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Abstract 

Background:  The filamentous fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is a widely used industrial 
host organism for protein production. In industrial cultivations, it can produce over 100 g/l of extracellular protein, 
mostly constituting of cellulases and hemicellulases. In order to improve protein production of T. reesei the transcrip-
tional regulation of cellulases and secretory pathway factors have been extensively studied. However, the metabolism 
of T. reesei under protein production conditions has not received much attention.

Results:  To understand the physiology and metabolism of T. reesei under protein production conditions we car-
ried out a well-controlled bioreactor experiment with extensive analysis. We used minimal media to make the data 
amenable for modelling and three strain pairs to cover different protein production levels. With RNA-sequencing 
transcriptomics we detected the concentration of the carbon source as the most important determinant of the tran-
scriptome. As the major transcriptional response concomitant to protein production we detected the induction of 
selected genes that were putatively regulated by xyr1 and were related to protein transport, amino acid metabolism 
and transcriptional regulation. We found novel metabolic responses such as production of glycerol and a cellotriose-
like compound. We then used this cultivation data for flux balance analysis of T. reesei metabolism and demonstrate 
for the first time the use of genome wide stoichiometric metabolic modelling for T. reesei. We show that our model 
can predict protein production rate and provides novel insight into the metabolism of protein production. We also 
provide this unprecedented cultivation and transcriptomics data set for future modelling efforts.

Conclusions:  The use of stoichiometric modelling can open a novel path for the improvement of protein production 
in T. reesei. Based on this we propose sulphur assimilation as a major limiting factor of protein production. As an organ-
ism with exceptional protein production capabilities modelling of T. reesei can provide novel insight also to other less 
productive organisms.
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Background
The filamentous fungus Trichoderma reesei (teleomorph 
Hypocrea jecorina) is a widely used industrial host organ-
ism for protein production. In industrial cultivations, it 
can produce over 100 g/l concentrations of extracellular 
protein [1]. Interestingly, it exhibits a low growth rate 

protein production phenotype [2], i.e. the highest rates 
of cellulase and hemicellulase secretions are observed at 
low growth rate [3–6].

In industrial environments such conditions can exist 
for a prolonged period during the feeding stage of a fed-
batch cultivation. However, many industrial processes are 
batch cultivations with constantly changing growth rates. 
In both conditions T. reesei efficiently produces cellulases 
and also heterologous proteins under cellulase promot-
ers, given a cellulase expression inducing carbon source. 
Cellulase expression is well induced by sophorose (for 
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review see [7, 8]), but also by cellobiose [9], lactose [10] 
and cellobiono-1,5-lactone [11]. Recent transcriptome 
analyses of cellulase producing conditions, have revealed 
various responses to protein production: partial induc-
tion of the secretion system, induction and carbon source 
specific modulation of cellulases, but also complex 
metabolic responses whose importance and regulation 
remains to be discovered [6, 12–18]. The major regula-
tors of cellulases are transcription factors cre1 [19] and 
xyr1 [20] (for review see [8]), but also ace1 [21], ace2 [22], 
ace3 [15], clr2 [23] and other Zn2Cys6 zinc cluster tran-
scription factors [15], GCN5-like histone acetyl trans-
ferases [6] and histone methyltransferases [24] have been 
implicated.

The level of endoplasmic reticulum (ER) stress in pro-
tein producing conditions is typically unclear in pub-
lished T. reesei transcriptome analysis. Induction of the 
unfolded protein response (UPR), the conserved eukary-
otic stress response to high ER load, can be assessed by 
non-conventional splicing of the hac1-intron [25] and 
hence is not detectable from microarray analysis. Major 
factors like foldase bip1 [26] and pdi1 [27] are typically 
induced. However, in Saccharomyces cerevisiae, the 
expression of BIP1 and PDI1 has been shown to be a poor 
indicator of UPR [28].

With the secretion pathway factors (for review see [29]) 
and cellulase transcription factors extensively studied, 
new approaches for improving protein production in T. 
reesei are needed. Genome scale stoichiometric meta-
bolic modelling has been very successfully applied to 
improvement of production of a single metabolite (for 
review see [30]). In this field, the stoichiometric matrix, 
i.e. a mathematical description of most biochemical reac-
tions of the cell, is analyzed to select enzyme genes to 
be removed, regulated or added, or to optimize cultiva-
tion strategies in order to increase metabolite produc-
tion. In contrast, successful application of stoichiometric 
modelling to improve protein production has been rare, 
although various other strategies for engineering metab-
olite supply for protein production have been used (for 
review see [31]). A notable exception is analysis of super 
oxide dismutase production with stoichiometric model-
ling in Komagataella phaffii (Pichia pastoris) [32]. Fila-
mentous fungi, such as T. reesei, can reach far higher 
production levels and are also in many other respect dis-
tinct organism from yeasts. Stoichiometric modelling of 
T. reesei has not been, to our knowledge, reported previ-
ously. Also, successful stoichiometric modelling typically 
requires growth conditions rarely used in published T. 
reesei work i.e bioreactor cultivations, extensive culture 
monitoring and a defined carbon source.

In this paper we carry out a well controlled bioreac-
tor experiment to study the effect of variation of protein 

production load to the physiology of T. reesei. Our RNA-
sequencing transcriptomics detects the concentration 
of carbon source as the most important determinant 
of transcriptome. We extensively analyze the growth 
medium during cultivation and find novel metabolic 
responses such as production of glycerol and a cellotri-
ose-like compound. We then use this cultivation data for 
flux balance analysis of the metabolism of T. reesei and 
demonstrate for the first time the use of genome wide 
stoichiometric metabolic modelling for T. reesei. We 
show that our model can predict protein production rate 
and provides novel insight into the metabolism of protein 
production. We also provide this unprecedented cultiva-
tion and transcriptomics data set for future modelling 
efforts

Results
The effect of protein production load on the physiology 
of T. reesei was studied by comparing sixstrains (three 
production strains and their three controls) that were 
modified for their protein production properties.

The selected strains included T. reesei (Cel4d) from 
which the four main cellulase genes (chb1, cbh2, egl1 
and egl2) have been deleted as well as T. reesei (Cel4dCt) 
producing the wild type pattern of cellulases. Under 
typical production conditions, the four major cellulases 
may account for over 90   % of the extracellular proteins 
produced by the hypercellulolytic strains under typi-
cal production conditions. The cellobiohydrolases have 
been reported to account for up to 64–84    % and the 
major endoglucanases up to 4–36  % of the extracellular 
protein produced [33–35]. Thus, the deletion of the cel-
lulase genes is expected to have a major impact on the 
protein mixture produced. For analysing the effects of 
producing heterologous proteins with different proper-
ties and at different amounts, strains producing either a 
lipase from Dipodascus capitatus (LipPr4d) or a cuti-
nase from Coprinus cinerea (CutCBH) were included in 
the study together with their control strains. The corre-
sponding control strains had similar genetic modifica-
tions as the recombinant protein producers except for 
the gene encoding the heterologous product (Table 1). D. 
capitatus lipase is readily produced by T. reesei, reaching 
almost 20  % of the proteins produced at early stages of 
cultivations in the study (see below), whereas produc-
tion of the cutinase of C. cinerea was hardly detectable in 
the cultures. The lipase is apparently sensitive to T. reesei 
proteases under the conditions studied and therefore a 
production strain (LipPr4d) with four protease-encod-
ing genes deleted was used. The corresponding control 
strain (LipPr4dCt) had the same protease deletions. In 
the cutinase producing strain, the cbh1 locus was used 
for expression and thus, both the cutinase producing 
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strain (CutCBHd) and its control strain (CutCBHdCt) 
lack the open reading frame encoding cellobiohydrolase I 
(CBHI). CBHI alone may constitute 60 % of the total pro-
tein [36]. Furthermore, the strain with wild type cellulase 
gene pattern (Cel4dCt), the strain deleted for the four 
cellulase genes (Cel4d) as well as the lipase producing 
strain (LipPr4d) and its control strain (LipPr4dCt) had a 
deletion in the gene mus53. The mus53 modification was 
originally done in order to help construction of modified 
strains by enhancing homologous recombination in the 
strain construction process [37]. The abbreviations used 
for the strains, the genetic modifications in the strains as 
well as their major properties are shown in Table 1.

Bioreactor batch fermentations
The six strains (Table  1) were cultivated in bioreactors 
each as triplicate. Minimal medium with defined com-
position was used in the cultivation to enable accurate 
measurement of the nutrients taken up and the com-
pounds produced as needed for stoichiometric model-
ling. Cellobiose was used as an inducing carbon source 
[9] and ammonium sulfate as the source of nitrogen in 
the cultures. The cultures were extensively monitored 
both off- and on-line (Figs. 1, 2). CO2 and O2 were meas-
ured on-line and the cultures were sampled at 16, 24, 40, 
64, 88 and 112   h for analysis of biomass, extracellular 
protein, amino acid composition (only at 24, 40 and 64 h) 
and a multitude of sugars, alcohols and carboxylic acids.

In order to estimate the consumption and production 
rates, a heteroscedastic Gaussian processes [38] was used 
to model the rates on the measured data (see "Methods" 
section for details). The raw cultivation data is presented 
in Additional file 2: Table S1 and data averaged over trip-
licates and CDW (cell dry weight) normalised in Addi-
tional file 2: Table S2.

The In order to dissect the effect of protein production 
load, variation in the specific extracellular protein pro-
duction rate (g/gCDW h) in the dataset is of importance. 
The specific production rate of extracellular protein (per 
the amount fungal biomass) (Fig. 1f ) was highest at the 
early stages of growth around 24   h. The difference in 

accumulation of total extracellular protein between the 
strains starts to increase from 24  h onwards, being the 
largest at 112  h (Fig. 1b). Accordingly the highest vari-
ation in the specific production rate of extracellular pro-
tein (Fig. 1f ) was detected at the 24  h time point. At that 
time the strains (Cel4dCt, LipPr4d and LipPr4dCt) 
exhibited a high protein production rate and the strains 
(Cel4d, CutCBHd and CutCBHdCt) exhibited a low 
production rate.

