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Abstract
Background  Clear cell renal cell carcinoma (ccRCC) is the most common subtype of RCC with high rates of 
metastasis. Targeted therapies such as tyrosine kinase and checkpoint inhibitors have improved treatment success, 
but therapy-related side effects and tumor recurrence remain a challenge. As a result, ccRCC still have a high mortality 
rate. Early detection before metastasis has great potential to improve outcomes, but no suitable biomarker specific for 
ccRCC is available so far. Therefore, molecular biomarkers derived from body fluids have been investigated over the 
past decade. Among them, RNAs from urine-derived extracellular vesicles (EVs) are very promising.

Methods  RNA was extracted from urine-derived EVs from a cohort of 78 subjects (54 ccRCC patients, 24 urolithiasis 
controls). RNA-seq was performed on the discovery cohort, a subset of the whole cohort (47 ccRCC, 16 urolithiasis). 
Reads were then mapped to the genome, and expression was quantified based on 100 nt long contiguous genomic 
regions. Cluster analysis and differential region expression analysis were performed with adjustment for age and 
gender. The candidate biomarkers were validated by qPCR in the entire cohort. Receiver operating characteristic, area 
under the curve and odds ratios were used to evaluate the diagnostic potential of the models.

Results  An initial cluster analysis of RNA-seq expression data showed separation by the subjects’ gender, but not by 
tumor status. Therefore, the following analyses were done, adjusting for gender and age. The regions differentially 
expressed between ccRCC and urolithiasis patients mainly overlapped with small nucleolar RNAs (snoRNAs). The 
differential expression of four snoRNAs (SNORD99, SNORD22, SNORD26, SNORA50C) was validated by quantitative PCR. 
Confounder-adjusted regression models were then used to classify the validation cohort into ccRCC and tumor-free 
subjects. Corresponding accuracies ranged from 0.654 to 0.744. Models combining multiple genes and the risk factors 
obesity and hypertension showed improved diagnostic performance with an accuracy of up to 0.811 for SNORD99 
and SNORA50C (p = 0.0091).

Conclusions  Our study uncovered four previously unrecognized snoRNA biomarkers from urine-derived EVs, 
advancing the search for a robust, easy-to-use ccRCC screening method.
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Background
There are more than 330,000 new cases of renal cell car-
cinoma (RCC) and 140,000 related deaths worldwide 
each year [1]. Clear cell renal cell carcinoma (ccRCC) 
is the most common subtype of RCC and is typically 
asymptomatic in its early stages [2]. However, 30% of 
newly detected cases are already metastatic [3], resulting 
in low survival rates [4]. CcRCC is resistant to radio- and 
chemotherapy [1] and often recurs after nephrectomy 
[5]. Targeted therapies have been developed over the 
past decades [6]. Older, low-response immunotherapies 
for metastatic RCC [7] have been replaced by tyrosine 
kinase inhibitors and mTOR inhibitors [8–11]. New gen-
eration checkpoint inhibitors show improved efficacy 
in RCC treatment [12–14]. However, not all patients 
respond well and side effects are possible [15]. Despite 
prolonged survival, most patients experience tumor pro-
gression over time [16]. Sub-classification with treatment 
response prediction is essential to advance patient care 
[15]. A prognostic panel for ccRCC [17] and a panel for 
potential adjuvant therapy decision in RCC [18] were 
developed. However, pre-metastatic diagnosis of ccRCC 
bears the greatest potential to improve patient outcomes 
and to reduce the financial and emotional burden of the 
disease.

Computed tomography (CT) is inappropriate for the 
diagnosis of RCC due to frequent false-positive and inci-
dental findings [19]. Ultrasound is a less expensive and 
well tolerated option, but has an overall lower accuracy 
and reduced ability to detect small RCCs [19]. More spe-
cific molecular biomarkers have been identified, but they 
are often less accurate than CT and are laborious and 
expensive. Other drawbacks include reduced sensitiv-
ity with regard to tumor size [20, 21] and poor discrim-
ination of benign tumors [22]. Thus, there is a need for 
cheaper, non-invasive screening methods that are more 
accurate and easier to use for early detection of ccRCC 
and effective therapy initiation [19].

Extracellular vesicles (EVs) are circulating particles in 
bodily fluids that carry RNA, DNA, proteins and lipids 
from their host cell [23]. Exosomes, a subtype of EVs, 
develop in the endosomal system [23]. EVs are taken up 
by recipient cells and play a significant role in cellular 
information exchange, particularly in the tumor micro-
environment, affecting fibroblasts, endothelial, immune 
and cancer stem cells [24, 25]. EVs elicit functional 
responses and mediate cellular properties [23]. They are 
involved in tumorigenesis, metastasis and immune eva-
sion [26], with tumorigenic EVs inducing signaling and 

phenotypic changes in the recipient cells through RNA 
shuttle [27–29].

