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METHODOLOGY  

Peptide‑based functional annotation 
of carbohydrate‑active enzymes by conserved 
unique peptide patterns (CUPP)
Kristian Barrett1*   and Lene Lange2

Abstract 

Background:  Insight into the function of carbohydrate-active enzymes is required to understand their biological 
role and industrial potential. There is a need for better use of the ample genomic data in order to enable selection 
of the most interesting proteins for further studies. The basis for elaborating a new approach to sequence analysis 
is the hypothesis that when using conserved peptide patterns to determine the similarities between proteins, the 
exact spacing between conserved adjacent amino acids in the proteins plays a prominent functional role. Thus, the 
objective of developing the method of conserved unique peptide patterns (CUPP) is to construct a peptide-based 
grouping and validate the method to provide evidence that CUPP captures function-related features of the individual 
carbohydrate-active enzymes (as defined by CAZy families). This approach facilitates grouping of enzymes at a level 
lower than protein families and/or subfamilies. A standardized, efficient, and robust approach to functional annotation 
of carbohydrate-active enzymes would support improved molecular insight into enzyme–substrate interaction.

Results:  A new nonalignment-based clustering and functional annotation tool was developed that uses conserved 
unique peptides patterns to perform automated clustering of proteins and formation of protein groups. A peptide-
based model was constructed for each of these protein CUPP groups to be used to automatically annotate protein 
family, subfamily, and EC function of carbohydrate-active enzymes. CUPP prediction can annotate proteins (from any 
CAZy family) with high F-score to existing family (0.966), subfamily (0.961), and EC-function (0.843). The speed of the 
CUPP program was estimated and exemplified by prediction of the 504,017 nonredundant proteins of CAZy in less 
than four CPU hours.

Conclusion:  It was possible to construct an automated system for clustering proteins within families and use the 
resulting CUPP groups to directly build peptide-based models for genome annotation. The CUPP runtime, F-score, 
sensitivity, and precisions of family and subfamily annotations match or represent an improvement compared to 
state-of-the-art tools. The speed of the CUPP annotation is similar to the rapid DIAMOND annotation tool. CUPP facili-
tates automated annotation of full genome assemblies to any CAZy family.

Keywords:  Peptide pattern recognition, Automated protein clustering, Protein group creation, Automated functional 
protein annotation, Systemized genome enzyme discovery
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Background
Improved systematic and validated use of the over-
whelming amount of genome sequencing data can open 
the way for increased biological insight. Several different 
methodological approaches, such as BLAST [1], CD-HIT 
[2], DIAMOND [3], HMM [4], PPR [5] and dbCAN [6, 
7], and several types of multiple sequence alignments, 
e.g., MUSCLE, GBLOCK, DIALIGN, and MAFFT [8–11] 
have been developed and used over the last decades. Fur-
ther, and most importantly, the vast knowledge about car-
bohydrate-active enzymes has been meticulously curated 
and made easily accessible to the scientific community by 
construction and updating the CAZy database [12]. The 
development of the conserved unique peptide patterns 
(CUPP) method is based on the principle of peptide pat-
tern recognition [13], where peptide patterns conserved 
through evolution of efficient metabolic carbohydrate-
active enzymes are captured. Furthermore, the CUPP 
method optimizes use of knowledge about the CAZy 
enzymes which have been characterized to EC function. 
It is hypothesized that all members of a CUPP group of 
proteins, which share the same conserved unique pep-
tide patterns, have the same function (or share functional 
related features) as the characterized enzymes belonging 
to that CUPP group. The CUPP method shares with the 
new SACCHARIS method the conceptually important 
improved feature that the high number of characterized 
enzymes available can also be used for improved func-
tional annotation of noncharacterized enzymes [14]. 
However, although the SACCHARIS method produces 
highly informative and automatically generated phy-
logenetic trees, the specific functional annotation (to 
EC number function) of each protein requires manual 
inspection. The CUPP method initially constructs a tree 
(based on peptide pattern similarities), but it also pro-
cesses the information further: protein CUPP groups are 
automatically identified, and a peptide-based model for 
each CUPP group is constructed, which forms the basis 
for providing functional protein annotation. The out-
come of the SACCHARIS method is phylogenetic trees 
for manual inspection, whereas CUPP continues to auto-
matically form groups and create models of each group 
for rapid annotation of known or new proteins [14].

Developing the system of enzyme protein families (and 
for some families also subfamilies) of carbohydrate-active 
enzymes (CAZy.org) has been essential for understand-
ing enzymatic biomass conversion in nature [12]. This 
knowledge has provided the backbone for develop-
ment of optimized blends of enzymes for industrial bio-
mass conversion [15–17]. However, so far only a minute 
part of the bacterial and fungal enzyme diversity has 
been exploited industrially [18]. The new bioeconomy 
will include enzyme conversion of a broad spectrum of 

biomasses (aquatic and terrestrial, and of plant, ani-
mal, algal, and fungal origins) converted into many new 
types of value-added products (food and feed, including 
gut health-promoting ingredients, biobased chemicals, 
and materials as well as fuels). Thus, new and improved 
enzymes (and enzyme blends) will be required to achieve 
this. Yet only a small fraction of carbohydrate-active 
enzymes has been biochemically characterized due to 
the extensive skills and laboratory facilities required. To 
optimize the efforts and systematically expand the nec-
essary characterization, the candidate enzymes should 
be selected carefully. Improved bioinformatics tools 
can facilitate optimized utilization of the overwhelming 
amount of genome and metagenomes [19–22].

Carbohydrate-active enzymes have been divided into 
five classes of enzymes: Glycoside Hydrolases, Glycosyl-
transferases, Polysaccharide Lyases, Carbohydrate Ester-
ases, and Auxiliary Activity enzymes. These classes have 
been further divided into protein families (CAZy.org). 
The glycoside hydrolases are the most intensively studied 
carbohydrate-active enzymes. However, only four fami-
lies have been organized into subfamilies [12], GH5 [23], 
GH13 [24], GH30 [12], and GH43 [25]. Some of these 
subfamilies have been assigned (EC) functions and some 
subfamilies remain uncharacterized. The creation of both 
family and subfamily delineations are based on multiple 
alignments in combination with specific CAZy knowl-
edge related to the enzyme proteins. The creation of 
subfamilies is a significant step forward for the research 
community easily and systematically to report scientific 
findings with reference to a category of closely related 
enzymes, a subfamily delineation, which is robust across 
time. However, several EC functions are often found 
within one protein family or even subfamily. The pres-
ence of multiple functions in a family or subfamily makes 
it desirable to subdivide into smaller groups, in order to 
capture differences in function-related features at a level 
lower than subfamily, i.e., creating groups that preferably 
include only one EC function.

Similar proteins can generally be assumed to share 
biological features [14]; however, even very different 
protein sequences may have the same enzyme function. 
Busk and Lange [13] suggested that specific, conserved 
peptide patterns may be the key to identifying proteins 
with such similar functions. Evolutionary pressure for 
fitness with regard to metabolizing substrates (for sup-
port of growth and reproduction) has led to specific 
parts/peptides of the protein (the parts most essen-
tial for the enzyme function in question) that are con-
served. Therefore, the use of conserved peptides as a 
method of describing and comparing protein sequences 
includes the information of adjacent unique conserved 
amino acids. In the current work, this particular use is 



Page 3 of 21Barrett and Lange ﻿Biotechnol Biofuels          (2019) 12:102 

hypothesized to add an additional layer of information 
and thus obtain a more biologically relevant clustering 
and annotation. This methodological approach has also 
in part been used by cluster database at high identity 
with tolerance (CD-HIT) [2] and peptide pattern rec-
ognition (PPR) and utilizes the principle referred to as 
sliding window [5]. The sliding window gives CD-HIT 
and PPR their capability to handle a large number of 
proteins with relatively low computational require-
ments. In general, it is expected that highly similar pro-
tein sequences share enzymatic activity, and for this 
reason, one representative sequence may represent all 
protein members of the group. Using the protein-clus-
tering tool CD-HIT, a large number of representative 
sequences have been identified, which might be fur-
ther grouped. Notably, the CD-HIT method has been 
used in combination with PHI-BLAST and MUSCLE 
for incremental clustering [26]. Recently, dbCAN2 
launched an annotation pipeline combining three state-
of-the-art family annotation tools [7]: the HMMER3-
driven dbCAN [4, 6], the BLAST-driven DIAMOND 
[3], and the PPR-based Hotpep [27], which uses few 
conserved peptides (up to 70) for each protein group. 
The idea is that the three tools combined (where a min-
imum of two out of the three agree on a prediction) 
increases accuracy of family annotation of CAZomes 
(the proteins of the proteome, which are carbohydrate-
active enzymes). The F-score of the combined tools 
was reported to be 0.93, whereas each of the programs 
individually has an F-score of about 0.87 [7]. The per-
formance of each of the tools was optimized on six 
CAZomes of the well-established organisms, which 
resulted in a stricter choice of parameters for Hotpep 
(compared to those previously applied) and lowered the 
rate of false discoveries [5, 7].