Accumulation of cellulase activity, measured as activ-
ity against MUL substrate, paralleled the accumulation 
of total extracellular protein and was the highest in lipase 
producing strain LipPr4d. The detected difference in 
extracellular protein accumulation appears as a trade-
off between biomass accumulation (Fig. 1a) and protein 
production (Fig. 1b). The strains producing extracellular 
proteins the most (Cel4dCt, LipPr4d and LipPr4dCt) 
reached much lower level of biomass during the cultiva-
tion as compared to the strains producing less extracel-
lular protein. After 60   h biomass starts to degrade but 
extracellular protein accumulates still. The increase in the 
total extracellular level at these late stages of cultivation 
could be due to either actual production or release of the 
protein from the lysed cells. The produced lipase forms 
close to 20 % of total extracellular protein at 40  h but is 
completely degraded soon after that (Additional file  1: 
Figure S1). Production of cutinase activity by the strain 
CutCBHd was not measurable.

Apart from the main carbon source also other small 
molecules were detected by HPLC (and verified as nec-
essary with other methods) in the growth media. In the 
HPLC analysis, a compound eluting similarly to the cel-
lotriose standard was detected. A further LC-MS analysis 
showed that the compound is cellotriose-like trisaccha-
ride but the precise structure could not be assigned based 
on mass spectra. The cellotriose-like compound started 
to accumulate at 16   h and is completely consumed 
at 88   h (Fig.  2a, d). Strain Cel4d lacking the main cel-
lulases accumulated uniquely large amounts of the 
cellotriose-like compound. The specific rate of the cel-
lotriose-like compound (mmol/l/gCDW h) paralleled 

Table 1  Description of strains

Abbreviation Strain Extracellular proteins produced

Cel4d �cbh1, �cbh2, �egl1, �egl2, �mus53 Endogenous hydrolases, lacking CBHI, CBHII, EGI, EGII

Cel4dCt �mus53 Endogenous hydrolases

CutCBHd oe Cut, �cbh1, Endogenous hydrolases, lacking CBHI. Heterologous protein (cutinase, cut)

CutCBHdCt � cbh1 Endogenous hydrolases, lacking CBHI

LipPr4d oe Lip, �mus53 Endogenous hydrolases. Heterologous protein (lipase, Lip). Deletion of four native proteases

LipPr4dCt �mus53 Endogenous hydrolases. Deletion of four native proteases
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closely the specific growth rate (1/h), however it was 
consumed faster than the growth decelerated. Glucose 
started to accumulate at the same time point (40 h) when 
the level of the cellotriose-like compound reached its 

maximum and started to decline at 64   h. Glucose was 
completely consumed at 88  h (Fig. 2b, e). Glycerol accu-
mulation paralleled closely the accumulation of glucose 
(Fig.  2c, f ). Uniquely, the best protein producer strain, 
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Fig. 1  Parameters measured from the bioreactor cultures. The volumetric amount of fungal biomass, extracellular protein, cellobiose and activity 
against MUL substrate is shown in the panels on the left (a–d) and the corresponding specific rates (per biomass amount and time) in the panels on 
the right (e–h). The error bars indicate the standard error of the mean (SEM). Futher parameters are shown in Fig. 2
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in terms of accumulation and highest detected specific 
protein production rate LipPr4d, produced the least 
amount of glycerol. In addition, accumulation of etha-
nol was detected at 16 and 24  h in the CutCBHdCt and 
CutCBHd strains (Additional file 1: Figure S2). Although 
ethanol was detectable in all three repeats of CutCBH-
dCt at 24   h the variation of the measurement value is 
quite large possibly due to evaporation.

In order to better understand the dependencies 
between the cultivation variables, we calculated the cor-
relation between selected pairs of variables (Fig. 3). Bio-
mass concentration correlated strongly with carbon 

source concentration (Fig.  3a), but comparison of spe-
cific rates (Fig. 3b) reveals that at 16  h CutCBHdCt and 
CutCBHd strains take up the carbon source at a higher 
rate than would be expected by their growth rate. Spe-
cific CO2 exchange rate (CER) and O2 consumption rate 
(OUR) correlated strongly with each other, with the 
exception that at the highest point of specific extracellu-
lar protein production rate in the whole experiment (Lip-
Pr4d at 24  h) CO2 was produced at a slightly smaller rate 
than expected based on OUR. Unfortunately there is no 
OUR or CER data for the LipPr4d 16  h sample. Specific 
extracellular protein production rate, specific OUR and 
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Fig. 2  Further bioreactor batch cultivation parameters. The volumetric amount of cellotriose-like compound, glucose and glycerol shown in the 
panels on the left (a–c) and the corresponding specific rates (per biomass amount and time) in the panels on the right (d–f). The exact identity of 
the cellotriose-like (a, d) compound is not known. The error bars indicate the standard error of the mean (SEM)
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specific growth rate all correlated significantly linearly 
(OUR and growth rate, r = 0.81, p < 2e−13 Fig. 3d; pro-
tein and growth rate, r = 0.51, p < 6e−7, Fig. 3e; protein 
and OUR, r = 0.66, p < 3e−9 Fig. 3f ). The five sampling 
points with the highest specific extracellular protein pro-
duction rate in descending order were LipPr4d 24 and 
16  h, Cel4dCt 24 and 16  h and LipPr4dCt 24  h. Exclud-
ing lacking data for LipPr4d 16  h, these sampling points 
had a higher specific extracellular protein production 
rate than expected by specific growth rate or by specific 
OUR. An opposite phenomena was visible for the 16, 24 

and 40 h sampling points of CutCBHd and CutCBHdCt 
and Cel4dCt strains.

In addition to the extracellular variables, we measured 
the concentration of intracellular free amino acids from 
the 24, 40 and 64  h sampling time points (Additional 
file  1: Figure S3). Overall, they exhibited a decreasing 
trend during cultivation. Exceptions to this trend were 
often associated with larger deviation between repeats 
or with small concentrations. Over 1000 µmol/gCDW 
concentrations were detected for glutamine, glutamate, 
arginine and alanine and all of these exhibit a systematic 
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downward trend. The LipPr4d strain had a higher ala-
nine concentration than its control strain LipPr4dCt and 
all other strains in the three measured sampling points. 
Otherwise, the variability in amino acid concentrations 
between strains was best explained not by differential 
protein production or growth rates, as was the case for 
extracellular variables, but rather by strain background.

Transcription profiling with RNA sequencing
In order to access the intracellular genome wide effect 
of variable protein production load, we carried out Illu-
mina 100 bp pair-end RNA sequencing from the cultiva-
tion time points of 16, 24, 40 and 64  h for all the strains. 
The read data has been deposited to NCBI-SRA [39] with 
BioProject number PRJNA293671 and results of subse-
quent genome wide analysis at gene level are presented in 
Additional file 2: Table S5. The median FPKM (fragments 
per kilobase of exon per million fragments) over the 
whole experiment was 20. 6332 genes of our gene list of 
9441 genes reached this expression in at least one sample 
and only 34 genes had a FPKM of zero in all the samples.

Correlation of gene expression with cultivation parameters
In order to count correlations between cultivation 
parameters and gene expression values, we normalized 
concentration parameters (rate parameters already take 
biomass into account) with biomass i.e. CDW (g/l). This 
was to take into account the fact that the compounds are 
produced by a certain amount of cells. We did not apply 
this for the carbon source cellobiose, but of the genes 
correlating with cellobiose concentration with biomass 
normalization, 85  % also correlated without the nor-
malisation. After this normalization OUR (mol/gCDW 
h), CER (mol/gCDW h), cellotriose concentration (g/l/
CDW), cellobiose concentration (g/l/CDW), glycerol 
concentration (g/l/CDW) have a similar decreasing 
shape, which correlates strongly negatively with the bio-
mass i.e. CDW (g/l) (Fig. 1a).

As gene expression data we used rlog values from 
DESeq2 [40] (see below “Analysis of significantly chang-
ing genes”). The rlog behaves similarly to log2 transfor-
mation but shrinks variability for genes with low read 
counts to control measurement error in them. We aver-
aged the rlog gene expression data over the triplicate cul-
tivations to derive 24 data points (six strains and fourtime 
points) for each gene. For each gene we calculated its cor-
relation to all the cultivation parameters individually. For 
every parameter we then filtered a list of correlated genes 
with FDR ≤ 0.00005 which corresponds to approximately 
to absolute(r) ≥ 0.79 (Table  2). Additional file  1: Figure 
S5 shows a sample of scatter plots of individual gene—
arameter pairs at this FDR cut-off. Parameters mentioned 
above which correlated with biomass i.e. CDW (g/l) have 

from 800–1600 correlated genes in contrast to growth 
rate 1/h which has only 25 correlated genes. Extracellular 
protein rate (g/gCDW h) has 272 correlated genes in con-
trast to extracellular protein concentration (g/l/CDW) 
which has 3 correlated genes.

Subsequently for each list of correlated genes we car-
ried out an enrichement analysis (Table  3; Additional 
file 2: Table S3 for further details). Glycerol (g/l/CDW), 
biomass i.e. CDW (g/l), cellobiose (g/l/CDW), OUR 
(mol/gCDW h), CER (mol/gCDW h), cellotriose (g/l/
CDW) correlated genes are essentially enriched with 
similar categories, hence we show only enrichment of 
genes correlated with biomass i.e. CDW (g/l) in Table 3. 
These genes belong to primary cellular bioprocesses like 
primary metabolism, biosynthesis, gene expression and 
translation. Their expression correlates negatively with 
biomass and positively with the other cultivation param-
eters with similar shape i.e. they have a decreasing trend 
throughout the experiment.

