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Abstract 

Background:  Clostridium thermocellum is a Gram-positive anaerobe with the ability to hydrolyze and metabolize 
cellulose into biofuels such as ethanol, making it an attractive candidate for consolidated bioprocessing (CBP). At 
present, metabolic engineering in C. thermocellum is hindered due to the incomplete description of its metabolic rep-
ertoire and regulation within a predictive metabolic model. Genome-scale metabolic (GSM) models augmented with 
kinetic models of metabolism have been shown to be effective at recapitulating perturbed metabolic phenotypes.

Results:  In this effort, we first update a second-generation genome-scale metabolic model (iCth446) for C. thermocel-
lum by correcting cofactor dependencies, restoring elemental and charge balances, and updating GAM and NGAM 
values to improve phenotype predictions. The iCth446 model is next used as a scaffold to develop a core kinetic 
model (k-ctherm118) of the C. thermocellum central metabolism using the Ensemble Modeling (EM) paradigm. Model 
parameterization is carried out by simultaneously imposing fermentation yield data in lactate, malate, acetate, and 
hydrogen production pathways for 19 measured metabolites spanning a library of 19 distinct single and multiple 
gene knockout mutants along with 18 intracellular metabolite concentration data for a Δgldh mutant and ten experi-
mentally measured Michaelis–Menten kinetic parameters.

Conclusions:  The k-ctherm118 model captures significant metabolic changes caused by (1) nitrogen limitation 
leading to increased yields for lactate, pyruvate, and amino acids, and (2) ethanol stress causing an increase in intra-
cellular sugar phosphate concentrations (~1.5-fold) due to upregulation of cofactor pools. Robustness analysis of 
k-ctherm118 alludes to the presence of a secondary activity of ketol-acid reductoisomerase and possible regulation 
by valine and/or leucine pool levels. In addition, cross-validation and robustness analysis allude to missing elements 
in k-ctherm118 and suggest additional experiments to improve kinetic model prediction fidelity. Overall, the study 
quantitatively assesses the advantages of EM-based kinetic modeling towards improved prediction of C. thermocellum 
metabolism and develops a predictive kinetic model which can be used to design biofuel-overproducing strains.
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limitation, Ethanol stress
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Background
Cellulose is the most abundant carbon source avail-
able on earth and constitutes the primary food source of 
several species [1]. Producing biofuel from cellulose has 

been proposed as a promising strategy to help us reduce 
our dependency on fossil fuel [2]. However, utilization 
of cellulose as an industrial carbon source has been hin-
dered by the high processing costs associated with over-
coming recalcitrance [1]. A cost-effective strategy to deal 
with recalcitrance is the use of a microbe or a consor-
tium, which can simultaneously break down cellulose 
and ferment the released sugars, known as consolidated 
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bioprocessing (CBP) [3]. C. thermocellum is an anaerobic 
Gram-positive bacterium, having an extracellular enzyme 
complex, the cellulosome [4], capable of breaking down 
cellulose into carbohydrates such as cellobiose and cel-
lodextrins [5]. The produced carbohydrates can then be 
fermented into several products such as ethanol and ace-
tate [6]. The simultaneous presence of these two capabili-
ties makes C. thermocellum a promising CBP candidate 
[1]. In order to successfully deploy C. thermocellum for 
converting cellulosic substrates to a desired biochemical, 
a detailed understanding of its metabolism and underly-
ing regulatory networks which control the carbon flow 
towards competing fermentation products such as ace-
tate, lactate, and amino acids [7] is needed. Kinetic mod-
els have the potential to address these requirements by 
providing a mechanistic description of cellular metabo-
lism capable of combining several layers of regulatory 
events into an integrated framework [8].

An earlier kinetic model of C. thermocellum included a 
simplified Monod-based model with four ordinary differ-
ential equations (ODE) to describe growth rate, cellobi-
ose, ethanol, and acetate production rates [9]. The model 
was used to compare the toxic effects of Populus hydro-
lysate on the wild-type and Populus hydrolysate-tolerant 
C. thermocellum strain [9]. While this model was able to 
explain the effect of carbon source on growth rate, it was 
limited in terms of metabolism coverage. Several kinetic 
models of C. thermocellum [10–12] have also been put 
forth to identify key inhibitory metabolites that limit cel-
lulosome activity. For example, the inhibitory effect of 
glucose was analyzed by modeling only the kinetics of 
reactions accounting for cellulosome metabolism [11]. 
The model was parameterized with measured cellulose 
hydrolysis rate and glucose concentration but without 
accounting for fermentation products. Consequently, 
key metabolic drivers that underpin the production of 
desired chemicals in C. thermocellum remained unex-
plored. Construction of predictive kinetic models of C. 
thermocellum is still plagued by a number of challenges 
chief among which are a lack of multiple concentration 
and/or flux datasets of perturbed mutants for unbiased 
model parameterization.

In general, the underlying stoichiometric description of 
the metabolic network on which the kinetic model is built 
is retrieved from a GSM model. The first C. thermocellum 
GSM model (iSR432) was constructed by Roberts et  al. 
[13] spanning 432 genes, 577 reactions, and 525 intracel-
lular metabolites. This model has been used in metabolic 
engineering efforts [14] to identify knockout strategies 
leading to the overproduction of several biochemicals 
[14, 15]. Unique cofactor requirements in C. thermocel-
lum for several key glycolytic enzymes [16] and elemen-
tal/charge imbalances [17] were addressed in a recently 

