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Gene expression in organoids: an expanding 
horizon
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Abstract 

Recent development of human three-dimensional organoid cultures has opened new doors and opportunities rang-
ing from modelling human development in vitro to personalised cancer therapies. These new in vitro systems are 
opening new horizons to the classic understanding of human development and disease. However, the complexity 
and heterogeneity of these models requires cutting-edge techniques to capture and trace global changes in gene 
expression to enable identification of key players and uncover the underlying molecular mechanisms. Rapid devel-
opment of sequencing approaches made possible global transcriptome analyses and epigenetic profiling. Despite 
challenges in organoid culture and handling, these techniques are now being adapted to embrace organoids derived 
from a wide range of human tissues. Here, we review current state-of-the-art multi-omics technologies, such as 
single-cell transcriptomics and chromatin accessibility assays, employed to study organoids as a model for develop-
ment and a platform for precision medicine.
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Background
The use of animals in biomedical research [1] and in vitro 
cell cultures led to milestone discoveries and the devel-
opment of lifesaving treatments [2]. Nonetheless, limi-
tations of animal models have been an Achilles heel in 
research of human development and disease for decades 
[3] as multiple processes are human-specific and there-
fore cannot be completely recapitulated in other animals 
[4]. Furthermore, conventional 2D cell cultures do not 
resemble the physiological tissue architecture, which lim-
its the study of complex processes in vitro [5].

The introduction of 3D cultures derived from adult 
or embryonic stem cells became a breakthrough in 

biomedical research [6, 7], for example, for liver, pancreas 
[8], prostate [9] and intestinal [10] tissues. Rapid devel-
opment of the isolation of adult stem cells from biopsies 
allowed the establishment of tissue-specific three-dimen-
sional systems, or organoids. These achievements enable 
modelling of human organ development in a Petri dish 
including lung [11], skeletal muscle [12], bile duct [13], 
heart [14], neurone system [15] and hair-bearing skin 
[16].

Furthermore, organoids can be used to mimic bio-
logical processes, such as infection by pathogens with 
restricted host tropism. For instance, intestinal and gas-
tric organoids have been proposed as a model for Sal-
monella sp. [17] and H. pylori [18, 19] infection, while 
lung organoids can be used to recapitulate S. pneumo-
niae infection of human lungs [20]. Moreover, impact 
of human immunodeficiency virus [21] and cytomeg-
alovirus virus [22] on central neuronal system has been 
studied in cerebral organoids, while liver organoids can 
be used to mimic human liver infection by hepatitis B 
virus [23]. Remarkably, 3D cultures enabled a study of a 
simultaneous co-infection with distinct pathogens such 
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as Chlamydia and human papilloma virus in ectocervix 
organoids [24]. It is noteworthy that organoids of differ-
ent lineages have been extensively used during the recent 
COVID-19 pandemic to understand the impact of SARS-
CoV-2 on respiratory airways [25], kidney [26] or eyes 
[27] (Fig. 1).

Multiple organoid systems rely on adult stem cells 
isolated from patients. More recently, the introduction 
of cell reprogramming [28] by using stemness factors 
Oct3/4 [29], Sox2 [30], c-Myc [29] or KLF4 [31] allowed 
the in vitro generation of induced pluripotent stem cells 
(iPSC) from somatic cells. iPSC soon became an attrac-
tive source of stem cells for organoid culture and enabled 
the generation and expansion of patient-derived orga-
noids to study disorders that previously had no experi-
mental models. The establishment of organoids from 
patient-derived iPSC opens new opportunities to study 
Parkinson disease [32] and epilepsy [33], heart chamber 
defects [34] or rare skin genetic disorders like epidermol-
ysis bullosa [35]. Organoids based on iPSC can also serve 
as a platform for assessing drug toxicity, for example, in 
the liver [36], neurons [37] or retina [38].

Tumour organoids represent an attractive plat-
form for personalised medicine as 3D cultures can 
be generated from patient-derived tumour samples, 
expanded in  vitro and subjected to treatment with a 
panel of drugs in order to find an optimal therapeutic 
approach for a specific patient. In fact, Larsen et  al. 
established a new pipeline for drug screening using 

tumour organoids [39, 40] which undoubtedly has a 
great potential in clinics as a platform for personalised 
medicine. Moreover, drug screening followed by phe-
notypic and multi-omics analyses provides mechanis-
tic insights into tumour biology. For instance, recent 
studies employed tumour organoids to study origins of 
oesophageal [41], colorectal [42] and metastatic ovar-
ian cancer [43], while other identified key epigenetic 
factors leading to drug resistance in colorectal [44] and 
breast cancer [45]. Furthermore, several studies pro-
posed new treatment based on cancer organoids, for 
example targeting MEK or mTOR in colorectal cancer 
[46] or combined inhibition of TRAIL and CDK9 in 
pancreatic cancer [47].