Cellotriose rate mmol/(gCDW h) (Fig. 2d) and extracel-
lular protein rate g/gCDW h (Fig. 1f ) have similar shapes 
and hence share enrichment categories of correlated 
genes such as transport i.e. major facilitator superfamily 
(MFS) and other transporters, short-chain dehydroge-
nases, MFS transporters specifically and various secreted 
proteins. The class “Secreted” refers to genes of which 
nothing else is known. The GO:0005975 “carbohydrate 
metabolic process” refers in this case to various glycoside 
hydrolases which expression follows protein production. 
Genes correlated with extracellular protein rate g/gCDW 

Table 2  Counts of genes significantly correlated with vari-
ous cultivation parameters

Cultivation parameter Count of correlated genes

Biomass i.e. CDW g/l 1666

Cellobiose g/l/CDW 1633

Glycerol g/l/CDW 1612

OUR mol/(g CDW h) 1132

CER mol/(g CDW h) 1060

Cellotriose g/l/CDW 787

Extracellular protein g/(g CDW h) 272

Cellotriose mmol/(g CDW h) 184

Glycerol mmol/(g CDW h) 149

MUL nkat/(g CDW h) 30

Biomass i.e. CDW 1/h 25

Glucose g/l/CDW 13

Glucose mmol/(g CDW h) 12

MUL nkat/l/CDW 9

Extracellular protein g/l/CDW 3

Ethanol g/l/CDW 0

Lipase g/l/CDW 0
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h are also enriched in genes related to amino acid metab-
olism. These include cysteine metabolism genes (120176, 
EC:1.13.11.20, cysteine dioxygenase; 56350, EC: 2.5.1.47, 
cysteine synthase; 68036, EC:2.5.1.48, cystathionine 
gamma-synthase; 3823, EC: 2.1.1.14 methionine syn-
thase; shown also on Fig. 9) and tryptophan biosynthesis 
genes (67003, ECs: 4.1.3.27, 4.1.1.48, indole-3-glycerol-
phosphate synthase; 75414, EC: 2.4.2.18, anthranilate 
phosphoribosyltransferase). These two enzymes catalyse 
three of the five reactions from chorismate to tryptophan.

Genes correlated to glycerol rate mmol/gCDW h are 
enriched in genes related to protein transport. In par-
ticular these genes include snc1 (53601), ftt1 (121028), 
YPT7 (60331), SFB3 (77570), SNF7 (81214) and MNN4 
(67907). The enriched cell signaling related genes include 
various GTPase or related genes. This set of genes over-
laps significantly with genes expressed at higher level in 

strains producing high amounts of protein at 64  h than 
in low producing strains (Fig. 5b).

Analysis of significantly changing genes
Based on differences seen in the fermentation parameter 
(Figs. 1, 2, 3) data, we chose to test time point wise dif-
ferences between strains producing high (LipPr4d, Lip-
Pr4dCt and Cel4dCt) and low (Cel4d, CutCBHd and 
CutCBHdCt) levels of protein. We then applied DESeq2 
[40] to the RNA-seq read count data to detect signifi-
cantly changing genes in response to differential protein 
production load. All together 1081 genes with a false dis-
covery rate ≤ 0.0001% and minimum log2 fold change of 
0.5 were detected as differentially regulated.

In order to dissect the different gene expression pat-
terns of these 1081 genes, we clustered them based on 
the rlog (regularized logarithm transformation) gene 

Table 3  Enrichment of annotation terms in groups of genes significantly correlated cultivation parameters

Type Cultivation parameter Term Count of genes P value

GO Biomass i.e. CDW (g/l) GO:0009987 cellular process BP 426 0.00006

GO Biomass i.e. CDW (g/l) GO:0071704 organic substance metabolic process BP 423 0.00137

GO Biomass i.e. CDW (g/l) GO:0044238 primary metabolic process BP 415 0.00115

GO Biomass i.e. CDW (g/l) GO:0044237 cellular metabolic process BP 387 0.00000

GO Biomass i.e. CDW (g/l) GO:0044260 cellular macromolecule metabolic process BP 276 0.00082

GO Biomass i.e. CDW (g/l) GO:0009058 biosynthetic process BP 255 0.00000

GO Biomass i.e. CDW (g/l) GO:1901576 organic substance biosynthetic process BP 247 0.00000

GO Biomass i.e. CDW (g/l) GO:0044249 cellular biosynthetic process BP 246 0.00000

GO Biomass i.e. CDW (g/l) GO:0019538 protein metabolic process BP 224 0.00000

GO Biomass i.e. CDW (g/l) GO:0044267 cellular protein metabolic process BP 193 0.00000

Class Cellotriose mmol/(g CDW h) Transport 17 0.00034

GO Cellotriose mmol/(g CDW h) GO:0071702 organic substance transport BP 13 0.00561

Class Cellotriose mmol/(g CDW h) Glycoside hydrolase 10 0.00235

Class Cellotriose mmol/(g CDW h) Major facilitator superfamily 9 0.00064

Cazy Cellotriose mmol/(g CDW h) Glycoside hydrolase 9 0.00204

GO Cellotriose mmol/(g CDW h) GO:0008643 carbohydrate transport BP 8 0.00008

Class Cellotriose mmol/(g CDW h) Cell cycle 6 0.00514

Class Cellotriose mmol/(g CDW h) Cell growth and death 6 0.00595

Interpro Cellotriose mmol/(g CDW h) IPR002198: Short-chain dehydrogenase/reductase SDR 6 0.00784

Interpro Cellotriose mmol/(g CDW h) IPR010730: Heterokaryon incompatibility 5 0.00014

Class Extracellular protein g/(g CDW h) Transport 20 0.00226

GO Extracellular protein g/(g CDW h) GO:0005975 carbohydrate metabolic process BP 18 0.00018

Interpro Extracellular protein g/(g CDW h) IPR011701: Major facilitator superfamily 12 0.00083

Class Extracellular protein g/(g CDW h) Amino acid metabolism 10 0.00171

Class Extracellular protein g/(g CDW h) Secreted 10 0.00313

Interpro Extracellular protein g/(g CDW h) IPR010730: Heterokaryon incompatibility 6 0.00015

Interpro Extracellular protein g/(g CDW h) IPR003663: Sugar/inositol transporter 5 0.00189

Interpro Extracellular protein g/(g CDW h) IPR005828: Major facilitator, sugar transporter-like 5 0.00551

Class Glycerol mmol/(g CDW h) Protein transport 7 0.00224

Class Glycerol mmol/(g CDW h) Cell signalling 5 0.00140
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Fig. 4  Selected gene expression clusters. On y-axes the average gene expression level expressed as rlog2 which is log2 like transformation of 
normalized counts calculated by DESeq2 [40]. Thick line is cluster average and thin lines individual genes. On x-axes time points (16–64 h) from the 
cultivations of the six strains



Page 10 of 26Pakula et al. Biotechnol Biofuels  (2016) 9:132 

expression values from DESeq2 [40] into clusters of co-
regulated genes with Bayesin hierarchical clustering [41]. 
All together we retrieved 32 clusters (Fig. 4 shows a subset, 
while all are shown in Additional file 1: Figure S4). We then 
carried out enrichment analysis for the clusters (Table  4 
and Additional file 2: Table S4 for further details). Further-
more, we calculated the overlap of groups of genes corre-
lated significantly with a cultivation parameter (Table  3) 
with genes in expression clusters (Fig. 5a) and with groups 
of significantly differentially expressed genes (Fig. 5b) and 
the overlap between clusters and significantly differentially 
expressed genes (Additional file 1: Figure S6).

In cluster 24 gene expression peaks at 16   h (Fig.  4d). 
These genes are significantly enriched in genes signifi-
cantly correlated with extracellular protein rate (g/gCDW 
h) and cellotriose rate mmol/(gCDW h) (Fig.  5a). These 
genes tend to be at higher level in 16 and 24 h time points 
in strains producing high amounts protein than in low 
producing strains (Fig. 4d). The cluster is also enriched in 
genes that are at significantly lower level at high produc-
ing strains at 16 and 64  h than in low producing strains 
(Additional file 1: Figure S6). Like genes significantly cor-
related with glycerol rate mmol/gCDW h cluster 24 genes 
are enriched in genes related to protein transport and 
folding process (Table  4). However, these are not vesicle 
but, ER related (cnx1 73678, prpA 28928, PMR1 120627, 
ORP150 35465, SPC12 121948, SPC2 5066, FKBP 33895, 
pdi1 122415 and bip1 122920, see Fig. 6 for pdi1 and bip1).

The induction of ER related secretion factors raises the 
question of whether a UPR response is present in the cul-
tivations. We looked for evidence of hac1 splicing in the 
RNAseq read alignment data and found none.

In cluster 24 there is also an enrichment of various 
unclassified metabolic enzymes, which include two 
cytochrome P450s, two short-chain dehydrogenase and 
a polyketide synthase genes i.e. possibly related to sec-
ondary metabolism. More specifically there are five 
amino acid metabolism related genes including CHA1 
53091 EC: 4.3.1.17 (Fig. 9) and ARG1 82619 EC: 6.3.4.5. 
The nucleosome related genes include 3 GCN5-related 
N-acetyltransferases and a BTB/POZ domain protein. 
The carbohydrate metabolism genes include mainly 
glycoside hydrolases such as two mannosidases, two 
galactosidases and three glucosidases. Finally, cluster 
24 contains ace3 77513 [15], homologue of Neurospora 
crassa clr2 [15, 23] 26163 and two other IPR001138: Fun-
gal transcriptional regulatory protein -family proteins 
(108381 and 70351 [15]).

Cluster 28 genes peak at 24   h in high producing 
strains. These genes are not enriched in any set of genes 
correlating significantly with some cultivation parameter 
(Fig.  5). They are enriched in genes that are at signifi-
cantly lower level at high producing strains at 16  h than 

in low producing strains and at higher level in 24   h in 
high strains (Additional file 1: Figure S6). Various trans-
porters are significantly enriched in this set of genes in 
particular major facilitator family, but also amino acid 
permeases, for example GAP1 121139. There is also an 
enrichment of various unclassified metabolic enzymes 
that might have role in secondary metabolism, but which 
also include 3 taurine oxidoreductases. More specifically 
there are amino acid metabolism related genes includ-
ing SER1 121345 EC:2.6.1.52 , putative cysteine synthase 
76018 EC: 2.5.1.27 (Fig. 9), sulfinoalanine decarboxylase 
121664 EC: 4.1.1.29 and LYS21 123471 EC: 2.3.3.14.