The CUPP program introduced here represents a new 
bioinformatic approach for using the nonalignment-
based concept of PPR (patent application [13]). Here 
we describe, validate, and exemplify the CUPP pro-
tein clustering and functional annotation program. It is 
our hypothesis that grouping of proteins based on pat-
terns of conserved unique peptides allows prediction of 
EC function of noncharacterized enzymes in all cases 
where CUPP group includes biochemically character-
ized enzyme(s). In short, the CUPP sequence analysis 
program described here attempts to create functionally 
relevant clusters of proteins that share a unique pattern 
of conserved peptides. It is such clusters that can enable 
annotation of a given query protein to a predicted family, 
subfamily, and EC function, or to automated annotation 
of the entire CAZome within a genome. In the CUPP 
program, the sensitivity of functional annotation of pro-
teins is attempted to be improved by introduction of 

peptides containing ambiguous amino acids as this allows 
for detection of longer “motif” regions with a potentially 
less-conserved center region.

Results
The description below of function, output, and per-
formance of the CUPP classification and annotation is 
facilitated by choosing specific protein families as case 
studies. More specifically, GH30 was chosen based on the 
following criteria: (A) protein family with published and 
validated subfamily delineations, (B) protein family with 
multiple members of well-characterized enzyme pro-
teins. Choosing families fulfilling both criteria A and B 
provides a basis for stringent validation and benchmark-
ing of the CUPP F-score. The CUPP settings applied to 
the GH30 training set were used for clustering of all pro-
tein families in CAZy for construction of a peptide data-
base (CUPP library). Another family that lived up to the 
criteria was GH5 which was used as an unsoiled dataset 
tested after the parameters were optimized. The applica-
tion of the CUPP library was exemplified by CUPP pre-
diction of 12 CAZomes or genomes.

Selection of optimal CUPP parameters (ex GH30)
The proteins of the GH30 protein family were clustered, 
and subfamily and function were predicted for each 
enzyme protein using a set of peptide parameters (length 
of peptide and number of ambiguous amino acids in 
the peptide) and clustering coefficient (c_clust) (Eq. 1 in 
“Methods”) in order to choose the optimal parameters 
(Fig. 1 and Additional file 1: Figure S1). The F-score was 
determined for subfamily and function over a range of 
clustering coefficient parameters (c_clust: from 3 to 14; 
Eq.  1), and the average and standard deviations of all 
results for each peptide parameter were determined 
(Fig.  1). A new algorithm for protein clustering, which 
benefits from peptides with insertion of ambiguous ele-
ments, results in improved precision and sensitivity. A 
peptide length of 8 with 2 ambiguous amino acids (8×2) 
was the optimal choice of peptide parameters (Fig.  1). 
The performance of parameters 8×3, 9×3 , and 9×4 was 
close to 8×2; however, the additional RAM requirements 
made them less favorable (Additional file 1: Table S1).

Defining the unique peptides patterns for CAZy family 
GH30
Table  1 was constructed to obtain a summary of the 
individual CUPP groups within GH30 and their relation 
to subfamilies and EC functions. The number of differ-
ent organismal taxonomic classes (bacteria, eukaryotes 
and fungi) represented within each group is indicated 
together with information of available PDB structures. 
Each CUPP group is expected to have some unique 
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peptides (for the GH30 family up to 95%) among the 
peptides found in the unique peptide patterns (Table 1). 
Most GH30 subfamilies were divided into several CUPP 
groups and, notably, no CUPP groups of GH30 included 
members of more than one subfamily. Division of the 
GH30 family and subfamilies into CUPP groups sepa-
rated the protein members into groups of proteins shar-
ing the same conserved and unique peptide patterns 
(Table  1). The divergence among the proteins of GH30 
was captured in 33 CUPP groups. The information 
regarding performance measured as sensitivity and pre-
cision of each CUPP group individually can be found in 
Additional file 1: Table S2.

Table  1 shows the available PDB structures and taxo-
nomic statistics for the CUPP groups, which are listed 
along with the CAZy subfamilies and EC functions listed 
in CAZy. As shown, most families are subdivided by 
CUPP into several CUPP groups. Cases of bacteria and 
eukaryotes in the same CUPP group are found in five 
subfamilies (GH30:1, 3, 5, 7, and 8). The number stated 
in the column “Current” is the number of family domains 
found in proteins belonging to the given subfamily as 
delineated by CAZy. The column “GH30 Rep. Members” 
denotes the number of CD-HIT representative sequences 
in the given CUPP group, whereas the column “Current” 

indicates the number of proteins in the group, which have 
been assigned a subfamily by CAZy. (Note: if one protein 
represents several proteins of the same CD-HIT cluster, 
the subfamilies of these proteins also count). The “New” 
column refers to proteins in the groups with no current 
subfamily assigned. The column “Number of peptides” 
indicates the total number of peptides conserved among 
the proteins of the group, whereas the column “Unique 
peptides” indicates how many of these peptides are found 
only in the given CUPP group and not in any of the 
other CUPP groups of the family. The number in column 
“Classes” indicates the number of different organismal 
taxonomic classes represented in the individual enzyme 
CUPP group. B, E, and F correspond to the presence of 
members from bacteria, nonfungal eukaryotes, and fungi, 
respectively. The “&” character indicates multiple (here 
two) functions (EC numbers) found in the same entry in 
CAZy (or in the same CD-HIT High Similarity Cluster).

The GH30 family contains 1726 nonredundant and 
nonfragment proteins. 805 representative domain 
sequences were found by means of CD-HIT at 90%. 
A total of 734 proteins of these 805 sequences were 
assigned to a CUPP group. The remaining 71 proteins 
were removed either for being singletons or they did not 
have enough covered positions to be included in a CUPP 
group. The CUPP and dbCAN-HMM predictions of sub-
families were benchmarked against CAZy delineation 
(classification assigned by CAZy). The CUPP prediction 
of subfamily revealed a much higher performance com-
pared to dbCAN-HMM. This was especially noticeable in 
GH30 subfamily 3 for which dbCAN-HMM had a sensi-
tivity of 0.031 compared to a sensitivity of 0.993 for sub-
family annotation by CUPP. Notably, the “fast-filtering” 
CUPP annotation F-score appears to be lower compared 
to “full-filtering” but is still superior to state-of-the-art 
tools. The CUPP annotation F-score of subfamily was 
overall at 0.992 (fast-filtering) or 0.996 (full-filtering), 
which indicates high performance (Table 2).

As shown in Table 2, two settings of CUPP annotation 
(fast- or full-filtering) were compared to dbCAN-HMM 
and dbCAN-Diamond subfamily annotations. The sensi-
tivity of the tools included in the dbCAN2 pipeline, able 
to perform subfamily annotation, is compared. Only pro-
teins of GH30 having a subfamily delineation (classifica-
tion assigned by CAZy) are included. The dbCAN-HMM 
database (release V7) does not have a model for subfam-
ily 9 and the sensitivity was therefore recorded as zero.

The dendrogram in Fig. 2 was based on the conserved 
peptides the proteins share with each other. Construc-
tion of this dendrogram is described in Methods step 5 of 
CUPP clustering (see below). CUPP groups belonging to 
the same GH30 subfamily were placed by CUPP cluster-
ing as sister groups. However, the small GH30 subfamily 

Fig. 1  Selection of peptide parameters for CUPP clustering. The 
performance of CUPP clustering and prediction for GH30 using 
various peptide lengths and number of ambiguous amino acids 
within them (written as the length and the number of ambiguous 
amino acids separated by “x”). Each dot represents the average of 
CUPP group precision/family sensitivity for a c_clust ranging from 3 
to 14 with corresponding error bars indicating the standard deviation. 
The gray areas indicate settings which are relatively less favorable. 
Peptides with a length of eight with two ambiguous amino acids 
were selected as the optimal for GH30 and applied for all CAZy 
families
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Table 2  Benchmarking of GH30 subfamily annotation