published core metabolic network (iATcore: 53 metabo-
lites and 59 reactions) of C. thermocellum [18]. Thomp-
son et al. advanced the scope of iATcore by constructing 
an expanded GSM (iAT601) model containing 601 genes, 
872 reactions, and 904 intracellular metabolites [19]. 
However, in iAT601 some reactions were associated with 
unreviewed genes (based on the UniPROT database) 
[19], resulting in the formation of thermodynamically 
infeasible cycles that allow reactions to carry unbounded 
metabolic flux with no energy cost [20, 21]. Further, none 
of the existing models account for the reversibility of key 
central metabolism enzymes phosphoenolpyruvate car-
boxykinase (PEPCK) and malic enzyme (ME) which was 
recently observed experimentally [16, 22]. In addition, 
the growth-associated maintenance (GAM) value was 
overestimated in the iSR432 model and underestimated 
in the iAT601 model which led to incorrect growth rate 
predictions under Δack conditions [23]. Overestimated 
GAM value (iSR432) reduces growth rate significantly 
because of its dependence on acetate pathway to produce 
energy (ATP), whereas an underestimated GAM value 
(iAT601) does not affect growth rate because the acetate 
pathway is no longer necessary to meet energy require-
ments for growth. Thus, incorrect GAM value leads to 
erroneous predictions due to the close interplay between 
energy demand and carbon flux distribution in fermenta-
tive pathways.

In this study, we compare and contrast stoichiometric 
and kinetic model predictions for nitrogen-limited and 
ethanol-stressed C. thermocellum metabolism informed 
by fermentation data for 19 C. thermocellum mutants. 
Results indicate that the incorporation of kinetic descrip-
tions to stoichiometric models increases prediction 
fidelity.

Results and discussion
Genome‑scale model comparison and testing
The updated GSM model for C. thermocellum (iCth446) 
contains 446 genes and includes 598 metabolites and 637 
reactions along with gene–protein–reaction (GPR) asso-
ciations (see Table 1). iCth446 resolves 150 elemental and 
charge balance inconsistencies present in iSR432 [13] 
due to imported reactions from KEGG database [17]. 
Specifically, iCth446 contains an updated pentose phos-
phate (PP) pathway where the transaldolase was absent 
and instead replaced by pyrophosphate (ppi)-dependent 

Table 1  Model statistics comparison of GSMs

Model statistics iSR432 [13] iAT601 [19] iCth446

Genes 432 601 446

Reactions 612 872 660

Metabolites 572 904 599
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phosphofructokinase (PFK) and aldolase as observed in 
phylogenetically close anaerobic thermophile Clostrid-
ium stercorarium [24]. C. thermocellum lacks a standard 
acetyl-carboxylase, and thus iCth446 recruits a putative 
transcarboxylase (Clo1313_1523-Clo1313_1526) for mal-
onyl-CoA formation [25]. C. thermocellum also lacks a 
functional formate dehydrogenase (FDH) [26], and thus 
FDH was removed from iCth446. The model iCth446 
also contains NADPH-linked ketopantoate reductase for 
pantothenate synthesis (as observed in Corynebacterium 
glutamicum [27]) based on experimental observations 
of pantothenate production [28]. In addition, iCth446 
resolved several reaction cofactor preferences (see Fig. 1) 
in the central metabolism based on recent experimental 
evidence [16]. For example, PFK uses ppi instead of ATP 
for the phosphorylation of fructose-6-phosphate (f6p) in 
the preparatory phase of glycolysis [16]. Likewise, hexoki-
nase (HEX1) uses GTP instead of ATP, phosphoglycerate 
kinase (PGK) uses both GTP and ATP, and malic enzyme 
(ME) uses NADP instead of NAD [16]. Reaction cofactor 

corrections are consequential as they directly affect the 
cofactors’ pool sizes and thereby the rate of the associ-
ated reactions [29, 30]. ME and PEPCK were also allowed 
to operate reversibly in iCth446 in accordance with 
experimental evidence [16, 22]. Note that all updated 
reactions represent the key glycolytic steps that control 
the flux towards terminal fermentation products.

In addition to reaction-specific changes, the value of 
GAM was reduced from 150  mmol ATP/gDCW/h [13] 
to 40 mmol ATP/gDCW/h based on the assumed GAM 
value in GSM models of phylogenetically close organ-
isms such as C. cellulolyticum and C. acetobutylicum [31, 
32]. While this change did not alter the model’s ability 
to predict experimentally measured wild-type biomass 
yield [33], it affected the flux distribution in several fer-
mentation pathways. The high GAM value in iSR432 
necessitated a very high flux through the ATP-generating 
acetate production pathway precluding the formation of 
other fermentation products in contrast to experimental 
evidence [33]. Reduction of the GAM value in iCth446 

Fig. 1  Summary of modifications in the iCth446 GSM model after updating it from the previous iSR432 reconstruction. Updated reactions in 
iCth446: The cofactors highlighted in green (in reactions HEX1, PFK, PGK, and ME) were added in the model and those in red (for reactions HEX1, 
PFK, and ME) were removed. In addition, reactions ME and PEPCK were made reversible. Dashed lines in gray indicate an example of thermody-
namically infeasible cycle of three reactions (ODC, MDH, and ME). The cycle was resolved by removing ODC. NFN was added to the model to allow 
electron transfer between reducing equivalents. The values alongside the reactions are their FBA-predicted fluxes (in mmol/gDW/h) consistent with 
the wild-type experimental cellobiose uptake and growth rates [65]
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allows for the production of all fermentation products 
including ethanol consistent with experimental obser-
vations [33] (see Fig. 1). iCth446 accurately predicts the 
range of ethanol and acetate production only upon the 
addition of an NADH-dependent reduced ferredoxin 
NADP oxidoreductase (NFN) [34]. NFN reaction along 
with the bifurcating hydrogenases is integral to C. ther-
mocellum’s energy metabolism for transferring electrons 
from ferredoxin and NADH to NADPH [34].