Cluster 22 genes peaks at 40   h (Fig.  4). These genes 
are significantly enriched in genes significantly corre-
lated with glycerol rate mmol/gCDW h (Fig.  5a). They 
are also enriched in genes that are at significantly lower 
level at high producing strains at 16  h than in low pro-
ducing strains and at higher level at 64  h in high strains 
(Additional file 1: Figure S6). Lipid related genes are sig-
nificantly enriched among these genes. They include for 
example 3 putatively secreted triglyceride lipases. Also 
glycoside hydrolases are enriched in cluster 22 but unlike 
glycoside hydrolases in cluster 24 these glycoside hydro-
lases are related to fungal cell wall. They include a chi-
tinase, 2 alpha-1,2-mannosidases, a alpha-1,6-mannanase 
and 2 endo-beta-glucanases. Glycosyl transferases pos-
sibly related to fungal cell membrane and wall are also 
enriched. Altogether 31 of the 65 genes in cluster 22 are 
predicted to be targeted to the secretion pathway.

Genes significantly correlated with glycerol rate 
mmol/gCDW h are similarly regulated as genes of clus-
ter 22. However, cluster 22 does not contain the vesicle 
related genes of protein transport reported above. This is 
because expression of these genes is not significantly dif-
ferent between high and low producing strains.

Clusters 1, 21 and 31 represent the general growth 
stage dependent, biomass correlated, responses with 
genes of cluster 1 going up while the cultivation pro-
gresses and genes of cluster 21 and 31 going down (Fig. 4). 
cluster 31 mainly includes the protein translation process 
(Table 4). cluster 21 is enriched in amino acid metabolism 
related genes (Table 4; Fig. 9). These include PUT1 54564 
EC: 1.5.5.2, CAR1 123738 EC: 3.5.3.1, PDA1 56726 EC: 
1.2.4.4 and PDB1 122745 EC: 1.2.4.4, that are all involved 
in amino acid degradation and use as source of carbon or 
nitrogen. cluster 1 is enriched in copper transporters.

Glycoside hydrolases gene expression was found to 
be correlated (above) with cellotriose rate mmol/gCDW 
h (Fig.  2d) and extracellular protein rate g/gCDW h 
(Fig.  1f ). Expression of the four main cellulases, along 
with other proteins of interest, is shown in Fig.  6. The 
amount of extracellular protein produced in strain 
Cel4dCt, with the four main cellulases deleted, is 65  % of 
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Table 4  Enrichment of annotation terms in gene expression clusters

Type Cluster Term Count of genes P value

Interpro 1 IPR007274: Ctr copper transporter 4 0.00000

GO 1 GO:0006825 copper ion transport 4 0.00000

Class 1 Transport 4 0.00015

Class 5 Mitochondrial 6 0.00800

Class 5 Transmembrane 4 0.00208

Class 20 Metabolism 6 0.00511

Class 20 Transport 4 0.00544

Class 21 Amino acid metabolism 5 0.00019

Class 21 Carbohydrate metabolism 4 0.00050

Class 22 Glycoside hydrolase 9 0.00070

Class 22 Unknown 8 0.00070

Cazy 22 Glycosyltransferase 5 0.00159

GO 22 GO:0006629 lipid metabolic process lipid metabolic process 5 0.00830

Class 24 Metabolism 18 0.00141

GO 24 GO:0005975 carbohydrate metabolic process 11 0.00146

Class 24 Protein transport 8 0.00011

Class 24 Amino acid metabolism 5 0.00299

Class 24 Nucleasome 4 0.00016

Interpro 24 IPR013149: Alcohol dehydrogenase, C-terminal 4 0.00038

Interpro 24 IPR013154: Alcohol dehydrogenase, N-terminal 4 0.00046

GO 26 GO:0006629 lipid metabolic process 4 0.00143

GO 28 GO:0006810 transport 17 0.00003

GO 28 GO:0051234 establishment of localization 17 0.00003

Class 28 Metabolism 10 0.00937

GO 28 GO:0006820 anion transport 9 0.00000

GO 28 GO:0006865 amino acid transport 7 0.00000

GO 28 GO:0050790 regulation of catalytic activity 5 0.00028

Class 28 Amino acid metabolism 5 0.00036

Class 28 Major facilitator superfamily 5 0.00058

GO 28 GO:0051341 regulation of oxidoreductase activity 4 0.00067

Class 29 Transport 6 0.00040

GO 31 GO:0009058 biosynthetic process 27 0.00392

GO 31 GO:0044249 cellular biosynthetic process 26 0.00398

GO 31 GO:1901564 organonitrogen compound metabolic process 16 0.00008

GO 31 GO:0044281 small molecule metabolic process 15 0.00102

GO 31 GO:1901566 organonitrogen compound biosynthetic process 13 0.00002

GO 31 GO:0006520 cellular amino acid metabolic process 12 0.00005

GO 31 GO:0008652 cellular amino acid biosynthetic process 9 0.00001

Class 31 Translation 7 0.00151

Class 31 Ribosome 6 0.00085

GO 31 GO:1901605 alpha-amino acid metabolic process 6 0.00238

Class 31 Transcription 6 0.00519

GO 31 GO:1901607 alpha-amino acid biosynthetic process 5 0.00273

Class 31 Transcription factor 5 0.00983

Interpro 31 IPR012335: Thioredoxin_fold 4 0.00072

GO 31 GO:0006865 amino acid transport 4 0.00612

GO 31 GO:0015711 organic anion transport 4 0.00612

GO 31 GO:0015849 organic acid transport 4 0.00612

GO 31 GO:0046942 carboxylic acid transport 4 0.00612



Page 12 of 26Pakula et al. Biotechnol Biofuels  (2016) 9:132 

the amount produced by its control strain Cel4dCt with 
intact main cellulases.

In order to understand what proteins are produced 
instead of the main cellulases we inspected gene expres-
sion regulation of CAZY and related genes known to be 
highly produced based on proteomics [6] (Additional 
file 1: Figure S7). Genes egl4, xyn2, egl3 xyn1, bxl1, cel74a 
and glr1 were found to be at higher level in the deletion 
strain Cel4d than its control strain Cel4dCt.

DNA motif discovery from promoter regions of gene 
expression clusters
In order to find regulatory factors for the gene expression 
responses detected by analysis of significantly changing 

genes, we analyzed promoter sequences of genes grouped 
by the gene expression clusters with FIRE [42]. Three 
different motifs were discovered (Additional file  1: 
Figure S8) 1: (G/T)ACGTCA(C/T), 2: (A/C/T)(A/T)
TTAG(C/G)C(A/G/T) and 3: (A/G/T)TA(C/G)GC(A/T)
A.

Motif 1 (ACGTCAT) is over represented in promoters 
of genes in gene expression cluster 5 (Additional file  1: 
Figure S4) and it has been found previously from Fusar-
ium graminearum [43], Saccharomyces cerevisiae [44] 
and Schizosaccharomyces pombe [45] and it is involved 
in regulation of the environmental stress response. clus-
ter 5’s genes peak in 40 h time point, but do not show a 
response in lipase strains (LipPr4d and LipPr4dCt).
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Motif 2 (TTTAGCC) is typically found on the opposite 
strand (Additional file 1: Figure S7) i.e. its complement 
is GGCTAAAA which is the XlnR motif in Aspergillus 
species [46–48] and the motif of the orthologous Xyr1 in 
T. reesei [20, 49, 50]. It is over represented in clusters 24 
and 28 and under represented in cluster 5. It is found in 
38  % of the 119 genes in cluster 24 and in 43  % of the 
65 genes in cluster 28. In these two clusters it is found 
in 10 transporter genes, three amino acid metabolism 
genes (including ARG1 82619 EC: 6.3.4.5), in five glyco-
side hydrolases (including xyn2 123818), in three genes 
related to protein folding (ORP150 35465, FKBP 33895 
and pdi1 122415) and two secondary metabolism related 
genes (including the nonribosomal peptide synthase 
gene 60458).

Motif 3 (TAGGCAA) is over represented in cluster 17 
and under represented in cluster 5 and 31. Cluster 17 
contains only 12 genes. These show a higher plateau at 24 
and 40  h in high producing strains (LipPr4d, LipPr4dCt 
and Cel4dCt) in their gene expression (Additional file 1: 
Figure S4). The cluster contains 2 IPR003819: “Taurine 
catabolism dioxygenase TauD/TfdA”—family proteins 
that are related to sulphur metabolism.

Comparison to previous T. reesei transcriptomics work
In order to see whether the gene expression responses 
we detect are specific for this experiment or universally 
seen in T. reesei batch cultivations we looked for sig-
nificant overlap of our gene expression clusters between 
gene regulation modules from [51]. These modules 
were predicted with Genomatica [52] with improved 
post processing. The data includes 105 gene expression 
microarray samples (each an average of three repeats) 
from [6, 12, 15] and unpublished data. Out of all the 
gene expression clusters, genes of clusters 5, 22, 28 and 
31 were found to significantly (p < 0.00001) overlap with 
genes of some specific module with 10, 39, 24 and 10 % 
of their genes, respectively, found in the most overlap-
ping module.

More specifically, we wanted to know if the gene 
expression responses in batch cultivation correlate with 
extracellular protein production rate (g/gCDW h) simi-
larly as they correlate in a chemostat cultivations. To this 
end we compared the correlation of each gene’s expres-
sion to extracellular protein production rate (g/gCDW 
h) in this work and in [6] (Additional file  1: Figure S9). 
We found no over all correlation. However, for example 
pdi1’s correlation to protein production rate in this work 
is 0.69 and in [6] it is 0.8. The respective numbers for bip1 
are 0.66 and −0.31. The genes that have correlation of at 
least 0.8 in both works include two genes of cluster 24, 
transcription factors and transporters, but no secretion 
factors (Table 5).
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Flux balance analysis with a genome wide stoichiometric 
model
In order to understand how the variable protein pro-
duction load reflects on intracellular metabolism, we 
carried out flux balance analysis [53, 54]. As a model 
we used a CoReCo [55] created T. reesei genome wide 
metabolic model with an experimentally defined bio-
mass function (manuscript under preparation, Biomod-
els MODEL1604140000). The model was constrained by 
the measured growth rate and uptake and secretion rates 
determined from cultivation media metabolite accumu-
lation data (Figs. 1, 2). For each time point of each culti-
vation we created a specific model to simulate reaction 
fluxes in those specific conditions. To estimate the per-
formance of our modelling we predicted extracellular 
protein production rate in each sample point (Fig.  7). 
The linear correlation between predicted and measured 
protein production rate g/gCDW h is r = 0.51 with a 
p < 0.0000006.