Sensitivity of GH30 subfamily annotation Subfamily 
members

CAZy subfamily dbCAN-HMM dbCAN-Diamond CUPP fast-filtering CUPP full-filtering

GH30_1 0.992 0.995 0.995 1.000 380

GH30_2 1.000 1.000 1.000 1.000 157

GH30_3 0.031 0.780 0.980 0.993 446

GH30_4 1.000 1.000 0.987 1.000 81

GH30_5 0.985 0.426 1.000 1.000 136

GH30_6 1.000 1.000 1.000 1.000 6

GH30_7 1.000 0.872 1.000 1.000 39

GH30_8 0.973 0.844 0.997 0.990 405

GH30_9 0.000 1.000 1.000 1.000 37

Overall 0.713 0.854 0.992 0.996 1687

Fig. 2  Dendrogram of the proteins involved in CUPP clustering of GH30. The 33 CUPP groups are indicated by labels. The distances on the x-axis are 
the “Ward” distances between the representative proteins belonging to GH30. The subfamily is designated with an underscore, whereas the content 
of the brackets are the CUPP group. Adjacent CUPP groups belonging to the same subfamily are indicated by blue boxes. The dendrogram was 
constructed as described in step 5 of CUPP clustering
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9 was located within GH30 subfamily 3, indicating a 
potential affiliation between GH30:30 and the function-
ally unknown GH30 CUPP groups numbered 13–18. 
Generally, all members of the same subfamily were found 
in a group below a threshold of three, and for GH30 
subfamily 1 and 3 below a threshold of five, in the den-
drogram (Fig.  2). This exemplifies the usefulness of the 
CUPP method for identifying subfamily affiliation based 
on dendrogram distances. However, manual assessment 
and CAZy validation and acceptance for formation of 
new subfamilies are still prerequisites.

Comparing CUPP clustering with phylogenetic tree 
for CAZy family GH30
All domains of GH30 predicted by dbCAN-HMM were 
used for creation of a phylogenetic tree and as the basis 
for forming the 33 CUPP groups of GH30, which are 
each identified by a number (see Fig. 3). The constructed 
tree was used to directly connect the subfamily deline-
ation of CAZy to the predictions by dbCAN-HMM and 
CUPP for each individual entry. The protein members 
of the CUPP groups were generally found with short 
distances between one another in the phylogenetic tree 
(Fig. 3). However, based only on the tree, it would be dif-
ficult to manually determine exactly which proteins were 
members of which CUPP groups. For example, GH30:7 
appears to be within CUPP group 6 and likewise CUPP 
group 20 appears to be within CUPP group 19. Higher 
resolution was achieved by constructing the dendrogram 
(see Fig.  2) in which similarity distances are based on 
peptides. This in itself exemplifies the enhanced separa-
tion achieved using peptide-based CUPP clustering.

The three entries with EC function originating from 
eukaryotes (EC 3.2.1.8, 3.2.1.75 and 3.2.1.21&3.2.1.37) 
were lost during CUPP clustering because the similarity 
to any one CUPP group was too low. However, during 
CUPP prediction, EC function 3.2.1.8 was still correctly 
annotated, and the two other functions were also anno-
tated to the correct subfamily and to unknown function. 
This result indicates that CUPP clustering is robust even 
across broad taxonomic distances. As can be seen in 
Fig. 3, the grouping that results from CUPP clustering is 
generally in agreement with clusters manually identified 
on the phylogenetic tree. The consensus of subfamilies 
across CAZy, dbCAN-HMM, and CUPP clustering and 
CUPP prediction suggests that CUPP is a robust cluster-
ing and prediction tool. In the tree, the members of the 
individual CUPP groups were generally placed close to 
each other and often located in minor but dense branches 
of the phylogenetic tree. For the EC function assignment, 
there was also consensus between the information of 

CAZy and the information assigned by both CUPP clus-
tering and CUPP prediction.

Ability to predict new members of the family by CUPP (ex 
GH5)
A completely independent dataset was selected (fam-
ily GH5) to enable full validation of the performance of 
CUPP clustering and CUPP prediction. This dataset had 
not been included in any training or optimization work 
connected with the development of the CUPP method. 
Family GH5 thus served as an unsoiled dataset to simu-
late the addition of new proteins to CAZy in the future 
before the model is updated to include them. The GH5 
family was separated into two subsets, and one of these 
subsets (90% of the proteins) was used for CUPP clus-
tering while the other (10% of the proteins) was used for 
CUPP prediction. The proteins of the two sets may have 
up to 70% sequence identity according to CD-HIT. The 
resulting observed sensitivity of CUPP annotation to 
family was 0.952, whereas the annotation to subfamily 
and EC function sensitivity scores were 0.975 and 0.925, 
respectively. The precisions of subfamily and functional 
prediction were 0.995 and 0.704, respectively.

Performance of CUPP on the complete set of CAZy families
A CUPP library (database of conserved peptides) con-
taining Auxiliary Activities (AA), Carbohydrate Esterases 
(CE), Polysaccharide Lyases (PL), Glycoside Hydrolases 
(GH) and Glycosyltransferases (GT) was created to elu-
cidate further the robustness of the CUPP method across 
CAZy families when proteins of both closely and dis-
tantly related families are included. The CUPP clustering 
of all 306 CAZy families took 20 h on a single computer 
using eight cores without any need for manual inspec-
tion. In this run, however, eleven families (AA14, GH80, 
GH96, GH118, GH120, GH124, GT38, GT45, GT72, 
GT78, and GT97) could not even form a single CUPP 
group with the available sequences using the default set-
tings. Instead, a reduced setting was applied for these 
eleven families. The reduced settings were as follows: the 
minimum number of protein members in a CUPP group 
was set to three; no CD-HIT and representative proteins 
were used only when proteins were identical; and no 
dbCAN-HMM predicted domains. The complete CUPP 
library v1.0.14 (306 CAZy families) was used on a FASTA 
file containing all proteins of all CAZy families combined. 
This resulted in F-scores for family, subfamily, and EC-
functional prediction as 0.966, 0.961, and 0.843, respec-
tively (Additional file 2). The CUPP library contains 6581 
CUPP groups with 23,254,445 different peptides in total. 
In addition, dbCAN-HMM was used as benchmarking 
(using release V7 with an e-value cutoff at e-15 and a cov-
erage of > 0.35) which resulted in F-scores for family and 
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Fig. 3  Inverted phylogenetic tree based on traditional multiple alignment of all GH30 protein domains. The numbering of the CUPP groups 
(numbered 1 to 33) is indicated directly on the tree. Each entry has a colored square indicating the CUPP group to which it belongs (black entries 
were ignored during CUPP clustering). Inside the tree are six numbered rings: the outermost ring, ring 1, indicates subfamily delineation according 
to CAZy and adjacent label of subfamilies; ring 2 is the subfamilies predicted by the dbCAN tool; and ring 3 and ring 4 show, respectively, the 
subfamily assigned by CUPP clustering and by CUPP prediction. Ring 5 and 6 represent the EC functions annotated by CUPP prediction for each 
entry as a result of CUPP clustering (ring 5) and of CUPP prediction (ring 6). White color (= empty spaces) in a ring indicates that no specific relation 
to subfamily or function could be assigned. The entries with functional annotation by CAZy are indicated by their respective EC numbers. The circles 
in the center indicates taxonomic groups where blue refers to bacterial, olive green refers to fungal, and lime refers to nonfungal eukaryote, while 
white refers to unknown taxonomy. An interactive version of the tree is available online: https​://itol.embl.de/tree/13022​56425​06657​15287​33948​

https://itol.embl.de/tree/1302256425066571528733948
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subfamily annotations of 0.956 and 0.950, respectively. 
Furthermore, the performance of CUPP for multimodu-
lar proteins had a slightly lower F-score (0.888) for pre-
diction of proteins compared to single domain proteins. 
However, a similar reduction was observed for dbCAN-
HMM (F-score 0.861).

The CUPP predictions of all 504’017 nonredundant 
proteins of CAZy (not including CBMs) took 3  h and 
47 min using a single processor with full-filtering mode. 
The prediction within a few families was poor, and CE6, 
for example, had a sensitivity of only 0.15 (without dual 
domains, Additional file  2). However, in an effort to 
inspect the reason for the low CUPP performance on 
CE6, CUPP clustering using full-length proteins was 
attempted which resulted in a family sensitivity of 0.94. 
In these cases, inspection of the predicted domain ranges 
based on full-length proteins revealed that only a frac-
tion of the domain is predicted by dbCAN-HMM and 
the majority of the conserved positions are outside the 
dbCAN-HMM predicted domain. Moreover, using CUPP 
clustering for GH22 gave a sensitivity of 0.79 while sen-
sitivity with dbCAN-HMM was 0.82. However, by using 
full-length proteins instead of dbCAN-HMM predicted 
domains, the sensitivity of CUPP increased to 0.91. 
PL21 also had a low sensitivity of only 0.47, but using 
full-length proteins instead of the domains resulted in a 
sensitivity of 1. The CUPP model for AA7 had a sensitiv-
ity of 0.86, whereas the CUPP model of AA7 using full-
length proteins gave a sensitivity of 0.93. Even though a 
significant increase can be achieved by using full-length 
proteins, the multimodular nature of proteins may 
cause issues. For example, an issue could occur in cases 
whereas frequently coexisting conserved domain is found 
in a protein family, and conserved peptides from both 
domains become mixed in one model. Thus, whenever 

possible, the domain regions are always used despite 
the potentially better performance of using full-length 
proteins.