The non-growth-associated maintenance (NGAM) 
value, absent in iSR432, was set to 2.2  mmol ATP/
gDCW/h based on an experimentally reported NGAM 
value for C. thermocellum growing on cellobiose [35]. 
In addition, iCth446 was manually curated to eliminate 
all thermodynamically infeasible cycles. All the infeasi-
ble cycles were eliminated either by removing the reac-
tions from the model (five reactions) or by restricting 
their directionality (six reactions) based on literature 
evidence [16] (see Additional file  2 for a complete list 
of cycles). As an example, the reactions catalyzed by 
oxaloacetate decarboxylase (ODC), malate dehydro-
genase (MDH), and malic enzyme (ME) formed a ther-
modynamically infeasible cycle. ODC was inactivated in 
the model to resolve this thermodynamically infeasible 
cycle as the enzyme activity for ODC was not detected in 
the wild-type strain [36] (see Fig. 1). While the removal 
of the thermodynamically infeasible cycles did not spe-
cifically affect growth rates or product yields, they miti-
gate modeling challenges faced in the implementation of 
strain design protocols, such as OptForce [37]. Contrary 
to iSR432, iCth446 was able to predict the production 
of proline and lactate secretion based on experimental 
fermentation data [38]. This is due to the reduction of 
the GAM value and modification of the sodium sym-
port (iSR432 lacked sodium ion importer) to a proton 
symport for the metabolite transporters as reported for 
related clostridia (see Fig. 1) [39, 40].

The predictive capability of iCth446 was contrasted 
against iSR432 for a few designed mutants. First, a 
three-locus metabolic engineering intervention [41] 
[i.e., knockout of malic enzyme (me) and lactate dehy-
drogenase (ldh), and the addition of an exogenous pyru-
vate kinase (pyk)] was simulated to compare ethanol 
and growth yield predictions with experimental data. 
Model iCth446 predicted a twofold reduction (from 
0.23 to 0.12 h−1) for biomass and an approximately 30% 
increase (from 1.57 to 2.07  mol/mol cellobiose) for the 
maximum ethanol yield. The predicted feasible yield 
ranges for ethanol encompassed the experimental yield 
values [41]. In contrast, as discussed previously, iSR432 
must route all available flux towards the ATP-generating 
acetate pathway to meet the imposed GAM require-
ment, thus preventing any ethanol production. In a more 

comprehensive evaluation, both GSM models were tested 
using fermentation data for 19 different C. thermocellum 
mutant strains with mutations in the lactate, malate, ace-
tate, and hydrogen production pathways (see Fig. 2). This 
dataset includes the measured final extracellular concen-
trations of various fermentation products such as ace-
tate, lactate, formate, ethanol, hydrogen, carbon dioxide, 
amino acids, and cellobiose for batch cultures grown in 
MTC medium (19 measured concentrations per mutant). 
The comparison revealed that as expected iSR432 signifi-
cantly under-predicts fermentation product yields even 
after the inclusion of missing transporters and exchange 
reactions for several metabolites [33].

Measured yields for fermentation products were in 
general within the predicted feasible ranges of iCth446. 
Figure  2 summarizes the ethanol yield prediction while 
restricting all the remaining metabolite yields to the 
experimental ranges [33]. We note that the predicted 
wide ranges of ethanol flux/yield (i.e., mutants 1, 4–6, 
12, 15, 16, 18, and 19) were due to the wide confidence 
ranges in their experimental measurements, particularly 
for cellobiose uptake, amino acids, and fermentation 
products (i.e., an average 50% error in measurement). 
The high experimental error can be attributed to the 
presence of secondary mutations which are unaccounted 
for in the various strains (see Table  3) pooled together 
for this study. This error can be resolved by analyzing 
the sequences of all the pooled strains to ensure that all 
mutations are accounted for and that different geno-
types are not pooled together. iCth446 predictions also 
confirm that ethanol becomes the major carbon and 
redox-regenerating sink for the majority of mutants (i.e., 
mutants 2–4, 7–11, 13–16, 18, and 19). In contrast, for 
mutants with no or low accuracy in experimental meas-
urements for exported metabolites, ethanol production 
essentiality (e.g., mutants 1, 5, 6, 12, and 17) cannot be 
established. iCth446 predictions also pinpointed mutants 
with mass-imbalanced experimental measurements (i.e., 
mutants 4, 7, 9, and 13) where the measured ranges do 
not fall within the solution space in the model. The excess 
carbon was accounted for in some cases (i.e., mutant 9) 
by hypothesizing fumarate production, which was not 
experimentally measured.

Model iCth446, however, could not predict flux redi-
rections when specific regulatory events, and not sim-
ple stoichiometry, controlled flux redistribution. For 
example, limiting nitrogen source in the media has been 
shown to increase the secretion of pyruvate, lactate, and 
amino acids (EK Holwerda and LR Lynd, unpublished 
data). A stoichiometric model, however, will only be able 
to capture the stoichiometric effect of nitrogen leading 
to simply a proportional reduction in the production 
of amino acids but no effect on fermentation products. 
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Thus, upon restricting the ammonia uptake flux (by 
downregulating its enzyme level to 10–90% of the wild-
type level), iCth446 did not predict any increase in amino 
acid production. Instead, the amount of amino acid pro-
duction was reduced in proportion to the availability of 
nitrogen (see Fig.  3). System-level responses governed 
by regulation, metabolite/cofactor pools, and limitation 
of pathway throughput due to enzyme activity and level 
limitations motivated the need to build a kinetic model 
which can capture perturbations in cytosolic concen-
trations and account for metabolic flux redirection in 
response to them.