We then filtered the simulated flux distributions 
with flux variability analysis (FVA) [56] to remove 
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Table 5  Genes with over 0.8 correlation to specific protein production rate in this publication and in [108]

JGIno Class Cluster Extension SGD best hit Description Location

41248 Carbohydrate esterase Family 3 Candidate acetyl xylan esterase (EC.3.1.1.72)

73005 Glycoside hydrolase Family 79 Candidate beta-glucuronidase (EC.3.2.1.-, 3.2.1.31) Secreted

69840 Metabolism Fatty acid SPS19 Peroxisomal 2,4-dienoyl-CoA reductase, auxiliary 
enzyme of fatty acid beta-oxidation

23223 Metabolism Amino acid GLY1 Threonine aldolase, catalyzes the cleavage of 
l-allo-threonine and  l-threonine to glycine. 
Involved in glycine biosynthesis

107218 Metabolism Carbohydrate Carbohydrate kinase

104071 Regulatory functions Pannzer: Zn(2)-C6 fungal-type DNA-binding 
domain (IPR001138)

75923 Regulatory functions Transcription factor Pannzer: Fungal specific transcription factor 
domain (IPR021858)

123668 Regulatory functions Histone modification protein GCN5-related N-acetyltransferases

60945 Transport Major Facilitator Superfamily ITR1 Myo-inositol transporter with strong similarity 
to the minor myo-inositol transporter Itr2p. 
Among top sophorose induced genes in [17]

121608 Transport 24 Major Facilitator Superfamily TNA1 High affinity nicotinic acid plasma membrane 
permease, responsible for uptake of low levels 
of nicotinic acid

78833 Transport Pannzer: Fucose permease. Among top induced 
transporters on cellulose and sophorose in [17]

66370 RNA Exonuclease

67541 Transport MFS, Sugar MAL31 Maltose permease, high-affinity maltose trans-
porter (alpha-glucoside transporter)

70998 Transport Amino acid permease HNM1 Choline transporter (permease) that also controls 
the uptake of nitrogen mustard

111495 Unknown Secreted

104227 Unknown Secreted

105444 Unknown Secreted

103048 Unknown 24



Page 15 of 26Pakula et al. Biotechnol Biofuels  (2016) 9:132 

undeterminable fluxes and combined the remaining 
fluxes into a single data set. In order to discover major 
trends in this data set we clustered reactions by their 
fluxes with Bayesin hierarchical clustering [41] (Fig.  8 
shows a subset, while all are shown in Additional file 1: 
Figure S10) and carried out enrichment analysis for the 
clusters (Table 6).

Flux clusters 1, 2, 3, 4 and 5 follow closely the growth 
rate (1/h) with positive (1, 2 ,3 and 4) or negative (5) cor-
relation. After the strain specific peak in growth rate at 
16 or 24   h the flux of these reactions decreases. These 
clusters include reactions for major biosynthesis path-
ways for nucleotides, amino acids and fatty acids.

Flux cluster 13 displays a markedly different behavior 
in the high producing strains (LipPr4d, LipPr4dCt and 
Cel4dCt) in comparison to the low producing strains 
(Cel4d, CutCBHd and CutCBHdCt). It is enriched 
in reactions of cysteine and methionine metabolism. 
Genes responsible for cysteine and methionine metabo-
lism enzymes also uniquely emerge from analysis of the 
gene expression data (Fig.  9). The reactions of cysteine 
and methionine metabolism in flux cluster 13 constitute 
the methionine salvage pathway [57]. This pathway recy-
cles sulphur from 5′-methylthioadenosine and it shows a 
higher flux in high producing strains particularly in Lip-
Pr4d. In parallel, the gene expression of enzyme synthe-
sizing cysteine (56350, EC: 2.5.1.47, cysteine synthase, 
gene expression cluster 28), the major sulphur contain-
ing metabolite, correlates significantly with the extra-
cellular protein production rate. In contrast, the flux 
through this reaction does not follow the extracellular 
protein production rate nor the gene expression of its 
enzyme (Fig. 9).

Discussion
In order to dissect the effect of variable protein produc-
tion load to the secretory machinery and physiology of T. 
reesei in batch cultivations, sufficient variation in protein 
production is required. In our data set, a 1.7 times higher 
protein amount was produced by the highest producing 
strain LipPr4d, i.e. the lipase producer, as compared to 
the lowest producing strain CutCBHd. Together with the 
above presented results this clearly shows that sufficient 
variation was reached. The range of protein amount pro-
duced is typical for T. reesei cultures on minimal medium 
[58] and the specific protein production rate reaches 
levels reported for industrial protocols [16, 59]. As a 
carbon source we selected cellobiose. Cellulose or other 
more complex lignocellulosic material would have been 
likely to lead to stronger induction of protein produc-
tion. However, in order to be able to quantify the carbon 
source uptake rate to enable stoichiometric modelling, 
we needed a defined carbon source.
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A number of variables, such as growth phase, growth 
rate or the specific product proteins itself, can confound 
the effects of the load of protein production on transcrip-
tome and physiology. We try to overcome these problems 
firstly by including variation of these variables in the data 
set and secondly by data analysis methods. All of our 
strains have different specific growth rates and produce a 
different protein mixture, some with heterologous prod-
uct proteins and some with different sets of endogenous 
proteins. Hence, we are able, to a great extent, to control 
for these factors and detect responses that are not merely 
results of such confounding factors. On the data analy-
sis side we use a combination of correlation, differential 
expression and clustering methods to overcome biases in 
data and shortcomings of individual methods. For exam-
ple gene expression cluster 5 (Additional file 1: Figure S4) 

shows a peak of expression at 40  h in all strains except for 
the lipase (LipPr4d and LipPr4dCt) strains. The cluster 
is enriched in genes which are expressed at a significantly 
lower level in the high producing strains (Cel4dCt, Lip-
P4rd and LipPr4dCt) than in the low producing strains 
(Cel4d, CutCBHd and CutCBHdCt) at 40   h (Addi-
tional file  1: Figure S6). However, the responses of the 
lipase production strain (LipPr4dCt) and cellulase dele-
tion control strain (Cel4dCt) (i.e. the strains producing 
protein best) at 40h are quite opposite even though their 
protein production rate (Fig. 1f ) and amount of protein 
produced at this time point are almost identical (Fig. 1b). 
Hence, expression of the genes in cluster 5 is not effected 
by the protein production load but by some other factors. 
Without including sufficient variation in the experimen-
tal design this response could be easily misinterpreted.

Table 6  Enrichment of metabolic pathway is flux clusters

Pathway ID Pathway name Cluster Count of ECs p value

LYSINE-AMINOAD-PWY Lysine biosynthesis IV 1 4 0.0000582

PWY-3081 Lysine biosynthesis V 1 4 0.0000582

ARO-PWY Chorismate biosynthesis I 2 6 0.0004460

HISTSYN-PWY Histidine biosynthesis 2 7 0.0007221

PWY-6163 Chorismate biosynthesis from 3-dehydroquinate 2 4 0.0062252

PWY-6123 Inosine-5-phosphate biosynthesis I IMP biosynthesis I PWY-6124 inosine-5-phosphate 
biosynthesis II

2 3 0.0226875

PWY-6124 Inosine-5’-phosphate biosynthesis II 2 3 0.0226875

TRPSYN-PWY Tryptophan biosynthesis 2 3 0.0226875

rn00400 Phenylalanine, tyrosine and tryptophan biosynthesis 2 11 0.0428314

PWY-6519 7-keto-8-aminopelargonate biosynthesis I 5 7 0.00000008

PWY-6282 Palmitoleate biosynthesis I 5 4 0.0005743

FASYN-ELONG-PWY Fatty acid elongation-saturated 5 3 0.0012710

PWY0-862 (5Z)-dodec-5-enoate biosynthesis 5 3 0.0012710

PWYG-321 Mycolate biosynthesis 5 3 0.0012710

PWY-5989 Stearate biosynthesis II (bacteria and plants) 5 3 0.0047122

PWY-5971 Palmitate biosynthesis II (bacteria and plants) 5 3 0.0109189

PWY-5994 Palmitate biosynthesis 5 3 0.0109189

GO:0004312 Fatty acid synthase activity 5 3 0.0328365

HOMOSERSYN-PWY Homoserine biosynthesis 8 3 0.0093657

SUCSYN-PWY Sucrose biosynthesis I 8 3 0.0318091

PWY-5901 2,3-dihydroxybenzoate biosynthesis 9 3 0.0000052

rn01053 Biosynthesis of siderophore group nonribosomal peptides 9 3 0.0000052

rn00364 Fluorobenzoate degradation 12 3 0.0007013

rn00361 Chlorocyclohexane and chlorobenzene degradation 12 3 0.0034159

rn00627 Aminobenzoate degradation 12 3 0.0034159

rn00270 Cysteine and methionine metabolism 13 7 0.004274

ARGSYNBSUB-PWY Arginine biosynthesis II (acetyl cycle) 14 4 0.0000001

GLUTORN-PWY Ornithine biosynthesis 14 3 0.0000052

PWY-5154 Arginine biosynthesis III 14 3 0.0000208

rn00330 Arginine and proline metabolism 14 4 0.0190572
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Fig. 9  Cysteine and methionine metabolism. Enzymes which reactions belong to flux clusters are colored, for example C13 is flux cluster 13. 
Enzymes which genes are significantly correlated with protein production rate are encircled in red: 120176, EC:1.13.11.20, cysteine dioxygenase; 
56350, EC: 2.5.1.47, cysteine synthase; 68036, EC:2.5.1.48, cystathionine gamma-synthase; 3823, EC: 2.1.1.14 methionine synthase. Enzyme(s) found 
in gene expression cluster 24 is encircled with green: 53091 EC: 4.3.1.17, in cluster 28 in blue: 76018 EC: 2.5.1.47 and in cluster 21 in yellow: 5233 EC: 
2.6.1.1, 81089 EC: 4.2.1.22. For each gene expression and flux cluster the profile of strain LipPr4d shown. Pathway map from KEGG [107]
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In order to calculate meaningful uptake and secretion 
rates, i.e. first order derivatives, from the concentration 
data of batch cultivations, the measurement data has to 
be either interpolated, smoothed or modeled. Typically 
this is done for example with higher order polynomi-
als, smoothing splines [60] or a Monod model [61]. We 
propose to use heteroscedastic Gaussian processes [38] 
for this task. Gaussian processes infer a distribution of 
all interpolating functions that match the observation, 
instead of a single interpolant. The distribution mean 
characterises the most likely interpolation function, 
which are shown in Figs. 1 and 2 (left). We employ time-
dependent, i.e. heteroscedastic, observation noises that 
can realistically model the differing observation variances 
at different measurement times. Finally, we derive the 
derivative distribution as a second Gaussian process [62], 
whose mean indicates the most likely uptake and secre-
tion rates over time, which are shown on the right side 
column of Figs. 1 and 2. At the first and last time point of 
the time series these rate estimates might slightly suffer 
from lack of preceding and subsequent data, respectively.