Benchmarking of CUPP performance for genome 
annotation
The performance of CUPP family prediction was com-
pared to that of the three dbCAN2 tools in relation to the 
curated proteins of six CAZomes (see Table 3).

Table 3 shows the three CAZy family annotation tools 
of dbCAN2 that were benchmarked to the CUPP annota-
tion using six CAZomes. The F-scores and runtimes are 
given individually for CUPP, dbCAN-HMM (database 
release V7), dbCAN-Hotpep, and dbCAN-Diamond. The 
three dbCAN2 tools can be combined to obtain a better 
prediction of which minimum two of the three tools need 
to agree on a family annotation (Predicted by ≥ 2 tools).

As shown in Table 3, the “full-filtering” mode of CUPP 
has very high precision for a minor loss of sensitivity, 
whereas the “fast-filtering” mode of CUPP results in 
higher sensitivity but also includes hits with lower sup-
port (achieved by omitting domain-filtering and domain-
length requirements to give improved score values).

In addition to the performance of CUPP on only the 
CAZome fraction of the genomes, an additional compar-
ison was conducted on the CAZome including the non-
CAZome proteins which thus serves as a true negative 
dataset (Table 3). Based on the results given in Tables 3 
and 4, we conclude CUPP to be a rapid and robust tool 
for genome annotation.

Table  4 the three CAZyme family annotation tools 
of dbCAN2 were benchmarked to the CUPP annota-
tion using six genomes (in addition to the 6 genomes 
analyzed in Table  3 including both CAZome and non-
CAZome proteins). The F-scores including runtime are 

Table 3  F-score of CUPP prediction in relation to dbCAN2 CAZy family annotation tools

Species of CAZomes CUPP F-score dbCAN2 tools F-score Relevant 
Proteins 
in CAZomeCUPP 

fast-
filtering 

CUPP 
full-
filtering

Predicted 
by ≥ 2 
tools

dbCAN-HMM dbCAN-Hotpep dbCAN-
Diamond

Arabidopsis thaliana 99.39 98.76 99.23 97.70 97.71 96.52 980

Aspergillus nidulans FGSC A4 96.98 96.40 97.95 95.63 92.60 95.44 424

Saccharomyces cerevisiae S288c 98.58 98.58 99.80 98.58 99.80 97.33 91

Average of Eukaryote CAZomes 98.32 97.91 98.99 97.30 96.70 96.43

Caldicellulosiruptor bescii DSM 6725 98.61 94.80 96.59 96.59 89.68 89.02 94

Escherichia coli K-12 MG1655 98.38 97.27 97.27 95.56 97.02 94.38 119

Hungateiclostridium thermocellum ATCC 27405 97.19 94.73 96.75 98.72 87.11 74.74 125

Average of bacterial CAZomes 98.06 95.60 96.87 96.96 91.27 86.05

Average of CAZomes 98.19 96.76 97.93 97.13 93.99 91.24

Complete runtime for the CAZomes [s] 34.33 54.23 255.23 128.61 91.25 35.37
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given individually for CUPP, dbCAN-HMM (database 
release 7), dbCAN-Hotpep, and dbCAN-Diamond. Fur-
thermore, the combination of the three dbCAN2 tools 
was used to give a better prediction of which minimum 
two of the three tools needs to agree on a family anno-
tation (Predicted by ≥ 2 tools). The dbCAN2 tools were 
run using default server settings [7]. The “full-filtering” 
mode of CUPP has very high precision for a minor loss 
of sensitivity, whereas the “fast-filtering” mode of CUPP 
results in higher sensitivity but also includes hits with 
lower support.

Discussion
The combined CAZy research efforts, curation, and data-
base maintenance and development, which cover pro-
tein family and subfamily definitions and delineations 
(including GH, GT, CE, PL, and AA proteins), are cen-
tral to increased insight in carbohydrate-active enzymes 
and are valuable for the design of experimental work 
[12]. The CAZy system as such is recognized and widely 
used by the international scientific research community. 
Furthermore, the dbCAN2 analysis platform (now also 
including the genome annotation-optimized version of 
the PPR-based Hotpep) has been developed to be a state-
of-the-art family prediction tool for carbohydrate-active 
enzymes [5–7]. However, an unmet need still remains for 
an even stronger, automated, and robust protein func-
tional annotation tool that is suitable for the ever growing 
pool of genomic sequences. In this endeavor, the CUPP 
method represents a step forward. The CUPP method 
builds on the invaluable CAZy database (cazy.org) and 
the dbCAN-HMM prediction tools [6, 7]. To these tools 

CUPP adds additional value through capturing protein 
features which may be of relevance for function (viz. con-
served unique peptide patterns) at a level below the pro-
tein family and subfamily. A high sensitivity of prediction 
using CUPP has been achieved by introducing ambigu-
ous amino acids in the peptides, which allows the peptide 
units to be longer without making them too specific. The 
test runs reported hereon GH30 provide support for this 
conclusion.

A significant step in the validation of the CUPP method 
was made by using the N-fold cross validation approach 
in which a small part of the data is omitted from the 
training set and used as an unsoiled dataset [28] (Addi-
tional file 1: Figure S2 and Table S3). In the N-fold cross 
validation, the functional prediction is sensitive and does 
not forcibly assign a function to a protein but keeps them 
unknown. This makes CUPP reliable for in silico screen-
ing of genomes. Furthermore, validation of the CUPP 
method was achieved by constructing a single CUPP 
library with conserved unique peptides of all CAZy fami-
lies and then using this library to determine the precision 
(here reported to be 0.999) among proteins included in 
the families. The high F-score for family and subfamily 
annotation is an indication of the robustness of the per-
formance of CUPP annotation.

The results from the GH5 family study support the 
claim that the CUPP method is compatible with and fully 
capable of performing when used on sequence data and 
models that were not used in the training of the model, 
and in predicting proteins not included in the model. 
This test serves as a simulation of how well CUPP will 
perform on new proteins that are not identical to any of 

Table 4  F-score of CUPP prediction in relation to dbCAN2 CAZy family annotation tools including both CAZome and non-
CAZome proteins

Species of genome origin F-score of CUPP F-score of dbCAN2 tools Relevant 
proteins 
in CAZome

Proteins 
in genome 
(NCBI)CUPP 

fast-
filtering

CUPP 
full-
filtering

Predicted 
by ≥ 2 tools

dbCAN- 
HMM

dbCAN- 
Hotpep

dbCAN-
Diamond

Botrytis cinerea B05.10 95.77 95.44 96.7 95.59 87.5 94.18 341 13,703

Malassezia restricta KCTC 27527 95.33 95.38 96.1 92.56 84.89 95.23 80 4406

Vigna angularis Jingnong6 97.73 97.81 98.38 95.82 96.71 95.78 1133 37,769

Average for eukaryote genomes 96.28 96.21 97.06 94.66 89.7 95.06

Bifidobacterium bifidum NCTC13001 97.36 96.48 95.11 90.19 93.2 82.99 59 1736

Caulobacter segnis ATCC 21756 97.94 97.09 97.26 96.21 91.89 97.97 115 4102

Xanthomonas campestris ATCC 33913 98.38 98.18 97.75 96.3 93.95 95.95 153 4179

Average for bacterial genomes 97.89 97.25 96.71 94.23 93.01 92.3

Average of genomes 97.09 96.73 96.89 94.45 91.36 93.68

Complete runtime of genomes [s] 785 808 6503 3375 2152 976
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the proteins currently included in CAZy. However, if pro-
teins with multiple functions (EC numbers) are placed 
in the same CUPP group, it may not be possible to tell 
whether one or the other is the most likely EC func-
tion of the query protein. However, when abundance is 
taken into consideration, a slight bias may be introduced 
toward the more well-studied EC functions, which might 
overshadow rarer EC functions within a CUPP group.

More specifically, in case two EC functions are found 
in the same CUPP group, the CUPP program can distin-
guish between the following two scenarios: In case, e.g., 
two EC numbers (3.2.1.4 and 3.2.1.21) are found in the 
same CUPP group, the functional assignment string can 
be written as 3.2.1.4 & 3.2.1.21 or as 3.2.1.4–3.2.1.21. The 
hyphen “-” between the two EC numbers indicates that 
the two functions are from distinct proteins, whereas 
the “&” indicates that the two EC functions are from the 
same protein (or from two very similar proteins (90% 
CD-HIT)). In the former hyphen-scenario (in order to 
avoid giving double functional assignment to single-
function proteins), we combine two approaches: the EC 
function of the most abundant function is assigned to the 
query protein and the occurrence of the less-abundant 
function in the CUPP group in question is also informed. 
Then it is open for the user to trace such events.