The advances in organoid culture open the door of 
possibilities for mechanistical studies in very complex 
systems involved in multiple pathologies, such as, for 
example, redox balance [48–51], COVID-19 [52] or cell 
death [53, 54]. Therefore, employment of multi-omics 
poses an excellent opportunity to gain a deep under-
standing of physiological processes occurring in human 
organs [55]. Multi-omics allow global genetic, epigenetic, 
gene expression, and metabolic analyses. For instance, 
recent pancancer [56, 57] multi-omics studies have 
unveiled new putative targets for cancer therapy [58, 
59]. In this review, we will focus on gene expression and 
its regulation on organoids as a research model, we will 
describe recent advances of sequencing techniques, and 
we will outline future direction in organoid research.

Fig. 1  Organoids for biomedical research. A Organoids can be established from single embryonic, adult stem cells or reprogrammed induced 
pluripotent stem cells. B Organoid model for multiple tissues and organs have been successfully established in recent years. C–D Organoids are 
widely used in basic and applied biomedical research



Page 3 of 12Smirnov et al. Biology Direct           (2023) 18:11 	

Single‑cell transcriptomics of organoids
Using conventional techniques to quantify gene expres-
sion, such as RT-PCR, gene array, and bulk RNA 
sequencing, can only provide limited information and 
fail to discriminate between distinct cell types present 
within a sample. Therefore, analysis of complex 3D cul-
tures containing multiple cell types requires state-of-
the-art technology such as single-cell transcriptomics.

Single-cell RNA sequencing (scRNA-seq) [60, 61] 
combines whole transcriptome amplification with next-
generation sequencing at single cell level. Currently, 
various improved platforms have been established, 
allowing for the analysis of a greater number of cells at 
significantly lower cost. Current strategies rely on single 
cell isolation by cell sorting or separation in microdrop-
lets. Then, RNA within isolated single cells is converted 
into cDNA and barcoded, followed by sequencing. The 
sequencing data are then processed, normalised, and 
subject to clustering, which enables identifications of 
cell types within the sample. Further analyses can pro-
vide information about enrichment of molecular path-
ways, cell cycle state, cell‐cell communication, gene 
expression kinetics (Fig.  2), as recently described [62]. 
For instance, one of the pioneering studies in the field 
of single-cell transcriptomics in organoids assessed 
distribution of cell types within mouse intestine orga-
noids. Grün et al. identified Reg4 as a novel marker for 
enteroendocrine cells, a rare population of hormone-
producing intestinal cells [63]. In the past seven years, 
scRNA-seq has been significantly improved and is now 
widely applied in organoid research. In this chapter, we 
will provide an overview of four different applications 
of scRNA-seq in organoid-based research.

Comparison of organoids with matched organs and tissues
Primary advantage of 3D culture is its broader speciali-
sation of cells dictated by three-dimensional architecture 
compared to conventional 2D cultures. In fact, prostate 
organoids derived from primary prostate cells contain 
additional intermediate differentiation cell types com-
pared to the same cells grown in a Petri dish [64]. scRNA-
seq allowed to compare newly established organoid 
models with matched liver [65], intestine [66], endome-
trium [67], epididymis [68], biliary epithelium [69], sali-
vary gland [70], and heart [34] tissues (Fig.  2). Of note, 
transcriptome analysis at single level allows investigation 
of complex 3D systems, for instance, in vitro neuromus-
cular network [71] or bronchioalveolar lung organoids 
co-cultured with mesenchymal cells [72]. A series of 
studies underlined high level of resemblance of retinal 
organoids which can be successfully differentiated into 
key retinal cell types: retinal pigment epithelium, retinal 
ganglion cells, cone and rod photoreceptors, and Müller 
glia [73–75]. scRNA-seq has been employed to ensure 
high degree of similarity between tumour samples and 
patient-derived organoids to model gastric cancer [76] 
and glioblastoma [77]. Recently, a biobank of different 
types of paediatric kidney cancer has been established 
[78]. This collection, along with normal kidney organoids 
[79], will become a powerful tool to study kidney homeo-
stasis and cancer in future.