We detected a cellotriose-like compound, glucose, glyc-
erol and ethanol from the growth media. For the moment 
we can only speculate about the source of these com-
pounds, but clearly, based on their dynamics, they are 
produced by T. reesei cells or by secreted enzymes. To 
our knowledge this is the first time that such metabolism 
has been reported for T. reesei. The cellotriose-like com-
pound and glucose are likely to be produced by extracel-
lular enzymes from the carbon source cellobiose. Indeed, 
cellotriose production from cellulose has been described 
for an extracellular extract of Streptomyces by Elwyn T. 
Reese [63]. Furthermore, it has been proposed that cel-
lotriose and cellotetraose act as cellulase inducers in 
Phanerochaete chrysosporium [64] and that production of 
transglycosylation products from cellobiose is important 
for cellulase induction of T. reesei [9]. The formation of 
the cellotriose-like compound we detect, could be a side 
activity of CAZymes expressed at low basal level even in 
non-inducing conditions [65], which after detection by T. 
reesei enables full induction of the cellulytic system as has 
been previously suggested (for review see [8]). The fact 
that most of this cellotriose-like compound is produced 
by the cellulase deletion strain Cel4d (Fig.  2) suggests 
that it is made by an auxiliary enzyme, whose produc-
tion is increased by cellulase deletion. Transport system 
for such small molecule inducers have been described 
[66, 67] and accordingly 5 out of our 18 top extracellular 
protein production rate correlated genes in continuous 
and batch conditions are transporters (Table 5). In addi-
tion the putative lactose and/or cellobiose permease crt1 
(3405) [13, 67] lies beside the homologue of Neurospora 
crassa clr2 (26163) [15, 23] found in cluster 24 and having 

a FIRE predicted Xyr1 element on its promoter region. 
The rlog2 expression values of crt1 and clr2 are correlated 
with a Pearson correlation of 0.94 in our experiment, 
hence they are likely to be commonly regulated also in 
general. Co-expression of clr2 and crt1 under cellulase 
inducing conditions have also been reported previously 
[15].

Glucose, like the cellotriose-like compound, can be 
expected to be a product of extracellular enzymes hydro-
lysing the carbon source cellobiose or the cellotriose-
like product. However, why would it accumulate in 
conditions where carbon source starts to be consumed 
and there is ample living biomass? The answer could lie 
in the discrepancy between cellobiose consumption rate 
and growth rate (Figs. 1e, g, 3b). Although these two vari-
ables correlate strongly, the dynamic range of the growth 
rate is smaller and in particular the cellobiose uptake rate 
decelerates faster than the growth rate at 40–64 h. Hence, 
while the cells decelerate cellobiose uptake, the already 
secreted cellulotic system is not regulated and therefore 
residual glucose is temporarily accumulated.

Glycerol and ethanol are likely to be products of intra-
cellular metabolism secreted to the growth medium. 
Glycerol is produced by Saccharomyces cerevisiae under 
anaerobic conditions, i.e. while it is producing ethanol, 
to compensate for cellular reactions that produce NADH 
and therefore to balance its redox state [68]. In addition, 
glycerol is produced as a response to a number of stresses 
in S. cerevisiae such as osmotic and oxidative stress [69, 
70].

In our study, glycerol production was detected in all 
the cultures at the time when the biomass amount in the 
cultures was the highest (i.e. at 60   h), whereas ethanol 
was produced only in the cultures of the strain producing 
cutinase (CutCBHd) and its control strain (CutCBHdCt) 
at a time period preceding the glycerol production phase 
(i.e. from 16–24   h). It is possible that there would be 
transient oxygen limitation during the cultivation phase 
when biomass reaches the maximum level and starts to 
decline, i.e. at the same time when glycerol production 
was detected. However, due to the differences in the pro-
duction time points, a direct link between glycerol and 
ethanol production in T. reesei is less plausible. At the 
time when glycerol production is detected, at 40–64  h, 
respectively, most protein production has already taken 
place. Possible stress conditions at that stage could be 
due to accumulation of vesicles and oxidative stress from 
protein folding [28, 71, 72].

The gene expression clusters whose expression cor-
relates well with the rate of glycerol production are 
enriched in genes that encode proteins acting in the later 
steps of protein secretion after ER. These genes tend to be 
expressed at a higher level in the strains producing high 
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amount of protein at 64   h as compared to the strains 
producing less protein (Fig. 5b). Hence, although there is 
no direct link between protein production and glycerol 
production, the 64h induction of these genes could be a 
response to accumulated protein secretion stress.

Although the ethanol production we detect is low and 
transient, ethanol production has been described for T. 
reesei also previously [73, 74]. We provide the first tran-
scriptomics data set for such conditions which could be 
useful for development of a consolidated bioprocess of 
ethanol production.

We measured the concentrations of intracellular amino 
acids for time points 24, 40 and 64  h and found that the 
case-control strain pairs resemble each other, indicating 
that the strain history and other properties of the strains 
are more important explanatory factors for the intracel-
lular amino acid content than the protein production 
load. Given these circumstances we did not try to use the 
intracellular amino acids for modelling, however most of 
the amino acids, especially vacuolar storage amino acids 
arginine and glutamine [75, 76], exhibit a clear downward 
trend over the cultivation time (Additional file  1: Fig-
ure S3). This apparent use of storage amino acids could 
explain why our flux balance analysis in many cases pre-
dicts lower protein production rates than are measured, 
in particular for early the time points at 16 and 24   h 
(Fig.  7). The cells could contain resources stored in the 
early phase of the cultivation which are not covered by 
our modelling, but which are in reality used in protein 
production.

It has been shown that protein production rates can 
be predicted for Komagataella phaffii (Pichia pasto-
ris) based on online measurements of OUR and CER by 
a stoichiometric model [77]. Also in our data set such 
a relationship exists (Fig.  3f ), but it breaks down in the 
samples where the protein production rate is the highest. 
In these sampling points the production rates are approx-
imately 1000 times higher than in [77]. In general, our 
protein production rates are 10 to 100 times higher than 
those used in previous stoichiometric modelling of fungal 
protein production systems [32, 77–79]. Hence, the com-
bination of T. reesei metabolic model and our cultivation 
data set provides a set up of modelling protein produc-
tion in far more relevant conditions for industrial protein 
production. This could also indicate that at protein pro-
duction rates typical for T. reesei yet undiscovered meta-
bolic interactions exist.

It has been argued that the metabolic activity of cells, 
i.e. the flux through metabolic reactions, is controlled 
by the rate of carbon source uptake or by the rate of fol-
lowing key reactions [80–82]. As flux and transcript 
levels do not correlate in general in eukaryotes [83, 84] 
at least in the central carbon metabolism, what then 

controls transcript levels? In our experiment, based on 
the correlation of gene expression levels and cultivation 
variables (Table 2), the concentration of biomass and car-
bon source are the most important determinants of the 
transcriptome, effecting a similar set of genes. Although 
it has been shown that cell density has an effect on the 
trancriptome of T. reesei, the carbon source availability 
is a far more fundamental question for an organism and 
hence it is likely that the carbon source concentration is 
the main determinant of transcriptome. The fact that the 
carbon source uptake rate and carbon source concentra-
tion both exert control on different cellular levels high-
lights the importance of assessing both factors in order to 
understand the cell.

At the transcriptome level we find two major 
responses in the secretion machinery and three major 
responses in amino acid metabolism. Regarding the 
amino acid metabolism, the most prominent response 
is the general downward regulation of primary metabo-
lism genes with declining carbon source concentration 
(mainly gene expression cluster 31, Fig.  4). Secondly, 
there is the induction of starvation related amino acid 
metabolism genes that have a negative correlation with 
the carbon source concentration (cluster 1). Thirdly, a 
special sub set of a amino acid metabolism genes is cor-
related with the protein production rate and differen-
tially expressed between low and high producing strains 
(cluster 24, peak at 16  h and cluster 28 peak at 24  h) and 
putatively regulated by Xyr1. However, it is not obvious 
from our data why these individual genes are regulated.

The development of a stoichiometric genome wide 
metabolic model is an incremental project as exempli-
fied by the progress from first published S. cerevisiae 
model [85] to the latest S. cerevisiae consensus model 
Yeast 7 [86]. Our T. reesei model was constructed with-
out manual refinement though the CoReCo pipeline [55]. 
We have shown that the performance of models created 
using CoReCo is comparable to early S. cerevisiae mod-
els [55] in simulations. Our ability to predict protein pro-
duction rates in this experiment with the T. reesei model 
shows its functionality and usefulness (Fig. 7). Overall the 
model predicted protein production rates of almost half 
the speed than were measured. Cellulases are heavily gly-
cosylated proteins, a fact which our current model does 
not take this into account, but rather tries to produce all 
protein mass from amino acids. Amino acids are energet-
ically very costly to produce for the cellular metabolism. 
Hence, the actual use of stored resources by the cells and 
omission of glycosylation could explain the prediction of 
lower than measured protein production rates.