EVs are a promising source for biomarker discovery 
due to their stability, accessibility and specific content 
[30]. Several miRNAs from serum- and plasma-derived 
EVs have shown diagnostic potential for ccRCC, includ-
ing miR-210, miR-1233 and miR-224 [31–33]. Kidney 
epithelium-derived EVs enter the urinary tract and are 
found in patient urine. In principle, they may reflect the 
molecular pathologic state [30]. However, correspond-
ing research has only started [34]. Urinary EV-derived 
miRNAs, such as miR-30c-5p and miR-205, have shown 
potential as biomarkers [35, 36] and combinations of 
urinary EV-derived miRNAs can differentiate healthy 
subjects from those with benign renal tumors and early-
stage or advanced ccRCC [37]. Besides miRNAs, small 
nucleolar RNAs (snoRNAs) hold promise as biomarkers 
for several types of tumors including ccRCC [38]. Addi-
tionally, studies have explored lipids and proteins from 
urinary EVs as potential biomarkers for RCC [39, 40]. 
Urine EV-derived biomarker assays have the potential to 
support screenings for ccRCC due to the non-invasive 
and pain-free nature of the “liquid biopsy”.

To verify this hypothesis, we investigated urine-derived 
EVs in a cohort of 78 subjects (54 ccRCC and 24 urolithi-
asis patients). Regarding clinical diagnoses, urolithiasis is 
a more relevant control condition than healthy subjects. 
We sequenced and screened RNA transcripts outside 
the usual miRNA realm. We evaluated the differentially 
expressed candidate RNAs for their potential to classify 
ccRCC and tumor-free subjects. Our study uncovered a 
small set of so-far unexplored snoRNAs as gender- and 
age-controlled biomarkers. This is an advance in the 
search for a robust urine EV-derived RCC screening 
method.

Materials and methods
Cohort
Preoperative urine samples were collected from patients 
with ccRCC undergoing partial or total nephrectomy at 
the Department of Urology at the University Hospital 
Dresden, Germany, between May 2014 and July 2017. 
Patients with urolithiasis, who donated spontaneous 
urine before any intervention, served as tumor-free con-
trol group. A total of 78 subjects (54 ccRCC patients and 
24 controls) were analyzed in the study. Samples with 
remnants of DNA (defined as a DNA/RNA ratio > 0 and 
a coverage variance < 0.5) were removed from the dis-
covery cohort (7 ccRCC patients and 8 controls). Thus, 
the discovery cohort (n = 63) consisted of samples from 
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47 ccRCC patients and 16 controls (Fig.  1) that under-
went RNA-Seq. Nevertheless, all 78 initial subjects were 
included in the validation cohort for expression analysis 
by quantitative PCR (qPCR). The distribution of gen-
der, age, presence of obesity and hypertension as well as 
TNM stage of the ccRCC patients and urolithiasis con-
trols as well as information on urine samples and RNA 
yield are shown in Tables 1 and 2 and Suppl. Table S1.

Enrichment, validation and RNA-Seq of urinary EVs
Collected urine specimens (n = 78) with a mean volume 
of 59  ml (range 20–110  ml) were kept on ice and pro-
cessed within 2 h after collection as previously described 
with minor modifications [41]. After an initial centrifu-
gation for 10 min at 1500 g and 4 °C, the urine superna-
tants were frozen at -80 °C until further processing. After 
thawing, 8 ml of urine supernatant were centrifuged for 
5 min at 3200 g and 4  °C. A total of 7 ml of this centri-
fuged supernatant was incubated overnight at 4 °C, with 
2.1 ml precipitation buffer from the miRCURY Exosome 
Cell/Urine/CSF Kit (Qiagen). After two subsequent cen-
trifugations (1st for 30 min and 2nd for 5 min) at 3200 g 
and 4 °C the pellet containing enriched urinary EVs was 
lysed in 1 ml Qiazol (Qiagen) and stored at -80  °C until 

isolation of exosomal RNA. This was accomplished 
using the Direct-zol RNA MiniPrep Kit (Zymo Research) 
according to Fuessel et al. [41]. Finally, the RNA was 
eluted with 50 µl nuclease-free water and subjected to a 
quantity and quality control. The yield, purity and integ-
rity of the exosomal RNA were analyzed with a Fragment 
Analyzer (Agilent Technologies) and the High Sensitivity 
RNA Analysis Kit (DNF-472, Agilent Technologies). The 
median RNA yield was 19 ng (range 4–1797 ng). At least 
1 ng RNA were used for expression analyses by RNA-seq.

Parallel preparations of urinary EVs were used for 
assessment of exosomal proteins (Alix, CD9, CD63, 
CD81, FLOT1, TSG101) by Western blot. Calnexin 
(CANX) served as a control marker for the endoplasmic 
reticulum, which should be absent in exosome prepa-
rations (Suppl. Table S2). Additionally, nanotracking 
analysis was performed on the Zeta View instrument 
according to the manufacturer’s recommendations (Par-
ticle Metrix GmbH) to assess the concentration and size 
distribution of the enriched EVs.

Sequencing libraries were prepared using the SMARTer 
smRNA Seq Kit (TaKaRa Bio Europe SAS) without final 
size selection. The barcoded libraries were pooled and 

Fig. 1  Flow chart of cohort selection and study design. AUC – area under the curve, ccRCC - clear cell renal cell carcinoma patients, PCA – principal com-
ponent analysis, PCR – polymerase chain reaction, ROC – receiver operating characteristics, urolithiasis – control patients
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sequenced 50 bp single-end on a NextSeq500 (Illumina) 
with High Output 75 bp flow cells.

