p-aminobenzoic acid, 1  mg/L vitamin B1, and 
0.001 mg/L biotin.

C. acetobutylicum spores were heat-shocked at 85 °C 
for 10  min and then inoculated at a 1% (v/v) volume 
size for seed cultivation in a YQX-II anaerobic incu-
bator (Shanghai Longyue Instrument Equipment Co., 
Ltd., China) for 24  h (to an OD600 of ~ 3.0). Anaerobic 
ABE fermentation was performed in a 3.5 L fermenter 
(NBS BIOFLO-2000, New Brunswick Scientific Co., 
Inc., U.S.A) with a 10% (v/v) inoculation volume and 
a 2.0 L working volume. The stirring speed was main-
tained at 100 rpm and the temperature at 37 °C. Broth 
pH was monitored by pH electrode and maintained at 
5.8 with 6 M ammonia and 6 M HCl.

Addition of phenolic inhibitors
The four PCs used in this study (vanillin, p-coumaric 
acid, syringaldehyde, and ferulic acid), were added 
separately 12  h after the beginning of fermentation to 
200  mg/L. The main fermentation parameters, OD600, 
glucose, acetic acid, butyric acid, ethanol, butanol, and 
acetone, were monitored as previously reported [47].

Biomass and glucose measurements
The biomass was determined by ultraviolet spectro-
photometry at 600  nm. Glucose was measured with a 
Bioanalyzer SBA 40D equipped with a biosensor (Biol-
ogy Institute of Shandong Academy of Sciences, China) 
according to the manufacturer’s instructions.

Fermentation product measurements
Ethanol, acetone, butanol, acetic acid, and butyric 
acid were analyzed with a gas chromatograph [48] 
(GC, 430-GC, Bruker Daltonics Inc., USA) equipped 
with a BW-SWAX capillary column (30  m × 0.32  mm 
ID × 0.25  m) and an FID detector. The heating proce-
dure was 80  °C for 2 min, then increases of 10  °C/min 
for 2  min and 50  °C/min for 2  min, then 230  °C for 
2  min. The inlet and detector temperatures were both 
250  °C. The split ratio was 1:20, and the ratio of car-
rier gas (nitrogen): supplementary gas (nitrogen): air: 
hydrogen = 1:20:30:35 mL/min.

RNA‑seq and quantification of gene expression levels
A 10  mL sample of each fermentation broth after 18  h 
was used for RNA-seq. Total RNA was extracted using 
TRIzol Reagent (Invitrogen, Carlsbad, USA) accord-
ing to the manufacturer’s instructions, and purified 
using an RNeasy Mini Kit (Qiagen, Germany) including 
an on-column DNase (Qiagen) digestion step to avoid 
contamination with genomic DNA. Sequencing librar-
ies were generated using NEBNext® Ultra™ Directional 
RNA Library Prep Kit for Illumina® (New England Bio-
labs Ltd., USA) following the manufacturer’s recom-
mendations, and index codes were added to attribute 
sequences to each sample. Clustering of the index-coded 
samples was performed on a cBot Cluster Generation 
System using a TruSeq PE Cluster Kit v3-cBot-HS (Illu-
mina, Inc., USA). After cluster generation, library prepa-
rations were sequenced on an Illumina Hiseq platform 
and paired-end reads were generated. The total number 
of raw reads obtained from the samples (Con, Van, Syr, 
Fer, and Coum) ranged from 9.18 to 11.37 million. Raw 
data in fastq format were first processed to obtain clean 
data by removing reads containing adapters and poly-N 
tracts and low-quality reads from the raw data. At the 
same time, the Q20, Q30, and GC content of the clean 
data were calculated. Clean reads were mapped to the 
C. acetobutylicum ATCC 824 genome (NC_003030.1) 
and plasmid pSOL1 (NC_001988.2; NCBI, https​://www.
ncbi.nlm.nih.gov/genom​e/?term=ATCC+824) using 
Bowtie 2 v2.2.3 [49]. HTSeq v0.6.1 was used to count the 
read numbers mapped to each gene. Then, the expected 
number of FPKMs (fragment per kilobase of transcript 
sequence per millions base pairs sequenced) of each 
gene was calculated to determine their expression val-
ues, based on the length of each gene and the read counts 
mapped to it [50]. 3,911 genes in each sample had  ≥ 1 
(FPKM) and were considered expressed (Table SI  in 
Additional file 3).

https://www.ncbi.nlm.nih.gov/genome/%3fterm%3dATCC%2b824
https://www.ncbi.nlm.nih.gov/genome/%3fterm%3dATCC%2b824
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Construction of the WCGNA network
The WGCNA model was built from the transcriptome 
datasets and the FPKM by calculating weighted Pear-
son correlation matrices relative to the FPKM, accord-
ing to the R 3.5.1 online tutorial (https​://horva​th.genet​
ics.ucla.edu/html/Coexp​ressi​onNet​work/Rpack​ages/
WGCNA​/Tutor​ials/). Briefly, a matrix was constructed 
by calculating Pearson correlations to measure the simi-
larity between gene expression profiles of different sam-
ples. Then, the similarity matrix was transformed into an 
adjacency matrix raised to a β exponent (soft threshold) 
based on the free-scale topology criterion. The TOM was 
used to define modules based on dissimilarity (1-TOM). 
Modules were merged based on dissimilarity between 
their eigengenes, which are first principal components 
of each module and represent the gene expression pro-
files within them [30]. Genes with highly similar corre-
lation relationships were grouped into the same modules 
through hierarchical clustering based on the TOM 
results. Each gene module was assigned a color, with 
genes not sorted to any specific module grouped in grey. 
Module-trait associations were estimated using the cor-
relation between the module eigengene and rAcetone, 
rButanol, rEthanol, rAcetate, rButyrate, rSugar, and 
rOD600 values based on the fermentation characteristic 
curves, as well as the control, syringaldehyde, vanillin, 
ferulic acid, and p-coumaric acid treatment conditions, 
allowing the identification of modules highly correlated 
with both fermentation traits and treatments. Genes in 
modules with significant module-trait associations (coef-
ficient  > 0.65 and p value < 0.001) were included in func-
tional enrichment analysis.

Hub gene determination
Using the GS and MM, genes with high significance for 
each trait and high MMs in interesting modules can be 
identified. The intramodular connectivity was computed 
for each gene by summing the strengths of its connec-
tions with other module genes and dividing this number 
by the maximum intramodular connectivity. Genes with 
maximum intramodular connectivity were regarded as 
intramodular hub genes [51], which had GSi > 0.5 and 
MMi > 0.5.

GO and KEGG enrichment analysis
GO and KEGG enrichment analysis of hub genes was 
performed in DAVID [52] (https​://david​.ncifc​rf.gov). 
Enriched terms with p-values<0.05 were considered sig-
nificant and used for biological function annotation.

PPI analysis
PPI analysis was performed in STRING [53] (https​://strin​
g-db.org) with default parameters. Cytoscape v3.6.1 [54] 
was used to depict the gene interaction network. Molec-
ular Complex Detection (MCODE) [55] is a Cytoscape 
plug-in that detects densely connected regions in large 
PPI networks that may represent molecular complexes, 
and was used to extract the core subnetworks, with a 
K-core value  > 5.

Unless otherwise specified, all reagents used in this study 
were purchased from Sigma-Aldrich Co. Ltd. and were 
of  > 98% purity. Each experiment was repeated at least 
three times.
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