The model predicts particularly high protein pro-
duction rates at 40   h in comparison to the measured 
ones. As the transcriptome is mainly determined by the 



Page 20 of 26Pakula et al. Biotechnol Biofuels  (2016) 9:132 

carbon source concentration (Table 3), which at 40  h has 
dropped 20–50  % from 16  h (Fig. 1c), this discrepancy 
is likely a result of transcriptional repression of main 
cellulases transcripts and/or the actual protein secre-
tion machinery (Figs. 4, 6 clusters 24 and 28), yet again 
another factor not taken into account by our stoichio-
metric model.

The metabolism of cysteine and methionine (a precur-
sor of cysteine) is not only highlighted by transcriptomics 
data, but also by our flux modelling (Fig. 9). In contrast 
to most metabolic reactions that correlate with the car-
bon source uptake rate as expected, the flux through 
the methionine salvage cycle exhibits a higher correla-
tion with the protein production rate. In parallel, the 
gene expression for a cysteine synthase 76018 correlates 
with the protein production rate, but the flux through 
this reaction does not. Hence, it could be that cellulase 
protein production requires elevated cysteine and con-
sequently methionine metabolisms and possibly flux to 
cysteine. Overall asparagine and cysteine are the two 
most over represented amino acids (43 and 37  % more, 
respectively) when comparing the relative amino acid 
contents of sequences of T. reesei proteins found to be 
secreted based on 2D-gel analysis [6] and other T. reesei 
proteins. More fundamentally, the capability to assimi-
late sulphur could be the limiting factor. A regulatory 
link between sulphur metabolism and cellulase expres-
sion has been shown earlier [87]. The induction of tau-
rine catabolism genes at 24 and 40  h in high producing 
strains (LipPr4d, LipPr4dCt and Cel4dCt) also high-
lights the relevance of sulphur metabolism. In T. reesei’s 
natural environment taurine is a major source of sulphur 
[88]. Hence, the induction of these genes could be a natu-
ral, yet in industrial conditions futile, response to lack of 
sulphur.

The protein secretion machinery responds in our 
experiment by ER related genes that are correlated to pro-
tein production rate and are putatively controlled by Xyr1 
(Fig.  4 cluster 24) and by genes that are involved in the 
later stages of the secretory pathway, after ER and which 
are correlated to the glycerol production rate (Fig. 4, clus-
ter 22). Such a regulation of the secretion machinery and 
amino acid metabolism by Xyr1 has not been previously 
implicated based on expression data, although genome 
sequence analysis has proposed that Xyr1 would regulate 
these and numerous other functional categories [50]. As 
no hac1 splicing was detected, it seems that in these con-
ditions mere Xyr1 controlled induction of the secretion 
machinery is sufficient to cope with the protein produc-
tion load.

We found that the expression of main cellulases fol-
lowed the protein production rate (Fig. 6) and that their 
lack was compensated by expression of other cellulases. 

The induction of other cellulases implies that the repres-
sion under secretion stress (RESS) response was allevi-
ated in the Cel4d strain [26].

In order to assess our results in the light of previous 
experiments we compared our analysis to an analysis of a 
large set of T. reesei microarray data [51] and found that 
genes involved in the major responses discussed above 
(gene expression clusters 22, 28 and 31, Fig. 4) are also co-
regulated in the microarray data set. Furthermore, gene 
expression cluster 24 contains four genes (clr2 26163, ace3 
77513, 108381, 70351) previously implicated as regulators 
of cellulase gene expression [15]. The overexpression of 
ace3 77513 and 108381 has been shown to have an effect 
on cellulase gene expression [15, 89, 90]. We have previ-
ously shown that although the level of paralogy in T. reesei 
genome is very low in general [91, 92], the genes of central 
carbon metabolism enzymes nevertheless have paralogous 
gene pairs with opposite regulation in response to protein 
production. Out of seven pairs of paralogues reported in [6] 
we detected five pairs with opposite regulation in response 
to protein production (LPD1a 67699, LPD1b 77373; LSC1a 
22910, LSC1b 2223; LSC2a 103451, LSC2b 80881; PDB1a 
76744, PDB1b 122745; TKL1-2a 120635, TKL1-2b 2211; 
TPI1a 68606, TPI1b 121789;) in this work. We also com-
pared the correlation of gene expression to protein produc-
tion rate between this experiment and [6] and found no 
similarity between the two studies. This is not surprising 
given the completely different physiological conditions in 
a chemostat [6] and a batch cultivation experiment. In this 
experiment we find that the carbon source concentration is 
the main determinant of transcriptome. However, in a che-
mostat the carbon source concentration is zero as all avail-
able carbon is immediately taken up. Therefore, in these 
batch experiments the growth rate appears as only a very 
minor determinant of the transcriptome while in a che-
mostat it emerges as dominant [6]. Nevertheless, central 
carbon metabolism paralogues and known key secretion 
pathway factors like pdi1 (gene expression correlation to 
protein production rate is here 0.69 and 0.80 in [6] ), dpm2 
(0.56 and 0.77, respectively) emerge from both experi-
ments. Hence, genes correlating with the protein produc-
tion rate in these completely different cultivation regimes 
could reveal novel key factors (Table 5).

Conclusions
It has been argued that the flux of carbon source uptake 
can actively control metabolic activities of the cell. In our 
experiment the carbon source concentration appears as 
the main controller of the transcriptome. These parallel 
control systems would allow the cell to integrate infor-
mation at different time scales: i.e. short-term responses 
(such as changes in metabolism in less than seconds) and 
long-term responses (such as transcriptional changes 
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over hours). Their parallel existence also resolves the sur-
prising lack of correlation between flux and transcrip-
tome in eukaryotes.

Various approaches have been taken to improve protein 
production by filamentous fungi and T. reesei specifically. 
Manipulation of transcription factors has proven to be 
an efficient method to increase cellulase protein expres-
sion in many cases [15, 19]. Our modelling proposes that 
stoichiometry would allow production of more cellulases 
than measured, but the transcriptome becomes repressed 
due to depletion of the carbon source. Thus, the adjust-
ment of metabolic control and the transcriptional regu-
lation offers an interesting target for modification when 
aiming at improved protein production, e.g. by alleviating 
such a repression.

As a completely novel target for improvement of cel-
lulase production our data analysis and modelling pro-
poses processes of sulphur assimilation and cysteine 
metabolism. As amino acid metabolism is essential and 
tightly controlled at many levels detailed modelling 
will be required to select the correct targets and their 
manipulations.

Methods
Strains
The strains used in this study were all derivatives T. ree-
sei VTT D-00775.The major cellulase genes were deleted 
by successive rounds of genetic modification of T. reesei 
VTT D-00775 �mus53 resulting in the strain T. reesei 
VTT D-00775 �mus53 �cbh1 �cbh2 �egl1 �egl2. The 
cellulase deletion strain was assigned in this study as 
Cel4d and corresponding control strain as Cel4dCt.

Coprinus cinerea cutinase (CC1G_09668.1) was 
expressed from cbh1 locus under cbh1 promoter and 
terminator using the T. reesei VTT D-00775 � cbh1 as a 
host [93]. The cutinase producing strain was assigned as 
CutCBHd in this study and the control strain, T. reesei 
VTT D-00775 in which cbh1 was replaced by an acetami-
dase marker gene, as CutCBHdCt.

Dipodascus capitatus lipase was expressed under cbh1 
promoter and terminator in T. reesei strain VTT D-00775 
�mus53 deleted for four protease genes. The codon 
usage in the cDNA encoding the lipase was adapted to 
the codon bias of T. reesei genes and the native signal 
sequence (24 aa) was replaced with cbh1 signal sequence 
of T. reesei and a N-terminal Strep tag was added in the 
expression construct. The lipase producing strain is 
assigned as LipPr4d in this study and the corresponding 
control strain as LipPr4dCt.

Cultivation procedures
Fungal precultures for bioreactors were carried out as 
follows. 8 × 107 fungal spores were transferred to 400 ml 

of culture medium (20 g/l cellobiose, 7.6 g/l (NH4)2SO4, 
15.0 g/l KH2PO4, 2.4 mM MgSO4·7H2O, 4.1 mM CaCl2·
H2O, 3.7  mg/l CoCl2, 5  mg/l FeSO4·7H2O, 1.4  mg/l 
ZnSO4·7H2O, 1.6  mg/l MnSO4·7H2O, pH adjusted to 
5.2 with KOH) and cultivated in shake flasks on rotary 
shaker (250 rpm) at 28 ◦C for 3 days. Sartorius Q plus 
bioreactors containing 900  ml of the medium (25  g/l 
cellobiose, 4.4  g/l (NH4)2SO4, 15.0  g/l KH2PO4, 2.64 
mM MgSO4·7H2O, 4.5 mM CaCl2·H2O, 4.1 mg/l CoCl2, 
5.5 mg/l FeSO4·7H2O, 1.54 mg/l ZnSO4·7H2O, 1.76 mg/l 
MnSO4·7H2O) were inoculated with 100 ml of the pre-
culture. Cultivation temperature was 28 ◦C. The pH was 
adjusted 4.8 ±0.1 by addition of KOH or H3PO4. The 
dissolved oxygen saturation level in the cultures was 
>30   %, agitation 500–1200  rpm with the tip speed of 
1.1–2.7 m/s and total aeration flow 0.6 l/min. Samples of 
the cultures were withdrawn at 0, 16, 24, 40, 64, 88 and 
112 h after inoculation of the bioreactors. The mycelial 
samples were separated from the culture supernatant by 
filtering through Whatman 3MM, frozen immediately in 
liquid nitrogen and stored at −80 ◦C for further analysis. 
Culture supernatant samples were stored at −20 ◦C. For 
sugar analytics, 1.5 ml culture supernatant samples were 
acidified by the addition of 10 µl of 97  % H2SO4 before 
storing.

Each strain was cultivated in triplicate and subsequent 
sampling and analyses of all the times points was also 
carried out from each of the three repeats.