Read trimming and decontamination
Reads were converted from bcl to fastq format using 
bcl2fastq (v2.17.1.14), allowing for one barcode mis-
match, and then trimmed for adapters and quality using 
cutadapt (v2.4) [42] based on recommendations from 
TaKaRa: cutadapt -nextseq-trim = 15 -m 15 -u 3 -a ​A​A​A​A​
A​A​A​A​A​A. Reads were then cleaned from potential con-
tamination by other species using FastQ Screen v0.14.0 

[43]: -conf config.file -nohits -aligner bowtie2–force, 
where config.file specifies the genomes against which 
screening was performed. Next, bowtie2 genome indices 
provided by FastQ Screen were used: sequencing adapt-
ers, PhiX, E. coli, S. cerevisiae, lambda phage, diverse 
mitochondria, diverse rRNA, diverse vectors. Addi-
tional species genomes were searched and downloaded 
on 2019/09/23 as follows: 1529 representative bacte-
ria from NCBI Assembly (query: Search all[filter] AND 
bacteria[filter] AND “latest refseq“[filter] AND “complete 
genome“[filter] AND “representative genome“[filter] 

Table 1  Demographic, clinicopathological and technical characteristics of the included ccRCC patients
Discovery cohort (RNA-seq) Validation cohort (qPCR)

Parameter Category Number [n] Percentage [%] Number [n] Percentage [%]
gender male 36 77 36 67

female 11 23 18 33
age (years) median (range) 64 (40–80) 65 (40–80)
obesity (BMI ≥ 30) yes 12 26 16 30

no 35 74 38 70
hypertension yes 30 64 33 61

no 14 30 17 31
tumor stage pT1 32 68 38 70

pT2 4 9 5 9
pT3 9 19 9 17
pT4 2 4 2 4

Lymph node stage c/pN0 23 49 28 52
c/pN1 2 4 2 4
c/pNx 22 47 24 44

Metastasis stage c/pM0 21 45 27 50
c/pM1 2 4 2 4
c/pMx 24 51 25 46

tumor grade G1 7 15 10 19
G2 32 68 33 61
G3 6 13 9 17
G4 2 4 2 4

urine volume (ml) median (range) 60 (20–110) 59 (20–110)
RNA yield (ng) median (range) 29 (7-304) 32 (7-2196)
The RNA-seq discovery cohort comprised n = 47 of 63 and the qPCR validation cohort n = 54 ccRCC patients of a total of 78 test subjects. The table shows the absolute 
and relative distribution of gender, age and clinicopathological parameters

Table 2  Demographic and technical characteristics of the tumor-free control subjects with urolithiasis
Discovery cohort (RNA-seq) Validation cohort (qPCR)

Parameter Category Number [n] Percentage [%] Number [n] Percentage [%]
gender male 15 94 20 83

female 1 6 4 17
age (years) median (range) 63 (43–77) 62 (43–77)
obesity (BMI ≥ 30) yes 3 19 4 17

no 13 81 20 83
hypertension yes 10 63 14 58

no 6 38 10 42
urine volume (ml) median (range) 58.5 (30–100) 58.5 (30–100)
RNA yield (ng) median (range) 27 (14-1309) 44 (14-3234)
The control group included n = 16 patients with urolithiasis of 64 test subjects in the RNA-seq discovery cohort and n = 24 patients with urolithiasis of 78 test subjects 
in the qPCR validation cohort
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AND (all[filter] NOT “derived from surveillance 
project“[filter] AND all[filter] NOT anomalous[filter] 
); 328 archaea from NCBI Assembly (query: Search 
all[filter] AND archaea[filter] AND “latest refseq“[filter] 
AND “complete genome“[filter] AND ( all[filter] NOT 
“derived from surveillance project“[filter] AND all[filter] 
NOT anomalous[filter] )); 280 fungal species from NCBI 
RefSeq, and from Ensembl: barley (Hordeum_vulgare.
IBSC_v2), wheat (Triticum_aestivum.IWGSC), and 
from NCBI: maize (Zea mays), rice (Oryza sativa), sor-
ghum, soybean (glycine_max), grape (vitis_vinifera). 
The genomes were indexed using bowtie2 with default 
parameters.

Alignment and expression quantification
Clean reads were then aligned to the 1000 Genomes Proj-
ect Phase II reference, including the d5 decoy sequences 
(hs37d5) and the Gencode annotation (GRCh37.p13), 
using STAR (v2.5.2b) [44] in 2-pass mapping mode. 
Splice junctions from the first mapping pass were 
inserted as a guide for the second pass. Stricter than 
default mapping parameters were used: --alignIntronMax 
1 --outFilterMismatchNmax 1 --outFilterMatchNmin 
16 --outFilterMatchNminOverLread 0 --outFilterScor-
eMinOverLread 0 --outFilterMismatchNoverLmax 0.03. 
Uniquely mapped reads with a minimum of 25 match 
positions and a maximum of 10% deletions, insertions 
or soft-clipped positions were retained. Samples with 
DNA signals were excluded from the discovery cohort 
when DNA concentration was > 0 and coverage-vari-
ance (CV) was < 0.5. We calculated sample-wise CV as 
follows: divide all chromosomes into tiles of 1 M bases, 
quantify the standard deviation and mean read cover-
age of the tiles (samtools bedcov) for each chromosome, 
then divide the median of the standard deviations by 
the median of the mean coverages. In the case of DNA 
sequencing, coverage is expected to be very uniform 
across chromosomes, while coverage in RNA sequenc-
ing (RNA-seq) varies widely as it reflects gene expres-
sion. We considered CV as an indicator of sufficient RNA 
concentration in the sample (CV vs. DNA/RNA con-
centration ratio: Pearson R = -0.38, p = 0.0004). The CV 
of the entire cohort ranged from 0.2 to 1.6. This resulted 
in a discovery cohort of 47 ccRCC and 16 urolithia-
sis control patients. We found that reads rarely covered 
entire exons or genes and therefore analyzed transcribed 
regions instead. For this purpose, we divided the whole 
genome into 30,956,785 contiguous regions of 100 nt and 
counted the number of reads mapped to each region for 
each sample using bedtools [45]. We later analyzed only 
regions with evidence of transcription defined as having 
at least five mapped reads in at least 20% of the discovery 
cohort.