Organoids as a model for human disease
As mentioned in the introduction, organoids became an 
attractive platform for modelling rare diseases includ-
ing genetic disorders. Importantly, correction of muta-
tions in organoid cultures, followed by single-cell 

Fig. 2  Single-cell transcriptomics of organoids. A Single-cell transcriptomics consists of isolation of single cells, followed by lysis, RNA conversion 
to cDNA by reverse transcription and barcoding. Barcoded cDNA is then used for preparation of cDNA library which can be sequenced and 
subsequently analysed. B Dimension reduction allows clustering of single cells based on transcriptome profile. Identification of highly expressed 
marker genes enables cell type annotation. Additional analyses can assess RNA kinetics (pseudotime analysis), cell cycle state, gene expression and 
pathway enrichment. C Recently, single-cell atlases of human organoid models corresponding different tissues have been established
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transcriptome analysis has recently showed promising 
results. For instance, culture of ear organoids can be used 
to study role of genetic alterations responsible for the 
hear loss [80] such as mutations in TMPRSS3 gene [81]. 
Aberrant transcription of FXN gene causes an autoso-
mal-recessive neurodegenerative and cardiac disorder 
known as Friedreich’s ataxia (FRDA). Experiments aimed 
to rescue transcription of FXN gene carried out in dorsal 
root ganglia organoids allowed to fully reverse pathologi-
cal hallmarks in vitro, as assessed by single-cell transcrip-
tomics [82]. A series of studies focused on establishment 
of organoid models for neurological diseases such as 
autism associated with mutation in SUV420H1, ARID1B, 
CHD8 [83] and CNTNAP2 genes [84] or Prader-Willi 
syndrome affecting hypothalamic arcuate nucleus [85]. 
Furthermore, cortical organoids were used to study 
malformations of human cortical development caused 
by EML1 gene mutations [86]. Interestingly, single-cell 
transcriptomics allowed to identify specific depletion 
of neuronal programming factors in progenitor cells 
within cerebral organoids derived from patients suffer-
ing from Schizophrenia [87]. Organoids bearing specific 
genetic alteration introduced into DNA of stem cells can 
be a useful tool to study initial steps of tumorigenesis 
[88–90], opening up new clarification on the underly-
ing molecular mechanisms [91–95]. This approach has 
been adapted to model progression of colorectal cancer 
[96], retinoblastoma [97] as well as invasive glioblastoma 
[98]. Single-cell-based identification of clusters allows to 
detect molecular pathways behind cancerous transforma-
tion. This concept has proven useful to study tissue-spe-
cific and cell-type-specific transmission of SARS-CoV-19 
infection in eyes [27], intestine [99] and kidney [100] dur-
ing COVID-19 pandemic.

Developmental studies in vitro using organoids
Refined transcriptome analyses of differentiating orga-
noids made possible investigation of organ and tissue 
development in vitro. Recent studies provided transcrip-
tional profiling for human embryonic liver [101], glan-
dular epithelia [102], kidney basal membrane [103], 
mammary gland [104], and mesoderm [105] develop-
ment. Importantly, Kim and colleagues reported estab-
lishment of embryonic body development in  vitro 
followed by temporal single-cell analysis [106].

Development in  vitro enables identification of key 
pathways orchestrating developmental processes. For 
instance, during intestinal organoids differentiation, 
BMP signalling controls expression of zonated genes in 
enterocytes [107] and Exportin 1 expression leads to an 
increased abundancy of Paneth cells [108], while FGF2 
pathway has an essential role in salivary gland devel-
opment [109]. Moreover, Motazedian et  al.showed an 

important role for RAG1 in development of human 
T-cells originating from hemogenic endothelium [110]. 
Detailed analysis of multiple stages of retinal differen-
tiation identified novel role of ATOH7 and Neurog2 in 
regulation of retinogenesis [111, 112] while temporally 
controlled overexpression of CCND1 led to promotion of 
early retinal neurogenesis [113].