Core kinetic model: k‑ctherm118
We used iCth446 as the basis to construct a core meta-
bolic model of C. thermocellum’s central metabolism. We 
limited our coverage to a core model due to the nature 
of the available measurements and mutant datasets. The 
model contains 118 reactions and 93 metabolites with 

cellobiose as the sole carbon source under anaerobic res-
piration. It captures all the major biomass precursors, 
cellobiose degradation pathway, glycolysis/gluconeogen-
esis, PP pathway, TCA cycle, major pyruvate metabolism 
and anaplerotic reactions, alternative carbon metabolism, 
and nucleotide salvage pathway (see Fig. 4). We extracted 
22 substrate-level regulatory interactions from BRENDA 
[42] associated with the genus Clostridia (see Additional 
file 3). The EM procedure [43] was subsequently used to 
estimate the kinetic parameters for the reactions in the 
core model using 21 experimental datasets which include 
metabolite yields in 19 mutant strains (see Fig. 2), intra-
cellular metabolite concentrations for Δgldh mutant 
(Table 2) (D Amador-Noguez, unpublished data), and ten 
experimentally measured kinetic parameters (Table  3) 
as training datasets (see “Methods”). The trained kinetic 
model, k-ctherm118, had an average relative error of 40% 
in the prediction of flux distributions towards the train-
ing phenotype data while also being consistent with the 

Fig. 2  List of 19 fermentation mutants [36]. The figure shows the corresponding gene knockout (X), downregulation (↓), or upregulation (↑) fol-
lowed by a comparison of ethanol yield ranges predicted by the GSM and the kinetic model with the experimentally reported values. The iCth446 
predictions were performed by restricting all the metabolite yields to their measured ranges except for ethanol. Table 3 enumerates the strains 
associated with specific mutants
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wild-type flux distribution (see “Methods” for details of 
error estimation). Note that for 10 out of 19 mutants, 
ethanol production flux was predicted with less than 
20% error (see Fig. 2). However, ethanol production pre-
diction for strains with pyruvate ferredoxin oxidoreduc-
tase (pfor), malic enzyme (me), and hydrogenase (hydG) 
knockouts was divergent. Analysis of the flux predictions 
for these mutants showed that PFOR, malate shunt, and 
hydrogenase are the major flux-carrying pathways in 
wild-type as well as in many other mutants (see Fig. 2). 
Therefore, upon their knockout, these pathways are 
replaced with new routes such as pyruvate kinase (PYK) 
which is devoid of any flux information in the training 
datasets leading to insufficiently characterized kinetic 
parameters. While the error in concentration predictions 
by k-ctherm118 was around 40%, the kinetic parameter 
prediction errors were much higher (76%), which alludes 
to missing secondary activity [44] in the core model’s 
description of the PP pathway as well as the lack of train-
ing data with mutations in the PP pathway.

Statistical significance of the estimated parameters using a 
cross‑validation analysis
We first performed a leave-one-out cross-validation test 
[43] to assess the robustness of the estimated model 
parameters. In each cross-validation test, a single data-
set was excluded from the training dataset and the con-
structed kinetic model was then used to predict the fluxes 
of the excluded mutant. In all the 20 mutant strains, the 
reactions catalyzed by the perturbed enzymes are located 
in proximity to pyruvate metabolizing pathways, thereby 
the remaining mutant datasets appear to provide flux 
information backup during model parameterization. 
With the exception of two mutants (i.e., mutant 13 and 
17), the results revealed that the reduction in the model 
prediction accuracy was within 10% for all mutant cross-
validation tests implying robust model parameterization 

even upon exclusion of mutant datasets (see Fig. 5). These 
two mutants have unique phenotypes non-replicated in 
any other ones rendering their flux dataset information 
essential for a robust parameterization. For example, the 
two mutants (i.e., mutants 13 and 17) had mutations in 
major flux-carrying pathways with the alternate path-
ways being not well characterized in any of the remain-
ing training datasets. These include mutant 13 involving 
the me knockout and mutant 17 with the pfor knockout. 
Dataset 21 contained experimentally measured kinetic 
parameters in pathways distal to the mutations in the 
remaining datasets making them unique and essen-
tial during model training. This demonstrates both the 
power of kinetic models in translating information from 
experimental datasets into accurate kinetic expression 
parameterization but also their susceptibility to errone-
ous prediction whenever knowledge of how the network 
responds to a unique perturbation is lacking. Integration 
of additional flux datasets representing similar metabolic 
phenotypes along with accurate regulatory information is 
required to achieve a robust model parameterization.

Effect of nitrogen limitation on model‑predicted 
phenotype
k-ctherm118 was next tasked with predicting flux 
changes in C. thermocellum metabolism under nitro-
gen-limiting conditions which as seen earlier was 
beyond the scope of a GSM model. Nitrogen limita-
tion was simulated in the kinetic model by reducing the 
total enzyme level (ẽtot) of the ammonium transporter 
[EXCH_nh4(e)] in successive steps of 10% reduction in 
the wild-type enzyme activity (i.e., 0.9 ẽtot, 0.8 ẽtot, 0.7 
ẽtot). k-ctherm118 showed maximum changes in yield 
predictions for simulation with 20% ammonium trans-
porter enzyme activity. The model recapitulated the 
experimental observation that the reduction in nitro-
gen availability reduces the activity of fermentation 

Fig. 3  Impact of limiting nitrogen source in the media on C. thermocellum metabolism. The iCth446 simulations were performed by restricting the 
ammonia uptake flux to 20% of its wild-type value and maximizing the yield of specific metabolites one at a time
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pathways and reroutes additional flux towards amino 
acid production (EK Holwerda and LR Lynd, unpub-
lished data). Reduction of EXCH_nh4(e) enzyme activ-
ity causes a (0.5-fold) reduction in ammonium uptake 

flux. This reduction in ammonium downregulates the 
only ammonium-consuming glutamate dehydrogenase 
(GLUDy) reaction (from 1.1 to 0.59  mol/mol cellobi-
ose) along with the associated cofactor conversion from 