Cluster analysis and differential region expression
Principal component analysis was performed with the 
regularized log-transformation of transcripts per kilo-
base per million (rlog TPM) values of all expressed 
regions using the R package stats. Clustering was per-
formed using Euclidean distance and complete linkage 
with the rlog TPM values. Heatmaps were plotted using 
the R package ComplexHeatmap [46] and hclust from the 
R stats package (v3.4.2) [47]. DESeq2 (v1.10.1) [48] was 
used to identify differentially expressed regions between 
ccRCC and urolithiasis patients, adjusting for gender and 
age of the subjects. Only regions with p-values adjusted 
for multiple testing < 0.05 were retained. Regions were 
annotated with names and descriptions of the overlap-
ping genes from Ensembl version GRCh37, v75.

Screen for suitable qPCR reference genes and qPCR 
validation
The RNA-Seq TPM values of all expressed regions were 
screened for suitable PCR reference genes that were 
stably expressed in all samples. For this purpose, TPM 
means and standard deviations (SD) of the regions were 
calculated and screened for consecutive regions with a 
high mean but a low SD/mean ratio for which TaqMan 
gene expression assays (Thermo Fisher Scientific) were 
available or could be designed. This yielded reference 
genes ACTB and RNY3 (Suppl. Table S3).

The different snoRNA candidates and the respective 
reference genes were quantified on a LightCycler 480 
Real-Time PCR System (Roche Diagnostics). On aver-
age 100 ng of RNA were reverse transcribed using Mul-
tiScribe Reverse Transcriptase or SuperScript III Reverse 
Transcriptase (Thermo Fisher Scientific), depending 
on the intended qPCR assay type (Suppl. Table S3). The 
resulting cDNA product was preamplified using a mix-
ture of the specific TaqMan gene expression assays and 
the TaqMan PreAmp Master Mix according to manu-
facturer’s recommendations (Thermo Fisher Scientific). 
Each qPCR reaction (final volume 10  µl) consisted of 
1 µl of the 2- or 3-fold diluted cDNA preamplificate, the 
respective TaqMan gene expression assay, GoTaq Probe 
qPCR Master Mix (Promega), and nuclease-free water. 
The qPCR reaction was set up as follows: 10  min ini-
tial denaturation at 95 °C, 45 cycles of 15 s denaturation 
at 95  °C and 1  min annealing / extension at 60  °C. The 
threshold cycles (CT) determined by the second deriva-
tive method were averaged from two independent reac-
tions for each transcript per sample. Subsequently, the 
delta-delta-CT method was used to calculate the rela-
tive snoRNA levels normalized to the respective refer-
ence RNAs. Due to the different design of the TaqMan 
gene expression assays for the different snoRNAs, only 
reference gene assays of the same design could be used 
(Suppl. Table S3). Thus, the expression of the snoRNAs 
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SNORD22, SNORD26 and SNORA81 was normalized 
to that of the reference gene RNY3. For the snoRNAs 
SNORA50C and SNORD99 the reference gene ACTB was 
used for normalization.

Receiver operating characteristic analysis
Relative expression levels for candidate transcripts 
obtained by qPCR were examined for their predictive 
power using a generalized linear model (glm function 
of stats/R). For this purpose, the molecule counts were 
divided by the counts of the respective reference gene, 
logarithmized and then used as predictors with the 
covariates gender and age as well as hypertension and 
obesity (BMI ≥ 30), where applicable. Receiver operat-
ing characteristic (ROC) curves and the area under the 
curve (AUC) were calculated using the R package pROC 
(1.17.0.1) [49] and plotted using ggplot2 (3.3.0) [50]. 
Odds ratios for the risk of ccRCC were calculated on the 
basis of a transcript expression change in the size of the 
interquartile range of the respective gene. We assessed 
the model fit by comparing its deviance with that of a null 
model containing only the intercept, using a one-tailed 
chi-squared test.

Cross-validation to asses model performance
A fivefold cross-validation was performed to assess the 
robustness of the regression model results. Therefore, 
the validation cohort was randomly divided into five bins 
of at least 10 ccRCC and four urolithiasis patients each, 
reflecting the proportions of the full cohort. Each model 
was trained on four data bins and tested on the remain-
ing data bin. Training and testing were repeated on all 
possible combinations of the split data. The entire proce-
dure was repeated 1000 times for each model to calcu-
late means and standard deviations of the performance 
metrics.

Results
RNA from a small fraction of the genome is found in urine-
derived EVs
A total of 78 subjects (54 ccRCC patients and 24 con-
trols) were analyzed in the study, where urolithiasis cases 
are a clinically more relevant control condition than 
healthy subjects. EVs were extracted from patients’ urine 
and characterized by size and quality measurements. 
Western blot analysis revealed that they displayed typi-
cal exosomal markers such as Alix, CD9, CD63, CD81, 
FLOT1 and TSG101. Calnexin, a marker of the endoplas-
mic reticulum, was absent (Suppl. Figure S1). Moreover, 
the EV preparations exhibited a size distribution and 
diameters with a peak around 110–120  nm typical for 
exosomes (Suppl. Figure S2). Nevertheless, exosomes and 
other microvesicles are often extracted at the same time 

and difficult to separate specifically [26]. Therefore, we 
use the term EV here for simplicity.