Multiple studies have focused on the development of 
brain using 3D cultures and single-cell transcriptom-
ics. Mouse and human cerebral organoids proved to be 
an excellent model for brain development in vitro [114]. 
3D cultures recapitulate brain development from pluri-
potency, through neuroectoderm and neuroepithe-
lial stages. Single-cell transcriptomics and pseudotime 
alignment allow generation of a temporal transcriptome 
atlas of human brain development at single-cell level 
[115]. For instance, this approach led to identification 
of three molecularly distinct subtypes of human dopa-
mine neurons [116] as well as investigation of matura-
tion of cerebral electrophysiologic properties [117]. Of 
note, inducible cell division labelling enables tracking of 
cell division and differentiation related pathways [118]. 
Furthermore, CRISPR-Cas9-based lineage tracing can be 
used to assess cell fate decisions during cerebral organoid 
development [119].

Organoids as a platform to study tumorigenesis
As a major gene involved in tumorigenesis as well as in 
cancer progression, TP53 regulates distinct structures 
at the level of nuclear envelope [120], N6-methyladeno-
sine methylation profile [121], reticulons [122, 123] and 
distinct nodes of the tumorigenic network [124–128]. 
Accordingly, very recent advances on the p53 biology 
[129–131] indicated a significant role for p53 in DNA 
damage response and apoptotic cell death [132, 133], 
ferroptosis [134], ribosome biogenesis [135] as well as 
ncRNA [136–139]. This complex network is clearly highly 
relevant for individual treatment [140] to understand the 
molecular mechanisms at the bases of malignant pro-
gression [141, 142] and therefore to identify specific clus-
ter of prognostic markers [143–145], hence constituting 
the scientific bases for precision medicine [146–148]. In 
this framework, organoids play an essential role.

Lung organoids have been used to model early-stage 
lung adenocarcinoma [149] and to identify differentially 
expressed genes in alveolar epithelial progenitor cells of 
patients affected by smoking-associated disease [150]. 
Organoid model of PDAC allowed identification of new 
intermediate pancreatic ductal adenocarcinoma (PDAC) 
transcriptional cell states [151], while co-culture of 
PDAC organoids with endothelial cells shed light into the 
role of JAG1 and NOTCH pathways in cancer cell plas-
ticity [152]. Single-cell transcriptomics of patient-derived 
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prostate organoids unveiled presence of heterogene-
ous populations of prostate epithelial cells characterised 
by enhanced androgen signalling along with a cluster of 
tumour-associated club cells that may be linked to pros-
tate carcinogenesis [153]. Analysis of colorectal cancer 
organoids revealed that enteroendocrine progenitor cells 
are enriched in BRAF-mutant samples and their differen-
tiative capacities are inhibited [154]. Moreover, a cluster 
of stem-like cells with high expression of OLFM4 has 
been identified [155].

Spatial transcriptomics of organoids
A new development of single-cell multi-omics is spatial 
transcriptomics approach which enables analysis of gene 
expression in  situ within a tissue sample. Technically, 
spatial transcriptomics can be performed in two ways. In 
sequencing-based techniques, the position of transcripts 
is labelled in situ followed by sequencing and subsequen-
tial reconstruction of the tissue map of transcription. A 
tissue section is placed on a slide prelabelled with RNA 
probes, followed by release of RNA and sequencing. 
Sequencing approach first reported in 2016 produc-
ing sequencing of two-dimensional sequencing map of 
mouse brain and human breast cancer [156]. On contrast, 
imaging-based approaches use the amplification of tran-
scripts as well as sequencing directly within tissue fol-
lowed by imaging. These techniques include ISH-based 
methods where a complementary fluorescent probe is 
used to label the transcript. Recent developments have 
introduced sequential rounds of hybridisation [157], 
which enable reconstruction of large tissue maps such 
as an atlas of mouse hypothalamic preoptic region [158] 
(Fig. 3).

Due to high cost of this technology, it is not widely 
used on organoids field. However, several recent stud-
ies showed promising results. The use of spatial and sin-
gle-cell transcriptomics highlighted strong similarities 

between gastruloids and mammalian embryos [159]. 
These observations were further confirmed by tomo-
seq approach which consists of the tissue embedding in 
cryopreservation medium and consecutive sectioning 
followed by RNA sequencing [160]. These data establish 
gastruloids as an attractive model to study development 
of mammalian embryos, allowing to overcome ethical 
limitation.