In this first description of the new CUPP peptide-
based protein annotation, we chose protein family GH30 
(including subfamilies [29]) as a model case to describe 
the flow, use, and output of the CUPP method. As is 
shown here, the CUPP program appears to be able to 
match the state-of-the-art prediction tool dbCAN-HMM 
for prediction of families and subfamilies for carbohy-
drate-active enzymes. The GH30 family and subfamily 
prediction exhibited an F-score of 0.986 or above, a find-
ing which supports the capabilities of the CUPP method. 
All proteins of GH30 were clustered when handled as one 
collection, and it was observed that all CUPP groups con-
tained only one or no subfamily (Table 1). CUPP groups 
can contribute to facilitating subdivision of a subfamily 
or subdivision of families where no subfamily structure 
has yet been defined.

Surprisingly, for GH30 subfamily 3, the CUPP method 
identified 378 out of 381 nonredundant CAZy members 
in contrast to the 14 found by dbCAN-HMM (Table 2). 
This may be caused by the fact that the model for sub-
family 3 available in dbCAN-HMM is from 2010 and is 
based only on 5 sequences [7]. The CUPP method could 
successfully annotate all proteins of the new GH30 sub-
family 9 not included in release 7 of dbCAN-HMM. In 
the original paper, only 8 subfamilies of GH30 were 
reported [29]. In 2018, GH30 subfamily 9 was added to 
CAZy. However, the dbCAN-Diamond has been sup-
plied with an updated database containing the members 

of subfamily 9, which enables prediction of this subfam-
ily. The available subfamilies and EC functions are global 
for the protein, with no specification of which part of the 
protein is the responsible domain. This procedure may 
introduce noise into the prediction and reduce precision. 
However, this can be manually addressed, by altering or 
deleting the meta-data in the incorrect protein family 
based upon the results of a carefully conducted literature 
review. Such operations have not yet been conducted.

An interesting feature of the CUPP method is that it 
also provides a grouping of the part of the protein family 
where no members have been characterized. This facili-
tates the pinpointing of the types of proteins, which have 
a high level of novelty, as was exemplified by CUPP clus-
tering of GH30 (see also Table 1, bottom). It also enables 
selection of members of each uncharacterized group for 
characterization, instead of having to screen every novel 
protein with no functional characterization. This fea-
ture is also an integrated part of the SACCHARIS pro-
gram [14]. CUPP groupings as such can thus be used for 
guidance for intelligent selection of targets for enzyme 
discovery and for improved understanding of molecular 
interaction between microbes (or microbiome) and their 
substrate [30]. Notably, this also has relevance for the use 
of CUPP groups as lead for enzyme discovery, finding 
novel enzymes or finding new types of enzymes with spe-
cifically interesting functions of relevance for industrial 
application. A striking example concerns the case of the 
two entries of GH30 subfamily 8 with the same EC num-
ber (EGD48159.1 of CUPP group 27 and AAK76864.1 
of CUPP group 28). In a recent study, St John et al. [29] 
described two proteins both belonging to GH30 subfam-
ily 8 (AAK76864.1 and EGD48159.1), which have a dis-
similar loop region. One of these proteins (EGD48159.1) 
requires α-1,2-linked glucuronic acid for hydrolyses, 
whereas the other (AAK76864.1) can hydrolyze linear 
xylan and has an increased rate of α-1,2-linked arabino-
furanose substitutions [31]. This is an example of the 
ability of CUPP to capture differences in substrate spe-
cificities within this subfamily. Similarly, it was reported 
that peptide-based clustering of GH45 (by PPR) divided 
the protein into groups and captured differences in their 
3D structure [32]. Biochemical activity testing also sup-
ported the distinction of these groups.

Inspection of the dendrogram (Fig.  2) shows that the 
recently created GH30 subfamily 9 is located within sub-
family 3, and this connection also appears in the phy-
logenetic tree (Fig.  3). This could suggest that the new 
GH30 subfamily 9 is possibly a functionally diverse group 
within subfamily 3. Notably, the CUPP clustering could 
have been initiated by clustering each of the available 
subfamilies individually. However, by doing so we would 
have risked missing the inter-subfamily relations, e.g., in 
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the case the relationship between subfamily 9 and some 
of the CUPP groups of subfamily 3. We chose to start 
with the whole protein family and to take a more holistic 
approach that will allow a wider use of CUPP clustering.

In this first published version of the CUPP program, we 
have validated CUPP for use for prediction of all CAZy 
protein families and not only families with published 
subfamily delineation (Fig.  2). CUPP clustering of pro-
tein families may also make it possible to include func-
tional annotation for proteins not yet incorporated in the 
delineated subfamily structure [12, 25, 33]. Placing new 
proteins as members in the CUPP group structure may 
also lead to the tentative proposal of new subfamilies 
(Table 1). However, CUPP grouping based on conserved 
unique peptide patterns alone may not be sufficient input 
for delineation of new subfamilies. Confirmation by the 
CAZy expert validation and curation team will be needed 
for correct subfamily delineation that is robust overtime 
and acceptable to the research community.

From Table 1, based on information from 734 proteins, 
it appears to have been possible to capture the peptide 
pattern diversity of all the 1726 nonredundant GH30 
proteins because almost all proteins were predicted cor-
rectly with an F-score of 0.993 (Additional file  2). The 
average F-score of a CAZy family (0.9657) was lower 
than that reported for GH30. Several examples have 
indicated that part of the issue may lie in the determina-
tion of the exact boundaries of the family domain region 
determined by dbCAN-HMM prior to CUPP cluster-
ing. The performance of the fraction of proteins having 
multimodular domains was lower (F-score 0.888) than 
reported for all CAZymes. However, the similar lower 
performance of dbCAN-HMM (F-score 0.861) indicates 
that both domains could be improved to cope better 
with multimodularity. Due to the outlier threshold of the 
program, it is possible to remove a small branch from a 
family in cases where a branch contains members that 
are both so different from other CUPP groups and also 
so diverse that the members cannot constitute a CUPP 
group on their own. One such group is present in GH30, 
located close to CUPP group 16 (Fig.  2). To include 
these proteins (by forming a new CUPP group), a sec-
ond round of CUPP clustering should be performed with 
additional proteins similar to the lost/underrepresented 
proteins (found in the NCBI database). Alternatively, 
the “full-filtering” parameters during CUPP clustering 
could be reduced to allow formation of a smaller new 
group (3 or more members). For CUPP prediction, the 
default parameters are rather conservative in its annota-
tion (named “full-filtering” in Tables 3 and 4). If there in 
specific cases is a need for also finding remote hits, the 
CUPP parameters can be relaxed (named “fast-filtering” 
in Tables 3 and 4). Fast-filtering, however, may introduce 

a few additional false positives since domain length and 
domain overlap are not considered to the same extent.

The F-score of CUPP prediction (“fast-filtering”) for 
the CAZome family annotation was one percent higher 
than that of dbCAN-HMM and far superior when bench-
marked to dbCAN-Hotpep and dbCAN-Diamond. When 
the three tools included in dbCAN2 were used in com-
bination (minimum of 2 tools agreed), the F-score was 
0.979 which was just below the F-score of CUPP alone 
(0.982). When considering the runtime, CUPP prediction 
runs at about the same speed as the very fast dbCAN-
Diamond tool and is seven times faster than the runt-
ime of the three dbCAN2 tools combined. Notably, the 
CUPP library loading time, upfront, one time only, is 
not included in the time estimations. This omission is 
because the reason for measuring and improving speed 
is to be able to annotate millions of proteins in a short 
time, and in such cases, the initial loading time can be 
neglected. It should be mentioned that the datasets 
selected for this comparison were the CAZomes used 
for parameter optimizations of dbCAN-HMM, dbCAN-
Hotpep, and dbCAN-Diamond. This may give those tools 
an advantage over CUPP which has not been trained on 
these specific CAZomes. The F-scores reported in the 
current work are much higher for all dbCAN2 tools than 
F-scores reported in the dbCAN2 paper, which is a result 
that was potentially caused by the removal of CBMs 
and a few new CAZy families (not included in release 
6) [7]. An additional six CAZy-annotated genomes were 
selected for genomic annotation in the context of non-
CAZyme proteins, and the result was almost the same 
overall F-score as reported for the CAZomes alone. How-
ever, the speed of the full-filtering mode of CUPP was 
increased to almost the same runtime as fast-filtering 
because the majority of the hits did not need any filtering. 
Moreover, when the runtime was compared to the tools 
individually, the speed of CUPP prediction exceeded the 
very fast dbCAN-Diamond [5].