The urinary EV samples were subjected to small RNA 
transcriptome sequencing. Samples with potential DNA 
disturbance were removed from the discovery cohort 
(n = 63), which then consisted of 47 ccRCC patients and 
16 controls (Fig. 1; Tables 1 and 2, Suppl. Table S1). Qual-
ity trimmed and filtered RNA-Seq reads were aligned to 
the human genome. To exploit a wider range of exosomal 
RNA, we did not restrict the analyses to known tran-
scripts but screened for expressed regions of the human 
genome. We found that 6234 (0.02%) of the nearly 31 mil-
lion 100 nt long genomic regions were expressed with at 
least five detected reads in at least 20% of the cohort. The 
expression values of the genomic regions were further 
subjected to clustering and differential expression analy-
sis. Although RNA exclusion from cells via EVs more 
accurately reflects the underlying biological process we 
simply write genomic region expression in the following.

Cluster analysis showed that RNA profiles strongly reflect 
gender of the urine donors
Principal component analysis (Fig.  2, Suppl. Figure 
S3) and a cluster analysis of the expression values of all 
patients (Suppl. Figure S4) were performed. Patient gen-
der was strongly reflected by the RNA profiles, whereas 
tumor status (ccRCC/urolithiasis) was not. The higher 
principal components did not separate the samples by 
tumor status either (Suppl. Figure S3). Based on this 
observation, we decided to adjust for gender and age, a 
well-known risk factor for tumor onset, in the following 
analyses.

Many snoRNAs were differentially expressed in ccRCC 
compared to urolithiasis
To identify urinary RNA biomarkers, we next applied 
DESeq2 to discover differential exosomal RNA expres-
sion at the level of genomic regions [48]. It accu-
rately modeled read counts and employed a regression 
model that accounted for gender and age as confound-
ers. Overall, 80% (4977/6234) of the regions were 
more highly expressed in the ccRCCs than in the con-
trols (Fig.  3, Suppl. Table S4). Thirteen differentially 
expressed regions were detected, all of which were less 
expressed in the ccRCC-derived urinary EVs, contrary 
to the general trend (Table  3). Surprisingly, most of the 
identified regions resulted from expression of snoR-
NAs (SNORD99, SNORD22, SNORD26, SNORA50C, 
SNORA81, SNORD50B) located within introns of their 
respective host genes, which were barely or not at all 
expressed (Fig.  4, Suppl. Figures S5–S12). This was the 
case, for example, for SNORD22 and SNORD26 residing 
within introns of SNHG1 (small nucleolar RNA host gene 
1, Fig.  4). Looking at the genomic environment, it was 
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observed that in some cases other snoRNAs of the host 
genes also appeared to have altered expression, although 
this was not detected to be significant. For example, this 
was the case for SNORD30 in SNHG1 and SNORD50A in 
SNHG5 (Suppl. Figures S8 and S12). A very small frac-
tion of the genomically large MALAT1 was differentially 
expressed. Further inspection revealed the small (58 nt) 
mascRNA at the 5’ end of MALAT1 as potentially differ-
entially expressed in ccRCC (Suppl. Figure S9).

Some genes validated by PCR were associated with 
increased risk of ccRCC
Next, genes were selected for validation by qPCR (Fig. 5; 
Table  4) in the larger validation cohort (54 ccRCC and 
24 control subjects, including all discovery cohort sub-
jects). Some genes were too short for qPCR assay design 
(mascRNA, SNORD50B), or failed (SNORA81). RNY3 
and ACTB showed consistent expression in the RNA-
Seq data and were selected as reference genes for qPCR. 
Expression of all candidate genes was lower in ccRCC 
compared to urolithiasis, confirming the observa-
tions in the RNA-seq data. Regression models adjusted 
for age and gender were used to assess the predictive 
power for discriminating ccRCC patients from urolithia-
sis controls (Table  4; Fig.  5). The area under the curves 
(AUCs) of all genes were moderately high (0.677–0.735) 

and accuracy ranged from 0.629 to 0.744 (upper half 
of Table  4). Odds ratios were calculated and showed 
that lower expression in EVs was significantly associ-
ated with the occurrence of ccRCC in almost all cases 
and marginally significant for SNORD26 (p = 0.0578). 
Moreover, we combined the four snoRNAs in pairs, 
groups of three and four genes in order to investigate 
possible complementary and enhancing effects. This 
lead to improvements of the diagnostic performance. 
Particularly the combinations SNORD22 + SNORA50C, 
SNORD99 + SNORD22 + SNORA50C and SNORD99 + SN
ORD22 + SNORD26 + SNORA50C had better accuracies 
and AUCs than the models with the corresponding genes 
alone (Table S5). Six of 11 models were significantly bet-
ter than the null-model (p < 0.05, chi-squared test), the 
other five models were marginally significant (p < 0.08).