Fig. 4  Core metabolic map of C. thermocellum. The arrows in orange represent the extracellular metabolites, the concentrations and molar yields of 
which were experimentally measured
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NADPH to NADP. Subsequently, NADPH accumulation 
causes product inhibition of ME1 and downregulates 
the transhydrogenase activity of malate shunt resulting 
in a 2.02-fold build-up of NADH pool. NADH as well as 
α-ketoglutarate accumulation downregulates serine pro-
duction due to strong product inhibition. Finally, higher 
NADH levels also inhibit ethanol production (from 1.26 
to 1.14  mol/mol cellobiose) due to substrate-level inhi-
bition [45] of the acetaldehyde dehydrogenase (ALCDH) 
reaction (see Fig. 6a). This downregulation of serine and 
ethanol production led to upregulation of the competing 
amino acid pathways and pyruvate secretion not only to 
maintain overall stoichiometric balance but also to alle-
viate redox imbalance.

The k-ctherm118 predictions for glutamate, lactate, 
and ethanol yields are consistent with experimental 
measurements (see Fig.  6b) though significant experi-
mental uncertainty precludes more quantitative com-
parisons. k-ctherm118 overestimated the fumarate yield 
and underestimated the increase in pyruvate and valine 
yields (see Fig. 6b). However, k-ctherm118 failed to cap-
ture the increase in leucine production (see Fig. 6b). This 
indicates a discrepancy between our model assumptions 
and in vivo metabolic regulations which can be resolved 
by targeted experiments to elucidate the underlying regu-
latory interactions in amino acid synthesis pathways. For 
example, the reduced leucine yield prediction alludes to 
the presence in C. thermocellum of NADH-independent 
activities towards leucine directly from isovalerate as 
observed in other organisms [46] that decouple the bio-
synthetic pathway from NADH metabolism. Overall, in 
the case of nitrogen limitation k-ctherm118 was able to 
capture significant system-wide flux redirections driven 
by substrate-level regulation and rebalancing of cofac-
tor pools. These predictions include increased pools of 
pentose phosphate pathway metabolites due to feedback 
from f6p accumulation which has also been observed in 
other organisms [47, 48].

Effect of ethanol stress on wild‑type C. thermocellum
The metabolic impact of ethanol stress on C. thermocel-
lum phenotype and its underlying mechanism was stud-
ied using k-ctherm118. There are several experimental 
studies that show that ethanol stress limits maximum 
ethanol titer in wild-type C. thermocellum [21, 49]. This 
inhibition can be partially resolved through adaptive evo-
lution [49]. Experimental data have shown that a high 
ethanol concentration in the external environment leads 
to the accumulation of sugar phosphates [50]. While pro-
teomic analyses of the ethanol-stressed phenotype have 
revealed perturbations in several pyruvate metabolizing 
pathways [50], no direct connection with sugar phosphate 
accumulation has been established. The ethanol stress 
on C. thermocellum was simulated in k-ctherm118 by 
modifying the enzyme levels of the key altered reactions 
in proportion to their proteomic fold changes [50] (see 
Fig. 7a). The key downregulated reactions were 2-aceto-
2-hydroxybutanoate synthase (ACHBS), acetolactate syn-
thase (ACLS), and aspartate transaminase (ASPTA) by 
38%, while a few amino acid synthesis pathways such as 
isopropyl malate synthase (IPPS) and aspartate semial-
dehyde dehydrogenase (ASAD) were upregulated by 140 
and 80%, respectively. The proteomic data also showed 
upregulation of diphosphate- and phosphate-generating 
reactions (such as histidyl-tRNA synthase (HISTRS) and 
glutamine synthase (GLNS) which were not included in 
the core model, details in Additional file  3). This effect 

Table 2  List of mutants and the associated strain numbers

Mutant # Strain #

1 LL1010, LL1112

2 LL1036, LL372

3 LL1041, LL373

4 LL1011, LL1042, LL1044, LL374, LL375, LL1043

5 LL1066

6 LL1038, LL1067

7 LL1083

8 LL1084

9 LL1085

10 LL1086

11 LL1087

12 LL1111

13 LL1113, LL1137

14 LL1114

15 LL1147

16 LL1148, LL1149

17 LL1224

18 LL345, LL376

19 LL350

20 AG1327

Table 3  Experimentally measured kinetic parameters 
(data ± standard deviation) (R Sparling, unpublished data; 
[42])

Enzyme Substrate Km [mM] kcat [1/s]

PGI d-Glucose 6-phosphate 1.92 ± 0.57 1637.50 ± 798.25

PGMT alpha-d-Glucose 1-phos-
phate

0.41 ± 0.04 190 ± 19

HK GTP 0.43 ± 0.04

PFK ppi 0.23 ± 0.02 30.14 ± 3.01

PGK gtp 0.25 ± 0.02

RPI Ribose-5-phosphate 17 ± 1.7 51998 ± 5199.8
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was simulated in the model by increasing the diphos-
phate and phosphate pool sizes by 670 and 730% propor-
tional to the upregulated reactions, respectively.

Following the perturbations, k-ctherm118 showed 
elevated levels of upper glycolytic metabolites such as 
fructose-6-phosphate (f6p) and glucose-6-phosphate 
(g6p) recapitulating experimental observations (see 
Fig. 7b). The mechanism for this effect was primarily due 
to an increase in the diphosphate and phosphate pools, 
consequently increasing the glycolytic flux activity. This 
leads to an increase in pool size of all glycolytic metabo-
lites from cellobiose (1.09-fold) to pyruvate (1.05-fold). 
Therefore, k-ctherm118 was able to capture the regula-
tory effect induced by ethanol stress for most metabolites 
except for the accumulation of isocitrate. This is likely 
because the signal transduction pathways that control 

citrate metabolism [50] are not captured in k-ctherm118. 
Overall, k-ctherm118 does a good job of recapitulat-
ing the experimentally observed trends. For cases where 
there is a discrepancy between model and experiment, 
additional scrutiny revealed missing elements from the 
model.