CBMs were not included in the current work and not 
included in the CUPP library because they are consid-
ered to be a very different challenge as regards peptide-
based annotation. The domain regions of CBMs are often 
small regions within much larger proteins, which makes 
clustering with full-length proteins complicated while the 
exact boundaries of the domain are difficult to determine. 
However, when a more curated data foundation (includ-
ing exact boundaries of the domains) is available for all 
CBMs, they will be included in the CUPP library.

Measured in CPU, the computational requirements 
for running CUPP prediction are rather low. Though the 
RAM usage for holding models of all CAZy families is 
high (9  GB RAM), these models can still be accommo-
dated on a modern laptop computer. It is noteworthy 
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with regard to computational annotation of big volume 
protein data that multiple cores can be operated for both 
CUPP clustering and CUPP prediction, which makes the 
method more suitable for large scale usage. Generally, the 
high F-score obtained for CUPP prediction when com-
pared to dbCAN-HMM in the various exemplifications 
(CAZome annotation, genome annotation, annotation of 
all CAZy proteins, and annotation of multimodular pro-
teins for both family and subfamily predictions) estab-
lishes CUPP as a worthy new method for annotation.

If the protein family consists of more than 30,000 non-
redundant/representative proteins, division of the fam-
ily prior to CUPP clustering should be considered. This 
could be relevant for very large and complex families 
such as GT2 [14]. The main reason for large RAM usage 
during clustering is the construction of a distance matrix 
to determine the dissimilarities between each protein 
pair. This step consumes much computational power. 
Alternatively, it would be much faster to just choose one 
protein at random and start the clustering from there. 
Such an approach, however, is likely to introduce a bias 
that causes the first group to be inherently larger and 
thus reduce reproducibility and robustness. Such a clus-
tering method has been applied to obtain the groups 
used by Hotpep [27] and some inconsistencies have been 
reported [34]. Though incremental clustering requires 
additional computational power, the distance between all 
proteins is considered for the CUPP clustering. The auto-
mated clustering approach, which is presented here and 
in the recent work by SACCHARIS, is an advantage for 
coping efficiently with the growing number of CAZymes 
in protein databases. Furthermore, harvesting synergy by 
new, integrated combinations of annotation tools could 
be achieved. CUPP prediction is capable of high perfor-
mance alone. However, as shown by dbCAN2, a syner-
getic effect may be reached by combining several tools 
for even better performance.

Compared to Hotpep, we have improved the algorithm 
(and thus the CUPP method) in the following ways. For 
genome-based annotation, the CUPP prediction has a 
higher F-score and higher speed compared to the ear-
lier peptide-based annotation tool Hotpep. The specific 
improvements are as follows: (1) The clustering of pro-
teins for formation of the protein groups is based on 
five rounds of “all versus all” distance matrix to diminish 
the reported inherent bias toward the initial seed pro-
tein (forming the first group), which was reported to be 
greedy [34]. (2) Ambiguous amino acids have been intro-
duced in the peptides because longer peptide lengths 
increased the overall sensitivity of the CUPP method. 
(3) CUPP identifies the conserved areas of the domain 
regions, which are used for filtering of the predicted 
domains for increased precision of the CUPP method. 

(4). Handling of very large datasets at high speed has 
been achieved by a single, upfront loading of all peptides 
for any number of FASTA files.

Furthermore, several features were added to improve 
usability of CUPP: (1) The approximate range of the 
domain is supplied in CUPP to give a better idea of the 
modularity of the protein. (2) CUPP can specify a query 
file or a folder of files and can operate on them directly as 
gzfiles (no need to unpack). (3) CUPP can also be used on 
bacterial genome DNA using a built-in ORF finder (beta 
version). (4) Among the CUPP outputs is a dendrogram 
that is converted into a Newick tree format together with 
label files to interact with iTOL (drag-and-drop) [35]. 
Regarding possible drawbacks, CUPP has a high RAM 
requirement for annotation, yet this requirement is still 
within the capacity of a modern laptop.

Conclusion
Peptide-based classification was demonstrated to be suc-
cessful for constructing automated protein groups each 
containing conserved unique peptide patterns. The con-
served unique peptide patterns were also demonstrated 
to have enhanced capabilities for subfamily prediction 
compared to the state-of-the-art tool for subfamily anno-
tation, dbCAN-HMM. Furthermore, the CUPP groups 
were used to automatically annotate carbohydrate-active 
enzymes to CUPP groups, protein family, and EC func-
tion. Evidence was provided (exemplified by CUPP pre-
diction of GH30) that CUPP prediction can annotate 
proteins (from any CAZy family) with average F-scores 
for family, subfamily, and EC-functional predictions 
of 0.966, 0.961, and 0.843, respectively. The speed and 
F-score of CUPP were shown to match or improve on 
those of dbCAN2 tools, whether combined or individu-
ally, for both CAZy family and subfamily annotations. 
This achievement is based on the combined results of 
CAZome annotation, genome annotation, annotation of 
all CAZy proteins, and annotation of multimodular pro-
teins for both family and subfamily predictions. The pre-
diction was tested by N-fold cross validation in order also 
to work with proteins having high sequence divergence. 
CUPP facilitates automated annotation of full genome 
assemblies. A completely independent dataset, namely 
family GH5 which served as an unsoiled dataset, was 
selected to enable full validation of the performance of 
CUPP clustering and CUPP prediction. Family GH5 was 
separated into two partitions, and one part (= 90%) was 
used for CUPP clustering and the other part (= 10%) was 
used for CUPP prediction. The resulting family sensitiv-
ity observed was 0.952, whereas the subfamily and EC 
function sensitivity scores were 0.975 and 0.925, respec-
tively. The precisions of subfamily and functional predic-
tions were 0.995 and 0.704, respectively. The new CUPP 
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method was validated through comparative genome-
based annotation benchmarking of CUPP to dbCAN 
family prediction. This provides support for CUPP as a 
step forward toward peptide-based functional annotation 
directly from assembled genomic DNA. More analysis 
and validation are needed before the potential of CUPP 
for automated and efficient annotation of metagenomes 
can be assessed. The prediction of the 504,017 nonre-
dundant proteins of CAZy in less than four CPU hours 
exemplifies the speed of the CUPP program. This result 
demonstrates that a standardized fast approach toward 
functional annotation of carbohydrate-active enzymes 
could facilitate advancement of molecular insight into 
enzyme–substrate interaction. Likewise, the CUPP 
program can be a valuable tool for guiding industrial 
enzyme discovery, optimizing discovery of new types of 
enzymes and finding more enzymes with a specific type 
of function.

Methods
The CUPP program consists of two separate parts. The 
first is responsible for clustering of proteins to create pro-
tein CUPP groups and obtain a peptide pool of conserved 
unique peptides for each CUPP group. The second part 
uses these peptide pools and associated meta-data to 
annotate proteins, e.g., from a genome assembly (Fig. 4).

Representative proteins of family and data acquisition
NCBI GenBank accession numbers, CAZy enzyme family 
relationship, and function/EC numbers were downloaded 
from the CAZy database on 30th of April 2018. The cor-
responding protein sequences were obtained from NCBI 
GenBank along with NCBI taxonomy identifier. Since the 
actual domain region is not available, the family domains 
within each protein sequence were located using dbCAN-
HMM prediction (database release 6) and filtering 
(hmmscan-parser.sh) with e-value cutoff e−3 [27]. Only 
domains of proteins listed by CAZy were included in the 
family collection [12]. Some proteins are overrepresented 
(many proteins from highly studied microorganisms) and 
dilute ·out the information of the underrepresented pro-
teins (less studied species). To diminish this effect during 
clustering, a sequence was selected to represent multiple 
highly similar sequences by CD-HIT with a tolerance of 
90%. This representative sequence received all the meta-
data of all proteins of the high similarity cluster (identi-
cal meta-data strings of identical proteins do not count 
twice). Protein sequences listed as “fragments” by CAZy 
were not considered (Additional file  1: Figure S3). EC 
functions not stated in the “Activities in Family” field in 
the CAZy database are automatically removed from the 
individual entries for the target protein family.

CUPP clustering
The general concept of CUPP clustering is to transform 
the individual protein sequences into their peptides 
and thus obtain a sequence peptide pool (much like the 
bag-of-words model known from text mining where a 
page of text is represented only as the individual words) 
[36]. The sequence peptide pool is used to generate an 
index table of all peptides variants (as strings) found 
in each protein of a CAZy family. Every peptide shares 
the same predefined length (N) and number of ambigu-
ous amino acids (A). Such peptides are constructed 
by a sliding window that moves across the protein in 
steps of one amino acid at a time [5]. For each original 
peptide of length N, all theoretical combinations of A 
ambiguous amino acids are generated to give “N choose 
A” combinations of peptide variants (Fig.  5). Insertion 
of ambiguous amino acids increases CUPP recogni-
tion of conserved peptides also when these have minor 
differences.