Sample preparation and analytics of the bioreactor 
cultures
Biomass dry weight in the cultures was measured by fil-
tering and drying the mycelium samples at 105 ◦C to a 
constant weight (24 h). Sugars, sugar acids and alcohols 
in the culture supernatant and medium were analysed 
using HPLC. Glycerol and cellotriose-like compounds 
were further confirmed with GC-MS and LC-MS, respec-
tively, see Additional file 1: Figures S11, S12. Soluble pro-
tein secreted into the culture medium was measured 
using Bio-Rad Protein Assay kit. Enzyme activity against 
the substrate 4-methylumbelliferryl-β-d-lactoside (MUL) 
was measured as described [94].

Mycelial samples collected at the time points of 16, 24, 
40 and 64   h from the cultures were subjected to tran-
scriptome analysis. Frozen mycelium was ground under 
liquid nitrogen and total RNA was isolated with Trizol 
reagent according to the manufacturer’s instructions. 
RNA was subsequently purified using RNeasy Mini Kit 
(Qiagen, Hilden, Germany) and RNA concentration was 
measured using NanoDrop ND-1000 (NanoDrop Tech-
nologies Inc. Wilmington, DE, USA). Integrity of the iso-
lated RNA was verified using an Agilent 2100 Bioanalyzer 
(Agilent Technologies, Palo Alto, CA, USA).
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For determination of free amino acids in the fungal 
cells, mycelium samples ground under liquid nitrogen 
were resuspended in water. 500  μl aliquots (containing 
10–15  mg dry weight/ml) were sonicated using a MSE 
150 W sonicator (18 μm amplitude, eight cycles of 8  s 
sonication and 30 s cooling on ice between the sonication 
cycles). The samples were first diluted 1/10 and 1/100. 
Dissolved proteins were precipitated with sulfosalicylic 
acid (final concentration of 5   %, w/v) and the samples 
were centrifuged. 10  μl of the supernatant was mixed 
with 10  μl of internal standard solution (25  μM norva-
line, Sigma-Aldrich, St. Luis, Missouri, USA) and 60  μl 
of AccQ·Tag Borate buffer (Waters, Milford, MA, USA). 
The mixture was vortexed for 30 s, 20 μl AccQ·Tag rea-
gent (Waters, Milford, MA, USA) was added and sample 
mixture was instantly vortexed before incubation at 55 ◦C 
for 10 min. Amino acid standards were derivatized as the 
samples. Amino Acid Standard Solution, Amino Acid 
Standards Physiological, Basics, l-isoleusine, glutamine 
and norvaline were all obtained from Sigma-Aldrich 
(St. Luis, Missouri, USA). Amino acid analysis was per-
formed on an Acquity UPLC system, Waters (Milford, 
MA, USA) with diode array detector. Chromatogra-
phy was performed using an Acquity Mass TRAKtm 
(2.1 × 100 mm, 1.7 μm) column, Waters (Milford, USA), 
kept at 43 ◦C. Injection volume was 1 μl. Separation was 
performed using gradient elution with 10  % (v/v) Amino 
Acid Analysis concentrate A in water (A) and Amino 
Acid Analysis eluent B (B) at a flow rate of 0.4  ml/min 
using a gradient elution program. Signal was detected at 
260 nm (2.4 nm resolution, 20 points/s). Standards were 
derivatized as the samples. Ala, Arg, Asn, Asp, Cys, Glu, 
Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, 
Tyr, Val as well as several related compounds were quan-
tified in the samples.

For the determination of total amino acid content of 
extracellular proteins, 100 μl samples of culture superna-
tant were pipetted to hydrolysis tubes (PierceTM Thermo 
ScientificTM) together with the internal standard solu-
tion (norvaline, Sigma-Aldrich (St. Luis, Missouri, USA)) 
and freeze dried. The samples were hydrolysed with 100 µ
l of 6 N HCl for 24 h after which the hydrolysed samples 
were evaporated to dryness and reconstituted in 100 µ
l of H2O. All the samples were further diluted 1/10 and 
1/50. Derivatization was done with AccQ·Fluor rea-
gent kit (Waters (Milford, MA, USA)). AccQ·Fluor rea-
gent was reconstituted in acetonitrile (350 µl), vortexed 
for 10  s, heated at 55 ◦C and vortexed until dissolved. 
AccQ·Fluor Borate buffer (60 µL) and H20 (10 µl) were 
added to10 µl of sample solution (non-diluted and dilu-
tions 1/10 and 1/50) and finally, the AccQ · Fluor reagent 
(20 µL) was added and the sample mixture was instantly 
vortexed for 60 seconds. Samples were preserved at 10 ◦C 

before analysis. Amino Acid Standard Solution, Amino 
Acid Standards Physiological Basics, l-isoleusine and 
glutamine were obtained from (Sigma-Aldrich (St. Luis, 
Missouri, USA)). The standards were derivatized as the 
samples. UPLC analysis of the amino acids was per-
formed on an Acquity UPLC system, Waters (Milford, 
MA, USA) with diode array detector. Chromatography 
was performed using an Acquity Mass TRAK tm (2.1 × 
100 mm, 1.7 µm) column, Waters (Milford, USA), kept 
at 43 ◦C. Injection volume was 1 µL. Separation was per-
formed using gradient elution with 10  % (v/v) Amino 
Acid Analysis concentrate A in water (A) and Amino 
Acid Analysis eluent B (B) at a flow rate of 0.4  ml/min 
using a gradient elution program. Mass TRAKTM Amino 
Acid Analysis concentrate A and eluent B were obtained 
from Waters (Milford, MA, USA). Signal was detected 
at 260 nm (2.4 nm resolution, 20 points/second). Stand-
ards were derivatized as the samples. His, Ser, Arg Gly, 
Asp, Glu, Thr, Ala, Pro, Lys, Tyr, Met, Val, Ile, Leu and 
Phe were quantified in the samples. In acid hydrolysis, 
Asn is converted to Asp and Gln to Glu. Therefore, quan-
tifications of Asn and Gln as well as acid labile Trp and 
Cys and Met that was oxidised, were not obtained by the 
method.

Cultivation data analysis
From the concentration measurements of various com-
pounds their rates were modeled as heteroscedastic 
Gaussian processes [38] using the ’nsgp’ R package. The 
approach results in probabilistic interpolation models 
for the concentration and allows deriving the first order 
derivatives, i.e. the uptake and secretion rates, in analyti-
cal form resulting in accurate derivative estimates [62]. 
The distribution means were extracted as the most likely 
concentration and rate curves over time. The fit of the 
models to the data is shown in Additional file  1: Figure 
S13.

RNA sequencing and data analysis
RNA library preparation and sequencing was carried 
out by Source BioSciences (Nottingham, UK). In brief, 
TruSeq stranded pair-end library was prepared for each 
of the 72 samples and sequenced with Illumina HiSeq 
2000 for 100 bp for both pair ends. The data has been 
submitted to NCBI SRA as BioProject PRJNA293671. 
Read data was trimmed with SKEWER [95] and qual-
ity controlled with FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Reads were aligned 
with to T. reesei genome version 2.0 [91] retrieved with 
GFF annotations from EnsemblFungi [96] and reads 
counted with R package GenomicFeatures [97]. Quality 
of repeats was assessed with sample wise Principal Com-
ponent Analysis (PCA) of FPKMs. Differential expression 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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analysis of read counts was carried out with DESeq2 
[40] and differentially expressed genes clustered with 
Bayesin hierarchical clustering [41]. Gene annotations 
were retrieved from [6] and T. reesei genome version 
2.0 site (http://www.genome.jgi.doe.gov/Trire2/Trire2.
home.html). Gene set enrichments were calculated with 
GOstats [98] for GO annotations using a custom built 
T. reesei genome annotation AnnotationDBI package 
[99] and with hypergeometric test for other annotations. 
Correlations between cultivation parameters and gene 
expression were calculated as Spearman rank-sum cor-
relations and the false discovery rate was estimated from 
the Q-value [100] using the R package ’qvalue’. All gene 
list comparisons were done with R package GeneOverlap 
[101].

Gene names in capitals are derived from the S. cer-
evisiae according to Saccharomyces Genome Database 
[102] while names in italics are from other fungal species 
as specified. Numbers after gene names or descriptions 
refer to T. reesei genome version 2.0 gene identifiers.

Flux balance analysis
All stoichiometric modeling was carried out with the R 
package Sybil [103]. A single FBA model was constructed 
for each time point of each strain. FBA was constrained 
with the modeled rates of carbon source uptake and 
growth. The carbon sources cellotriose, cellobiose and 
glucose were combined into one glucose uptake reaction 
and glycerol modeled as taken up separately. The lower 
and upper bound for each of these three constraints 
(growth rate, glucose uptake and glycerol uptake) was 
relaxed by ±5  % from the actual modeled rate to allow 
sufficient space for the solver to find solutions. Extracel-
lular protein production was modeled as a single reaction 
as in [104] and used as objective. For determining the 
equation describing protein production from its amino 
acid precursors, the measured amount of total protein 
and the ratio of the measured amino acids were used. For 
the amino acids without measurement data the ratio was 
estimated based on the codon frequency in transcripts 
encoding secreted proteins in RNA sequencing data 
(Additional file  2: Table S6). To transform the extracel-
lular protein rate of (g/gCDW h) to mmol/(gCDW h) a 
molecular weight of 56545 Da was used. This is the aver-
age of protein sequence based molecular weights of pro-
teins found to be secreted based on 2D-gel analysis [6]. 
All flux distributions from FBA were retrieved with “min-
imization of absolute total flux”-step in Sybil [103] to get 
realistic flux distributions. The flux distributions were 
subsequently filtered with FVA (flux variability analysis).

In order to filter out fluxes that could not be reliably 
determined with the given constraints, only those reac-
tions whose flux did not vary more than five flux units in 

any condition in FVA were kept. Combined fluxes from 
all models were clustered with Bayesin hierarchical clus-
tering [41] and reactions of clusters mapped by EC to 
pre-defined pathways in KEGG [105] and Metacyc [106] 
databases. Enrichment of EC cluster members on prede-
fined pathways was quantified with the hypergeometric 
test.
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