Fivefold cross-validation was performed to assess the 
robustness of the trained models (Suppl. Table S6). It 
showed that the generalized performance of most models 
was slightly reduced, but in a similar range to that of the 
models trained on the full dataset. For example, the accu-
racy range of the single-gene models was 0.629–0.735 on 
the full dataset, and 0.640–0.725 during cross-validation. 
The range of accuracy decreased from 0.671 to 0.757 to 
0.624–0.705 for the two-gene models.

Fig. 2  Principal component analysis plot of the expression values in the discovery cohort. Data points can be separated by gender rather than by patient 
group (tumor, control). PC1/PC2 – principal components 1 and 2 that explain most of the variance in the expression data
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We also tested whether the inclusion of further ccRCC 
risk factors could enhance the diagnostic performance 
of the single-gene models. Accordingly, information on 
hypertension and obesity was available for the patients 
of our cohort. Inclusion of both risk factors improved 
almost all accuracies and AUCs of the models (lower half 
of Table 4). In addition, including these two risk factors 
also improved all accuracies and AUCs of the models 
with two, three and four gene combinations. Ten of the 
fifteen models with the additional risk factors were sig-
nificant (p < 0.05, chi-squared test against the null model). 
The highest accuracy (0.811) and AUC value (0.773) was 

obtained by the inclusion of SNORD99, SNORA50C, obe-
sity and hypertension (p = 0.0091, Table S5). SNORA50C 
provided the best overall performance in terms of accu-
racy, p-value and robustness, for both the single-gene 
and multi-gene models.

Discussion
CcRCC is a frequent tumor with a low survival rate [4]. 
Newly detected cases often metastasize [3] due to their 
asymptomatic behavior in the early stage [2]. Hence, 
there is an urgent need for biomarkers for the early 
detection of ccRCC. In this study, we have screened 

Fig. 3  Volcano plot of the differential region expression between ccRCC and urolithiasis control patients. Each point stands for a tested region. Red dots 
indicate significant differences with a false discovery rate (FDR) < 0.05 adjusting for multiple testing. Horizontal axis shows strength and direction of the 
difference (positive values means higher expression in ccRCC compared to urolithiasis). Vertical axis shows the logarithmized p-value (higher values mean 
lower p-value). Genes that overlap with the significantly altered regions are annotated
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for urine-derived biomarkers in a cohort of 47 ccRCC 
patients and 16 controls with urolithiasis. Since previous 
biomarker studies reported findings of small RNA, we 
used a small RNA-seq protocol. Cluster analysis showed 
a clear separation into male and female, while the tumor 
status was not reflected globally. Therefore, we decided to 
adjust for gender and age in the expression screening and 
found 13 differentially expressed regions in nine genes, 
mainly from snoRNA species. Four of them (SNORD99, 
SNORD22, SNORD26, SNORA50C) were validated by 

qPCR as potential biomarkers for ccRCC in an extended 
cohort of 54 ccRCC and 24 urolithiasis patients. All 
candidates showed moderate sensitivity, specificity and 
a higher risk of ccRCC at lower expression. The com-
bination of the snoRNAs and the inclusion of further 
RCC risk factors [19] into the regression models clearly 
increased the diagnostic performance. The model with 
the snoRNAs SNORA50C, SNORD99 and hyperten-
sion and obesity as additional RCC risk factors showed 
the best diagnostic performance (accuracy = 0.811, 

Table 3  Differentially expressed regions and their overlapping genes
Differentially expressed regions Genes / transcripts that overlap the regions
Chr Start End Log2 fold change Cor-

rected 
p-value

Gene Biotype Description

chr1 28,905,201 28,905,300 -3,45 0,0009 SNORD99 snoRNA small nucleolar RNA, C/D box 99
chr1 153,643,701 153,643,800 -1,63 0,0119 TRNA_Met tRNA transfer RNA Met
chr1 153,643,801 153,643,900 -2,19 0,0256 TRNA_Met tRNA transfer RNA Met
chr11 62,609,001 62,609,100 -2,19 0,0439 RNU2-2P snRNA RNA, U2 small nuclear 2, pseudogene
chr11 62,609,101 62,609,200 -1,73 0,0256 RNU2-2P snRNA RNA, U2 small nuclear 2, pseudogene
chr11 62,620,301 62,620,400 -2,94 0,0193 SNORD22 snoRNA small nucleolar RNA, C/D box 22
chr11 62,620,401 62,620,500 -2,27 0,0033 SNORD22 snoRNA small nucleolar RNA, C/D box 22
chr11 62,622,701 62,622,800 -2,36 0,0165 SNORD26 snoRNA small nucleolar RNA, C/D box 26
chr11 62,622,801 62,622,900 -2,31 0,0193 SNORD26 snoRNA small nucleolar RNA, C/D box 26
chr11 65,267,201 65,267,300 -1,80 0,0439 MALAT1 lincRNA metastasis associated lung adenocarcinoma transcript 1
chr17 62,223,801 62,223,900 -3,49 0,0314 SNORA50C snoRNA small nucleolar RNA, H/ACA box 76
chr3 186,504,601 186,504,700 -1,80 0,0165 SNORA81 snoRNA small nucleolar RNA, H/ACA box 81
chr6 86,387,301 86,387,400 -2,18 0,0439 SNORD50B snoRNA small nucleolar RNA, C/D box 50B
Negative log2-fold change indicates stronger expression in urolithiasis control patients. The adjusted p-values were based on the results of the regression models 
adjusted for gender and age of the patients, which were corrected for multiple testing (false discovery rate)