Start

Full protein 
sequences

CD-HIT
clusters

dbCAN
domains

CUPP protein
clustering

All proteins 
dendrogram

Protein groups
dendrogram

CUPP group
models

CUPP protein 
prediction

Annotation of CUPP group, family, 
subfamily and EC function for each

protein incl. overall summary

Genomic
sequences

Fig. 4  Flow diagram of the CUPP program. A CAZy protein family 
may be processed as a full-length protein or as the domain region 
alone (identified using dbCAN). A CD-HIT cluster file can be supplied 
which will reduce the number of protein sequences used in 
clustering by selecting one representative sequence for a cluster 
of highly similar sequences. The proteins are clustered based on 
conserved peptides, and for each of the resulting groups, a CUPP 
group is created consisting of the conserved peptides of the group. 
The distance between the individual proteins and the individual 
groups are saved as two separate dendrogram files (and distances 
between the proteins are also saved in Newick tree format for 
interaction with other programs). The CUPP group peptides are used 
in CUPP protein prediction for annotation of CUPP group to the query 
protein. In addition, the CUPP groups associated CAZy family, CAZy 
subfamily and EC function are also annotated to the query protein
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Step‑by‑step description of the CUPP clustering
The final groups of proteins are obtained through mul-
tiple rounds of clustering, where the parameters are ini-
tially set loosely and increased for each of the iterations 
(referred to as incremental clustering). The purpose of 
the incremental clustering is to gradually amplify the 
signal of the conserved unique peptides and to use that 
signal to obtain protein groups that are likely to have 
similar enzyme function (Fig. 6). The CUPP clustering 
procedure is described in detail below (step 1–11):

	 1.	 A sequence peptide pool is created for each protein 
and includes all possible peptides along with the 
observed position in the original sequence.

	 2.	 Peptides found only in a single protein are removed 
from the sequence peptide pool. If any peptide is 

observed more than once in a single protein, that 
peptide is counted only once. In addition, during 
clustering (after the initial round), only peptides 
transferred from the previous round of clustering 
are kept.

	 3.	 Proteins having less than 20 positions covered 
by peptides (in cases where most peptides are 
removed in step 2) are considered outliers and 
disregarded for further clustering. In addition, the 
median of the number of covered positions for the 
proteins of the family is determined, and proteins 
having less than 10% (of the median) are consid-
ered outliers.

	 4.	 The distances between proteins are determined 
in a pairwise manner, and in this way, the posi-
tions covered by conserved peptides (not removed 
in step 2) are obtained for the two target proteins 

Fig. 5  Formation of sequence peptide pool. The amino acids sequence of a protein is reduced to all peptides within a specified length of eight and 
exactly two ambiguous amino acids (In the peptides, ambiguous amino acids are indicated by an X). The window (indicated by the black letters) 
slides across the protein one amino acid at a time. For each position, “eight choose two” peptide variants are generated as strings and added to the 
sequence peptide pool. The black-colored letters of the protein sequence designate the first window (original peptide) from which the 28 peptide 
variants are created

Fig. 6  Flow diagram of incremental clustering indicating peptides shared between sequence peptide pools. Five-step incremental clustering 
where each red ring represents the set of peptides for a protein and the overlapping areas are peptides shared between two or more proteins. 
In the new iteration (indicated by the black arrow), only peptides exceeding a certain threshold of conservation are retained. Increasingly more 
conserved peptides were identified during five rounds of incremental clustering (illustrated as larger overlap between the rings of the Venn 
diagrams)
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individually. The conserved peptides of the two 
target proteins are compared, and the shared con-
served peptides between the two are identified (by 
exact string matching).

	 5.	 The pairwise distances calculated using Eq.  1 (see 
below) are used for construction of a distance 
matrix. The formed distance matrices are subjected 
to agglomerative hierarchical clustering using the 
linkage criteria “Ward” (Python package scipy.clus-
ter.hierarchy.linkage) to obtain a linkage matrix. 
Flat clusters are formed from the linkage matrix 
for formation of protein groups using the criterion 
“Distance” with a threshold at 1 (Python package 
scipy.cluster.hierarchy.fcluster). The linkages can be 
directly visualized as a dendrogram (see Fig. 2).

	

 Eq.  1—the conserved peptides of the two targets 
proteins are compared, and the shared peptides 
are recorded along with the first position of each 
peptide (start positions). To calculate the score, the 
numbers of different start positions of the shared 
peptides in both proteins combined are determined 
(shared_positions). The number of conserved pep-
tide start positions in each of the target proteins 
individually is determined, and the maximum value 
of the two is used to calculate the score (max_posi-
tions). The user-defined (default 9) c_clust (cluster-
ing coefficient) is a positive integer and is used to 
obtain the desired signal amplification. in general, 
the greater the value, the fewer the CUPP groups 
will be formed. The number of conserved peptides 
decreases for each of the iterations during incre-
mental clustering, which forces the dissimilarity 
closer to zero by reducing the denominator due to 
fewer conserved peptides (see illustration, Fig. 7).

	 6.	 Proteins placed in a group having only one mem-
ber (during the initial round the minimum pro-
tein group size = 2) are ignored, and the remaining 
groups are further assessed.

	 7.	 For each of the protein groups, peptides found 
among a minimum of 10% of the proteins (during 
the initial round the peptide conservation = 10%) 
are included as conserved peptides of the protein 
group along with their peptide conservation (the 
conservation corresponds to the abundance of 
target peptide among the protein members of the 
group).

	 8.	 The created protein groups each have their own 
conserved unique peptides, although some of the 

(1)
Scoreij =

(

1−
shared_positions

2 ·max_positions

)c_clust

individual peptides might be shared with a sis-
ter group. However, in cases where the peptides 
(shared by the two protein groups) are also the 
most conserved peptides in each of the groups, the 
separation of the two groups needs to be re-evalu-
ated. To do this, the abundance of each peptide in 
each of the group is determined (peptide conserva-
tion). To determine the dissimilarity between the 
groups, an X times X distance matrix is created, 
where X is the number of groups. Each group is 
compared in a pairwise manner, and two measures 
are calculated: (1) the sum of the peptide conserva-
tion of the shared peptides between two target pro-
tein groups is determined (shared_conservation); 
(2) the peptide conservation of the peptides found 
in each of the two target protein groups individu-
ally is obtained, and the maximum value of the two 
is determined (individual_conservation). The dis-
similarity between two target groups is defined as 
one minus the shared_conservation divided by the 
individual_conservation. This distance matrix is 
subjected to agglomerative hierarchical clustering 
using the “Complete” linkage criteria. Flat clusters 
are formed from the resulting linkage matrix using 
the criterion “Distance” set to have threshold at 0.7.

	 9.	 Steps 2–8 are repeated three times, and for each 
iteration, the minimum protein group size is 
increased by one, and the peptide conservation is 
increased by 10% (Fig.  5). However, for each new 
iteration, only the peptides considered conserved 
in step 7 of the previous iteration are included, 
whereas those not considered conserved are 
ignored. This removal happens in the same way as 
for peptides found only in a single protein during 
the step 2. This repeated operation (incremental 
clustering) proceeds until 40% conserved peptides 
are obtained.

	10.	 Finally, peptides having a conservation of 40% are 
employed in a last round of clustering to obtain 
the unique conserved peptide pattern to be used 
to characterize the final protein groups (mini-
mum default size 5); these groups are called CUPP 
groups.