Robustness analysis of the kinetic model
Model k-ctherm118 was parameterized using yield data 
for a number of exported metabolites for a range of 
mutants involving primarily single or multiple knock-
outs. The cross-validation analysis revealed that in most 
cases parameterization was robust to the absence of a 
single mutant flux dataset. However, there existed cases 
(i.e., mutants 13 and 17) where robustness inference was 
not possible due to the indispensability of some of the 

Fig. 5  Cross-validation analysis of k-ctherm118 model. The gray bars represent the average scaled deviation of the predicted steady-state fluxes 
upon cross-validation of the training dataset. The first 19 datasets represent mutants with experientially measured fermentation yields, the penul-
timate dataset represents Δgldh mutant with measured intracellular concentrations, and the final dataset represents the experimentally measured 
Michaelis–Menten constants. The white bars correspond to the average scaled deviation of the predicted steady-state flux distribution from the 
experimental measurements while including all datasets. The difference between two bars represents the reduction in the accuracy of the model 
predictions upon excluding the flux dataset of the corresponding mutant
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mutant flux datasets whose information could not be 
complemented by the remaining ones. Enzymes associ-
ated with non-robust kinetic parameters often lead to 
model instabilities in response to even small enzyme-
level perturbations. These instabilities are manifested as 
excess accumulation or depletion of substrate or product 
as recently demonstrated by the ensemble modeling for 
robustness analysis (EMRA) [51, 52]. Robustness analysis 
showed that all the k-ctherm118 kinetic parameters were 
robust (see Additional file 3) except for those associated 
with ketol-acid reductoisomerase (KARA1). For exam-
ple, if carbon dioxide export is upregulated by twofold, 
we observe an increase in the flux of CO2-producing 
pathways such as PEPCK and PFOR (see Fig.  4). Under 
these conditions, k-ctherm118 also predicts excess 

accumulation of its substrate acetolactate (alac-s), which 
implies that either the kinetic parameters of the reactions 
associated with KARA1 are non-robust or the regulation/
stoichiometry of the metabolite node is incomplete and 
thus unable to efficiently metabolize the substrate [51]. 
A plausible resolution for this non-robustness is that 
KARA1 is bifunctional (see Fig. 8) and that it also cata-
lyzes ketopantoate reductase reaction (dehydropantoate 
to pantoate) as observed in Corynebacterium glutamicum 
[27]. This secondary activity was absent in the kinetic 
model. In addition to this, valine and leucine have been 
shown to be the regulators of ketol-acid reductoisomer-
ase in C. glutamicum [53]. Therefore, it is possible that 
these regulations apply in C. thermocellum as well (see 
Fig. 8). This example highlights how robustness analysis 

Fig. 6  Impact of limiting nitrogen source in the media on C. thermocellum metabolism. a Change in pathway fluxes and metabolite concentration 
on reducing ammonium uptake activity to 20% of the wild-type activity. The numbers represent the flux values (mol/mol cellobiose) normalized 
to cellobiose uptake (except for those in parentheses represent concentration change) for the wild-type (gray color) to ammonia-limited (green or 
red color representing upregulation or downregulation, respectively) conditions. All fluxes were normalized to cellobiose uptake. b Comparison of 
model-predicted yield change with the experimentally measured values
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of a kinetic model can be used to pinpoint incomplete 
descriptions.

Conclusions
In this study, we constructed a kinetic model of C. 
thermocellum’s core metabolism using the ensemble 
modeling approach [43]. Model parameterization was 
carried out using 21 experimental datasets containing 

fermentation data for 19 unique C. thermocellum 
mutant strains, intracellular metabolite concentration 
for Δgldh mutant (D Amador-Noguez, unpublished 
data) as well as experimentally measured Michaelis–
Menten kinetic parameters (R Sparling, unpublished 
data; [42]). First, we updated the iSR432 model and 
constructed a second-generation genome-scale model 
of C. thermocellum, iCth446 incorporating fourteen 

Fig. 7  Overall impact of ethanol stress on C. thermocellum metabolism. a Affected pathway fluxes and metabolite concentrations under ethanol 
stress condition. The numbers represent the flux values (mol/mol cellobiose) normalized to cellobiose uptake (except for those in brackets represent 
concentration change) for the wild-type (gray color) to ammonia-limited (green or red color representing up- or downregulation, respectively) condi-
tions. All fluxes were normalized to cellobiose uptake. b Comparison of model-predicted cytosolic concentration changes with the experimentally 
measured values
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missing gene annotations, correcting 150 mass and 
charge imbalances in reactions, and modifying cofac-
tor specificity and directionality for 20 reactions. Com-
parisons against the experimental data showed that 
iCth446 predicts ethanol yield with greater consistency 
than iSR432 [33]. Next, iCth446 was used as a scaffold 
for constructing the core kinetic model (k-ctherm118). 
It includes 118 reactions and 93 metabolites covering 
central carbon metabolism and fermentation pathways 
and accounts for 22 substrate-level regulatory interac-
tions extracted from BRENDA [42] for the clostridia 
genus and other closely related species with similar 
cofactor preference. Testing with experimental data 
showed that while a purely stoichiometric description is 
insensitive to limiting nitrogen availability, k-ctherm118 
was able to capture the upregulating effect on amino 
acid production due to product inhibition of compet-
ing fermentation pathways by the elevated NADH 
pools. k-ctherm118 was also able to predict the direc-
tion and extent of changes in cytosolic concentrations 
under ethanol stress due to an increase in phosphate 
and diphosphate pools causing a system-wide effect 
mediated through cofactor pool balances. Overall, this 
study demonstrated that the developed kinetic model 
k-ctherm118 predicts phenotypes under genetic pertur-
bations with a higher degree of accuracy than stoichi-
ometric model as well as provides insight into missing 
metabolic pathways and regulations.