Fig. 4  Nucleotide-wise RNA expression along SNHG1. The plot shows the RNA expression in the ccRCC (red dashed line) and urolithiasis (blue line) 
groups averaged over the patients in each group, respectively. Exon / intron structures of the transcripts of the SNHG1 host gene are shown below. Clearly, 
snoRNAs within the introns are expressed instead of the exons of SNHG1. The significantly differentially expressed regions of SNORD22 and SNORD26 are 
indicated above the plot with log2 fold-changes and adjusted p-values
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Table 4  Areas under the curve (AUC), sensitivities, specificities, accuracies and p-values of the regression models
Combination of genes and clinical risk factors Sensitivity Specificity Accuracy AUC ORIQR p
SNORD99 0.667 0.625 0.654 0.681 0.384 0.0426
SNORD22 0.500 0.875 0.629 0.704 0.560 0.0375
SNORD26 0.761 0.667 0.729 0.677 0.573 0.0578
SNORA50C 0.778 0.667 0.744 0.735 0.210 0.0108
SNORD99 + OBS + HTN 0,900 0,417 0,743 0,693 0.385 0.0657
SNORD22 + OBS + HTN 0,791 0,667 0,746 0,733 0.570 0.0586
SNORD26 + OBS + HTN 0,628 0,750 0,672 0,720 0.541 0.0495
SNORA50C + OBS + HTN 0,840 0,625 0,770 0,766 0.165 0.0046
The expression values of the genes validated with qPCR were used in the regression models alone or in combination with obesity (OBS; BMI ≥ 30) and hypertension 
(HTN) as clinical risk factors. All models were adjusted for age and gender. The p-values of the top four results are those of the genes in the models (association with 
the response). The p-values of the bottom four results are those of the overall model fit (chi-squared test against the null model). P-values < 0.05 are shown in bold. 
Odds ratios (OR) for the risk of ccRCC presence were calculated on the basis of a gene expression change in the size of the interquartile range (IQR) of the respective 
gene

Fig. 5  Diagnostic performance of all tested small RNAs. Receiver operating characteristic (ROC) curves with area under the curve (AUC) and boxplots of 
the corresponding expression values of the genes in the ccRCC and urolithiasis groups. The basis of the ROC curves were logistic regressions with RNA 
molecule counts normalized to the reference genes ACTB (SNORD99, SNORA50C) and RNY3 (SNORD22, SNORD26). The models were adjusted for age and 
gender of the subjects
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AUC = 0.733, p = 0.0091). Therefore, these snoRNAs 
might be potential, new biomarkers for the early, urine-
based detection of ccRCC in a convenient, non-invasive 
way.

In addition to other snoRNAs, the candidate SNORD99 
is located in an intron of SNHG12, a gene which is upreg-
ulated in RCC and associated with poor prognosis [51, 
52]. As a competing endogenous RNA (ceRNA), it can 
sponge different miRNAs thereby regulating their tar-
get genes [53, 54]. Higher SNHG12 expression in RCC 
cell lines correlated with proliferation, migration and 
invasion of tumor cells [51, 53]. In our study, SNORD99 
showed reduced levels in urinary EVs of the ccRCC 
patients. Interestingly, it was reported to be decreased 
in colon cancer but increased in immune cells associated 
with tumor infiltration [55].

Both SNORD22 and SNORD26 are located in introns 
of SNHG1, whose suppression can also reduce that of its 
intronic snoRNAs [56]. SNORD22 showed higher levels 
in serum exosomes of pancreatic cancer patients com-
pared to healthy controls [57]. SNORD26 is among the 
top differentially expressed snoRNAs in prostate cancer 
[58] and is strongly associated with immune response 
and survival in low-grade glioma [59]. SNHG1 itself 
is also known to sponge miRNAs in various cancers, 
including RCC, where it promotes proliferation, invasion, 
metastasis formation and immune escape [60–62].

SNORA50C (alias SNORA76) was significantly upregu-
lated in gallbladder cancer vs. matched adjacent non-
tumor tissues [63] and significantly downregulated in 
metastatic vs. non-metastatic prostate cancer xenograft 
models [64]. SNORA50C contributed to cell growth and 
migration through the HDAC1-mediated pathway in 
neuroblastoma, where its depletion suppressed tumor 
cell proliferation, invasion and migration [65]. Taken 
together, the literature suggests that all of the candidate 
genes found are involved in diverse cancers, including 
RCC. This supports their suitability as screening targets 
and provides insight into their mode of action.

Several studies have explored liquid biopsies for the 
diagnosis and prognosis of ccRCC before. Mainly, EVs 
from the blood of ccRCC patients have been analyzed for 
the abundance of known miRNAs [33, 66] or screened to 
discover new miRNA biomarkers [67, 68]. Recently, other 
RNA species have been found to have diagnostic poten-
tial too. For example, Zhao et al. identified a signature of 
six snoRNAs in serum that distinguished ccRCC patients 
from healthy controls with an AUC value of 0.75 [69]. 
Urine also holds great promise for biomarker discovery 
because it is produced in the kidney and easy to collect. 
Two studies found that cell-free miRNAs from patient 
urine had diagnostic potential for RCC and ccRCC in 
particular [70, 71], reporting AUCs of 0.83 (let-7a) and 
0.96 (miRNA-15a), respectively. In addition, snoRNAs 

have also been discovered in urine samples from RCC 
patients. For example, SNORD63 and SNORD96A were 
described as potential biomarkers from urine sediments 
of ccRCC patients with AUC values of 0.71 and 0.68, 
respectively [72].