	11.	 For each of the resulting CUPP groups, the peptide 
conservation of each peptide is determined, and 
those above 20% are retained. To favor the more 
conserved peptides, the peptide conservation of 
each peptide is squared (e.g., a peptide conserva-
tion of 0.2 will be reduced to 0.04, whereas a pep-
tide conservation of 0.9 will be reduced to 0.81). 
In addition, for later annotation, the meta-data 
associated with the included proteins of the CUPP 
groups is remembered.
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CUPP library construction
As described above, the CUPP clustering was con-
structed for each of the CAZy enzyme families. For each 
family the conserved, unique peptide patterns were 
identified which define the peptides of the CUPP group. 
A common index table referred to as a CUPP library is 
created to enable CUPP prediction of genomes with-
out the need to inspect models of each individual family 

separately. Each peptide in the CUPP library along with 
its peptide conservation is associated with the CUPP 
group in which it is found. During compilation of a CUPP 
library, some peptides might be found in several protein 
families. When this is the case, the peptide conservation 
of such peptides is reduced in proportion to the number 
of families in which they occur (Fig. 8). In addition, pep-
tides consisting solely of the abundant aliphatic amino 

Fig. 7  Exemplification of the CUPP clustering dissimilarity score. Determination of the dissimilarity score between two protein domain regions 
during CUPP clustering exemplified as two scenarios: one of high similarity between the two proteins (A and B) and one with a low similarity. The 
thick black horizontal line represents the amino acid sequence of the two target proteins. The conserved peptides found in protein A are indicated 
individually by the short red line above the protein. Similarly, beneath protein B, the presence of conserved peptides of protein B is shown as 
short blue lines. The subset of conserved peptides found in both protein A and protein B is represented by the short black lines between the two 
proteins. To determine the dissimilarity, the number of different positions covered by the conserved peptides is determined for each of the three 
colors of peptides indicated by the numbers (blue, red, and black). The dissimilarity score equals one minus the number of black peptide start 
positions divided by two times the maximum of the number of peptide start positions of the red or the blue peptides
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acids or proline are banned from the CUPP library to 
avoid a bias toward linkers and polyproline regions [37].

CUPP group prediction
Each protein is processed individually as described below 
(see also flow diagram—Additional file 1: Figure S3):

1.	 All peptides of the query sequence are obtained using 
the sliding window principle, including ambiguous 
amino acids, as previously described (Fig.  4). Each 
peptide found in the CUPP library is recorded along 
with its associated CUPP group name and its peptide 
conservation.

2.	 Two measures are calculated to determine if any 
CUPP group is found to be associated with the query 
protein. First, the sum of peptide conservation of the 
peptides shared between the query protein sequence 
and the CUPP group peptides needs to be at least 
five. Second, the sum of peptide conservation needs 
to be at least one percent of the theoretical maxi-
mum sum of peptide conservation of the peptides 
in the given CUPP group. In cases were one peptide 
is found twice in the same protein, it will count only 
once during the initial filtering. For fast-filtering, 
steps 3, 4, and 5 are left out, but peptides from eight 
different positions must always be present. For full-
filtering, all steps are included in the analysis.

3.	 Each peptide associated with a given CUPP group 
is mapped to the protein sequence. The positions 
covered by exact string matching receive a position-
specific score, corresponding to the peptide conser-
vation of the current peptide. This results in a list 
of equal length to that of the protein sequence, and 
each position is the sum of peptide conservations of 
covering peptides (referred to as the list of accumu-
lated peptide conservations). At least 20 positions 
(minimum domain length) of the list of accumulated 
peptide conservations need to be above 0.2 to be a 
valid prediction using full-filtering mode. For range 
determination, peptides found more than once count 

equally to detect, e.g., tandem repeats of exactly iden-
tical domains that are present in a single protein.

4.	 If more than one CUPP group remains, the cov-
ered lists of accumulated peptide conservation are 
inspected (by the program) for each group to see if 
they overlap. The group having the highest percent-
age of the theoretically maximum sum of peptide 
conservation is processed first and will be assigned to 
the protein. The covered positions of the first domain 
are recorded in a list of occupied positions along with 
the value of the position. A potential second domain 
will be assigned to the protein in cases where at 
least 50% of the sum of peptide conservation of the 
new domain is not already occupied by previously 
assigned domains.

5.	 The approximate range of each CUPP group is deter-
mined by inspection of the list (explained in step 
3). Gaps below a threshold are considered as the 
same domain, whereas gaps larger than the thresh-
old are considered as two separate domains (indi-
cated by two ranges, e.g., GH30:1.1 (score, 90.0.190; 
400.0.500)). The threshold is determined by the aver-
age number of included positions in the CUPP group 
(recorded during the final round of clustering) with a 
minimum of 50 and maximum of 200 amino acids.

6.	 The query protein will be annotated to the CUPP 
group(s) found. In addition, the query protein is 
assigned to the associated CAZy family, CAZy sub-
family, and EC function of the predicted CUPP 
group(s). EC function and CUPP group are only 
assigned during full-filtering mode, whereas for 
fast-filtering, the general double zero-group will be 
assigned, e.g., GH30.0.0. However, for the query 
protein to be assigned to a subfamily, a CUPP group 
needs to have at least three members of the same 
subfamily. The full-filtering mode of CUPP predic-
tion will only assign the predicted CUPP group (and 
the EC function of the CUPP group) to a query pro-
tein if at least five percent of the theoretical maxi-
mum sum of peptide conservation of the given CUPP 

Fig. 8  Compilation of the CUPP library in which CUPP group peptides are merged. The peptides of CUPP groups from all CAZy protein families 
were compiled into one CUPP library that was used as a look-up dictionary facilitating faster protein annotation
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group is achieved. If this criterion cannot be fulfilled, 
the protein will be assigned to a CUPP group zero 
dot one which indicates that the protein belongs in 
the family but not in any of the current CUPP groups 
(e.g., GH30.0.1). Furthermore, if two CUPP groups 
are assigned to a protein in the same range, the 
domain is denoted zero dot two for simplicity (e.g., 
GH30.0.2) (this simplifying operation can be over-
written by beta option “complex”).

CUPP validation and benchmarking
N-fold cross validation was conducted by dividing the 
GH30 CAZy family into ten parts and using nine parts 
for clustering and one part for prediction to initiate 10% 
new proteins (repeating ten times until all parts have 
been left out). The proteins of the ten partitions may have 
up to 70% CD-HIT sequence identity. Each partition was 
created using CD-HIT clustering of 70% and adding one 
high similarity protein cluster at a time until a minimum 
of 10% of the total proteins was found in the partition, or 
until all proteins were distributed (starting with the larg-
est cluster). For N-fold cross validation, prediction counts 
as correct in the cases where all similar EC functions are 
removed and the function is predicted to be unknown.

Online Multiple Alignment using a Fast Fourier Trans-
form (MAFFT) server was used for multiple sequence 
alignment [38]. A phylogenetic tree was created from 
the multiple alignments using CIPRES and the RAxM-
Lblackbox model with substitution matrix LG [39]. The 
resulting tree was further treated with labels using the 
Interactive Tree of Life (iTOL) web server for graphi-
cal interface [35]. For genome comparison, the dbCAN2 
webserver was used with default settings for dbCAN-
HMM, dbCAN-Diamond, and dbCAN-Hotpep [7]. 
The runtime calculations for dbCAN-HMM, dbCAN-
Diamond, dbCAN-Hotpep, and CUPP were set up in a 
Linux environment using an Intel® Xeon® CPU E5-1660 
v4 @ 3.2 GHz computer. Families not included in the 6th 
release of dbCAN or not included in CUPP (namely AA0, 
AA14, AA15, CE0, CE10, GH0, GH146, GH147, GH148, 
GH149, GH150, GH151, GH152, GH153, GT0, GT105, 
GT106, PL0, PL28, cohesion, and SLH) were ignored for 
all benchmark tools along with CBMs. HMMER3 soft-
ware was used with dbCAN-HMM release V6 for deter-
mination of domains used for CUPP clustering. However, 
for benchmarking of family and subfamily annotation of 
GH30 and CAZomes annotation, the newly released V7 
was applied [4, 12, 40].

For CAZome annotation, the protein sequences of 
the accession numbers listed in the CAZy database for 
the respective strains were downloaded from NCBI. 
For six genomes (including the CAZome annotations), 

the protein sequences were merged with the pro-
tein sequences of the respective strain from the NCBI 
assembly protein list. However, the accession num-
bers did not match. To achieve merging, CD-HIT 
clustering with a similarity of 99% was used. All pro-
teins of a group having a CAZyme were assigned to its 
CAZy family, and the protein from the CAZome was 
deleted. The protein family named CE10 was ignored 
from dbCAN predictions, since CAZy no longer sup-
ports this delineation. For GH5, the family was divided 
into two datasets, and one part was used for cluster-
ing (90%) and the other part was used for prediction 
(10%) in the same way as the first partition of N-fold 
cross validation of GH30. Sensitivity is defined by the 
number of true positives divided by the number of total 
CAZy families found in the protein. Precision is defined 
as the number of true positives divided by the sum of 
true positives and false positives. The F-score is defined 
as the two times precision times sensitivity divided by 
the sum of precision and sensitivity.

Additional files

Additional file 1: Figure S1. Selection of c_clust and peptide parameters. 
Figure S2. N-fold cross validation of GH30. Figure S3 CUPP flowchart. 
Table S1 Relative RAM requirements as a function of peptide length and 
number of ambiguos positions. Table S2 GH30 CUPP group validation. 
Table S3. N-fold cross validation of GH30 using ten partitions.

Additional file 2. Performance of CUPP prediction for each CAZy family.
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