However, unlike stoichiometric models that are largely 
parameter free, kinetic model predictions are highly 
dependent on the parameterization datasets. Kinetic 
models “learn” metabolic redirections through care-
ful parameterization that aims to recapitulate meta-
bolic responses seen in multiple datasets. Therefore, 
flux datasets capturing metabolic perturbations that the 
kinetic model is expected to reproduce must be part of 
the training set for robust parameterization. This implies 
that experimentally elucidating the flux split ratios and 
enzyme activity with the aid of 13C-metabolic flux analy-
sis (13C-MFA) data [43] are needed as existing datasets 
do not provide sufficient information to k-ctherm118 for 
correct parameterization of the enzymes. For example, 
the lack of accurate PP pathway fluxes in training datasets 
led to error in predictions of kinetic parameters associ-
ated with the PP pathway. In an earlier study [54], we 
have observed that the inclusion of accurately measured 
metabolite concentrations led to an accurate estimation 
of kinetic parameters. Metabolomic databases such as 
MetaboLights [55] provide metabolomic data under 
various conditions which can be integrated to improve 
the quality of model parameterization. However, kinetic 
model parameterization and validation for non-standard 
organisms such as C. thermocellum are also limited by 
the lack of complete metabolomic datasets (intracellular 
concentrations under mutant conditions). Ongoing stud-
ies with a focus on resolving flux distribution [36] and 
intracellular concentration changes (D Amador-Noguez, 
unpublished data) in C. thermocellum mutants prom-
ise to bridge this gap. Additional omics datasets such as 
transcriptomic and proteomic data are also necessary 
to recapitulate the changes in enzyme levels (i.e., vmax) 
in response to genetic and/or environment perturba-
tions [54] and can improve model parametrization. Thus, 
kinetic models require complete metabolic knowledge 
involving specific pathways collected using 13C-MFA, 
transcriptomic, and proteomic studies for wild-type and 
mutant strains to accurately capture the pathway activity 
for robust model parametrization.

Alternatively, erroneous predictions can a posteriori 
be used to guide future carbon labeling or enzyme activ-
ity experiments to correct the model. For example, the 
robustness analysis has revealed the secondary activity of 
ketol-acid reductoisomerase which can be tested experi-
mentally. Likewise, k-ctherm118 predicted low etha-
nol yield (see Fig. 2) for mutants with ΔhydG mutation 
(e.g., mutant 19). However, recent experimental studies 
have shown that the ΔhydG mutation in C. thermocel-
lum is associated with another mutation in the adhE 
gene which broadens cofactor specificity of the alcohol 
dehydrogenase to both NADH and NADPH as opposed 
to only NADH-dependent activity in the wild-type strain 

Fig. 8  Carbon dioxide export upregulation revealing the ketol-acid 
reductoisomerase reaction with non-robust kinetic parameters. Possi-
ble substrate-level regulation (I) and secondary function (II) observed 
in C. glutamicum can improve the parameter robustness
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[56]. We note that k-ctherm118 was constructed based 
on the cofactor specificity of the reference (wild-type) 
strain and was unable to alter cofactor dependence of 
reactions under mutant conditions leading to inaccu-
rate predictions for mutant 19. This limitation can be 
addressed by the inclusion of alternate cofactors for the 
reaction and additional metabolic regulations [22] in 
follow-up investigations. Thus, error in kinetic model 
predictions directs our attention towards the incomplete 
metabolic knowledge involving specific pathways which 
can be resolved using experiments to study enzyme 
activity and allosteric regulations to accurately represent 
the cellular metabolism and thus improve prediction 
fidelity.

In the past, stoichiometric models such as iSR432 and 
iAT601 identified strain designs by perturbing redox 
balances to enhance ethanol production [57]. How-
ever, this study has shown that phenotypic changes in 
C. thermocellum metabolism are largely controlled by 
cofactor and metabolite pool sizes either through prod-
uct inhibition (e.g., glutamate accumulation downregu-
lates GLUDy) or distal substrate-level regulation (e.g., 
NADH levels inhibit ALCDH activity) and not simply 
through mass balances. Therefore, k-ctherm118 puts 
forth a new paradigm for systematically improving our 
knowledge of non-standard organisms such as C. ther-
mocellum through model-driven discovery (e.g., valine 
and leucine levels inhibit KARA1) guided not only by 
metabolic fluxes but also more importantly metabolite 
pools and regulatory interactions. Errors in prediction 
often directly translate into discrepancies in branch-
ing ratios, metabolite concentrations, or missing sec-
ondary enzymatic functions that can be ascertained 
experimentally, thus closing the prediction–correction 
loop. Recent experimental studies have shed light on 
the importance of cofactor pools on biofuel production 
levels in C. thermocellum [58]. Kinetic models such as 
k-ctherm118 can already be used to assess the com-
putationally designed mutants in terms of predicted 
metabolite concentrations, needed enzyme levels, and 
unforeseen regulatory effects such as the nitrogen limi-
tation case study showing increased amino acid yields 
due to changes in cofactor pools. In addition, compu-
tational strain design protocols such as k-OptForce 
[59] and SMET [60] that make use of kinetic informa-
tion to overproduce a target metabolite can be applied 
to k-ctherm118 to increase biofuel production. Fur-
thermore, k-ctherm118 lays the foundation for build-
ing genome-scale or consortia-based kinetic models of 
potential CBP organisms inclusive of substrate uptake 
and product toxicity kinetics to engineer high-per-
forming industrial strains.