SnoRNAs are typically 60–300 nt in length and are 
associated with ribonucleoproteins. Their major cellular 
functions include the pre-rRNA maturation, 2’-O-meth-
ylation and pseudouridylation of target molecules, as 
well as binding competition, protein trapping and factor 
recruitment [73, 74]. Their expression is controlled by 
their host genes, copy number variations and DNA meth-
ylation, which is frequently altered in many tumor enti-
ties, including RCC, ultimately leading to deregulation 
of a variety of cellular processes [38, 73]. Processes such 
as metabolic reprogramming, alteration of the tumor 
microenvironment, and enhancement of tumor cell pro-
liferation, migration and invasion are critically involved 
in the onset and progression of ccRCC [75, 76]. In part, 
these may be due to changes in snoRNA expression 
and function. The importance of this class of regulatory 
RNAs in RCC is further supported by the identification 
of a snoRNA-specific transcript cluster in advanced RCC 
[77]. Thus, it is reasonable to expect that snoRNAs can 
reflect RCC biology and may therefore serve as biomark-
ers for this tumor entity, as shown here and in previous 
studies [69, 72].

Although cell-free miRNAs and snoRNAs have been 
detected in liquid biopsies from patients, RNA from EVs 
is likely to provide more reliable biomarkers because the 
cargo of microvesicles is better protected from degrada-
tion. Early work on urine-derived EVs yielded transcript 
biomarkers such as mRNAs (GSTA1, CEBPA, PCBD1) 
and miRNAs (miR-126-3p, miR-449a) for ccRCC detec-
tion [37, 78]. The latter reported an AUC of 0.84 and 0.79 
to discriminate ccRCC from healthy subjects, respec-
tively. Moreover, miR-30c-5p was identified by RNA-seq 
as a urinary EV-derived biomarker that discriminated 
ccRCC from healthy subjects (AUC 0.82) [35]. Another 
RNA-seq study found many non-coding RNAs, including 
tRNA, miRNAs and lincRNAs, as potential urine-derived 
EV biomarkers for chronic kidney disease [79]. To the 
best of our knowledge, urinary EV-derived snoRNAs 
identified by NGS were reported here for the first time 
for ccRCC diagnosis.

The snoRNAs discovered in our study as potential 
ccRCC biomarkers had AUC values between 0.68 and 
0.74 in the single-gene models. Although these are only 
moderate values, they could help to improve RCC diag-
nosis. Unlike in most other studies, the models used here 
were adjusted for patient age and gender. Both param-
eters are known risk factors for RCC onset and should 
therefore be considered as model cofactors [19]. Gender 
can be reflected in global expression patterns as observed 
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in our and in other studies [80]. Adjusting for both clini-
cal parameters allows to more accurately determine the 
true diagnostic value of the proposed expression mark-
ers. Moreover, the use of information on obesity and 
hypertension, two other known risk factors for RCC [19], 
improved the diagnostic performance. Both types of 
information are usually readily available from individu-
als consulting a urologist and are therefore practical for 
screening purposes.

To improve diagnostic performance, we also tested 
combinations of two, three or all four genes as model 
predictors, similar to what was done in other studies [37, 
69]. In most cases, a slight improvement in performance 
over the single-gene models was observed. A further, 
clear predictive benefit was observed when the multi-
gene models were combined with the additional risk 
factors of hypertension and obesity. Future studies may 
investigate other types of cargo in extracted EVs, such as 
tumor-associated proteins, for their potential to further 
improve diagnosis. This will require the development of 
integrative protocols that are easily applicable. First steps 
in this direction have already been taken [81].

Only three studies with similar settings were found for 
potential validation (GSE125442: Liu et al., 2019, unpub-
lished) [35, 78]. However, our candidate snoRNAs were 
almost completely absent from these data, so validation 
could not be performed. As a substitute, we estimated 
the generalization performance of the models through 
fivefold cross-validation. This showed that the generaliza-
tion performance was slightly reduced, but still very simi-
lar to the performance of the models trained on the full 
datasets.

A special feature of our study is that urolithiasis 
patients were used as controls instead of healthy subjects. 
With this choice we wanted to simulate the real clini-
cal situation in which patients with similar symptoms 
undergo urological diagnosis. A comparison with healthy 
subjects would not reflect this situation. However, this 
different type of control group results in a lack of com-
parability with previous studies, corroborated by a recent 
study that indicated a divergent miRNA pattern in uri-
nary EV between healthy subjects and those with uroli-
thiasis [82]. Furthermore, most RNA-seq-based studies 
of urinary exosomes have focused on mRNA or miRNA 
signatures rather than the comprehensive consideration 
of all small RNA species. Thus, most studies provided 
completely different biomarker sets. This shows that the 
reliability and accuracy of diagnostic tools depend on the 
optimization of laboratory and computational protocols. 
Consistently, recent reviews conclude that still much 
time and effort is needed before EV-based biomarkers 
can be widely used for diagnosis [83, 84].

Conclusions
We reported here four snoRNAs as promising biomark-
ers from urine-derived EVs for the non-invasive detec-
tion of ccRCC. They allow to discriminate ccRCC from 
urolithiasis patients with moderate accuracy independent 
of subject age and gender. These biomarker candidates 
could contribute to the development of new, easily appli-
cable diagnostic tools for the early detection and moni-
toring of ccRCC.
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