Methods
Genome‑scale model reconstruction and testing
Model iCth446 was built by appending missing metabolic 
information into the existing GSM by Roberts et al. [13]. 
All the reactions are elementally and charge balanced 
based on the ModelSEED database information [61]. 
Thermodynamically infeasible cycles (TICs) were identi-
fied using network analysis [20, 62] and resolved by mod-
ifying the reaction directionality of only sixteen reactions 
(Additional file  1 for complete list) based on experi-
mental evidence. C. thermocellum contains enzymes 
which can use alternate cofactors (e.g., phosphoglycerate 
kinase (PGK) [16]) as well as enzymes with similar cata-
lytic activity using different cofactors (e.g., hydrogenases 
[56]). Reactions catalyzed by these enzymes along with 
cofactor exchange systems (e.g., transhydrogenases) can 
cause TICs. Previous TIC removal methods have disa-
bled fluxes of reactions with minimal activity [42]. This 
would not work in C. thermocellum where alternate reac-
tions often have comparable activity [16]. Instead, we 
have introduced a separate constraint that allows for all 
reversible reactions with different cofactors to be active 
simultaneously while eliminating TICs. This constraint 
exploits the idea that for a given metabolite the flux value 
of at least one of the reactions causing the TIC is greater 
than the sum of the non-cycle forming reaction fluxes. 
Consider for a given metabolite i there is Mi

c number 
of reactions which perform similar metabolic function 
with alternate cofactors and thus participate in TICs. We 
define this set of reactions as J ci =

{

j∗|j∗ = 1, . . . ,Mc
i

}

 . 
We then constrain the absolute flux value of all the reac-
tions in this set Ji

c to be less than the absolute value of 
sum of all fluxes involving the metabolite i except the 
TIC participating reactions as shown in constraint (1). 
This constraint is applied for a set of metabolites denoted 
by Ic = {i|i = 1, . . . ,Nc}, where each i represents the 
metabolite associated with a TIC and Nc represents the 
total number of TICs. The elements of Ic are predeter-
mined by choosing metabolites unique to each cycle 
(e.g., hydrogen for the case of infeasible cycles using 
hydrogenases).

Here Sij is the stoichiometric coefficient for metabolite 
i in reaction j, vj represents the flux of reaction j, and J  
represents the complete set of reactions in the GSM 
model. This constraint was incorporated into flux balance 
analysis (FBA) [63] to eliminate flux through TICs. Note 
that the incorporation of the absolute values in the FBA 
model can in general be achieved using binary variables 
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[64]. Binary variables can be avoided if the directionality 
of the reactions entering/leaving the loop is known.

For the case of model testing, the GSM-predicted etha-
nol flux range was evaluated by performing flux vari-
ability analysis (FVA) while constraining the model to 
other experimentally measured metabolites for specific 
mutants. The model-predicted yield ranges were conse-
quently calculated by evaluating the minimum and maxi-
mum ratios of predicted ethanol flux to the cellobiose 
uptake flux.

Core kinetic model construction and testing
The stoichiometric representation of k-ctherm118 was 
obtained by selecting a subset of reactions from the GSM 
associated with the central metabolism. C. thermocellum 
contains several hydrogenases, bifurcating hydrogenases, 
and transhydrogenases, which were simplified in the core 
model by three reversible hydrogenases with varying 
cofactors (i.e., NAD, NADP, and Ferredoxin). The pentose 
phosphate (PP) pathway was also simplified to exclude 
sedoheptulose 1,7-bisphosphate from the model because 
the PP pathway did not carry significant flux (<0.1% 
of cellobiose uptake flux) in the wild-type and mutant 
strains. We followed the existing framework developed 
by Khodayari et  al. [16] for k-ctherm118 reconstruc-
tion. In essence, the reactions were first decomposed into 
their elementary steps and then the elementary reaction 
parameters (i.e., enzyme fractions and reaction revers-
ibility) were sampled [43]. An ensemble of models is then 
generated which all converge to the same steady-state 
yield data of the wild-type (i.e., reference) strain. Next, 
a genetic algorithm machine-learning approach was 
used to identify the optimal combination of the sampled 
kinetic parameters by minimization of deviation from the 
experimental data (see Additional file 3). We also imple-
mented the enzyme-level changes by allowing the total 
pool of the normalized enzyme to vary between a tenfold 
downregulation and the wild-type level (0.1 ≤ ẽtot ≤ 1 ) 
for reported enzyme downregulations and the wild-
type level and a tenfold upregulation (1 ≤ ẽtot ≤ 10) for 
enzyme upregulations. This is because the quantitative 
enzyme-level information was not reported in the knock-
out mutant library. Gene deletions were implemented by 
setting the ẽtot of the encoded enzyme to zero. The devia-
tion in model predictions was calculated by normalizing 
the deviation of the predicted product yield/concentra-
tion/kinetic parameter (vi) from the experimental value 
(vi

exp.) by the coefficient of variation in the experimen-
tal data (CVi) for metabolite i. The convergence criteria 
were determined by evaluating the relative deviation of 
model predictions over the set of measured metabolites 
N from experimental yield measurements [43], which is 

an average of average scaled standard deviations evalu-
ated over the set of all mutants M.

The robustness of the estimated kinetic parameters 
was tested using a leave-one-out cross-validation test 
by excluding one dataset from the training datasets and 
comparing the error in product yield predictions for the 
excluded set against yield predictions by the optimal 
parameter set. This procedure was performed iteratively 
for all the 21 datasets. k-ctherm118 was also used to 
predict the changes in the intracellular metabolite con-
centrations and metabolite yields under various mutant 
conditions by modifying the enzyme level as per the 
mutant genotype. For example, a twofold downregulation 
of enzyme level from its wild-type level was simulated by 
changing the total enzyme fraction ẽtot to 0.5.
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