Furthermore, spatial and single-cell transcriptom-
ics were used to assess whether endometrial organoids 
resemble physiological pathways in  vivo. Hormone 
treatment of organoids resulted in creation of clusters 
of cells expressing secretory and ciliated populations of 
cells, confirming that organoids respond very similarly 
to the in vivo counterpart. A further pseudotime analysis 
revealed that organoids can be indeed used to determine 
cell fate decisions. These single cell transcriptomics data 
can be used to deconvolute bulk sequencing data from 
samples of endometrial tumours [161].

Of note, Fleck and colleagues developed a new plat-
form which enables characterisation of regional com-
position of organoids as well as deconvolution of bulk 
RNA-seq of cortical organoids by using existing atlas of 
gene expression of developing brain, spatial expression 
map and accessible chromatin landscape [162]. This plat-
form can help to integrate existing multi-omics datasets 
with complex organoids studies and can be used in future 
as a reference to establish new models.

Organoids as a model to study regulation 
of expression
Epigenetic modifications of chromatin are crucial for 
regulation of gene expression and are precisely regulated 
by a complex network of interaction between transcrip-
tion factors, chromatin remodellers [163] and even non-
coding RNAs [57, 164, 165]. Identification of genomic 
regulatory elements and study of epigenetic state of 

Fig. 3  Spatial transcriptomics of organoids. In spatial transcriptomics, a tissue section is positioned on a slide covered with an array of cells 
containing reagents for a subsequential cell lysis and barcoding. This allows spatial reconstruction of clusters of cells followed by analysis of gene 
expression
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chromatin historically has been achieved through analyse 
of DNA occupancy by distinct transcription factors (TFs) 
and histone modifications. A chromatin immunoprecipi-
tation followed by sequencing (ChIP-seq) assay allows 
identification of specific regions occupied by a transcrip-
tion factor genome-wide (Fig. 4).

Despite ChIP-seq being widely used in 2D cultures, 
there are only a handful of studies involving organoids 
as it remains technically challenging [166]. For instance, 
mouse prostate organoids were used to unveil the role 
of different FOXA1 mutations found in prostate cancer 
patients. Analysis of FOXA1 genome occupancy uncov-
ered new genomic regions bound exclusively by mutant 
FOXA1, which alter normal program of wild-type 
FOXA1 and thus its role in luminal differentiation [167]. 
Another study comprehensively assessed the impact of 
distinct isoforms of the bile acid receptor (FXR) on tran-
scription of genes involved in bile acid, fat, sugar, and 
amino acid metabolism in mouse liver organoids as a 
model. Only two isoforms, FXRα2 or FXRα4, were found 
to bind FXR loci, primarily by occupying ER2-motif con-
taining regions [168] (Fig. 4).

ChIP-seq analysis of specific histone modifications 
allows the identification of open (active) or inactive chro-
matin regions genome-wide [169]. Among commonly 
used approaches are ChIP-seq for methylated lysine K4 
and acetylated lysine K27 of histone H3 which are mark-
ers of active transcription [170]. As an alternative to 
mapping chromatin state by ChIP, multiple assays have 
been developed based on DNA accessibility for differ-
ent enzymes which is correlated with chromatin state. 
For instance, approaches involving deoxyribonuclease 
(DNase) or micrococcal nuclease (MNase) have been 
used for long time to assess chromatin accessibility [171, 
172]. DNase and MNase cleave DNA regions which are 
not protected by nucleosomes or occupied by TFs. The 

introduction of Tn5-transposase revolutionised the 
field. A new assay for transposase- accessible chromatin 
assay (ATAC) is based on identification of nucleosome-
free regions which are simultaneously fragmented and 
labelled for further sequencing by pre-loaded transposase 
enzyme. The new technology allows to overcome pre-
vious obstacles, reducing the cost and requiring lower 
amount of material [173].

As discussed in the previous chapter, global analysis 
of chromatin accessibility is used to assess resemblance 
of organoids to original tissue at epigenetic level and 
thus reliability as a research model. For instance, ChIP-
seq analysis of H3K4 and H3K27 methylation in mouse 
intestinal organoids revealed that long-term culture leads 
to global transcriptional changes via accumulation of 
H3K4me3 and loss of H3K27me3 [174]. Moreover, multi-
epigenomics allow comparison of organoid culture with 
conventional cell cultures, such as Caco2 colorectal car-
cinoma cell lines. Combined RNA-seq and ATAC-seq 
carried out in human intestinal organoids allowed to 
identify transcriptional and open chromatin signatures 
governed by transcription factor caudal type homeobox 2 
(CDX2), which are specific for organoids but not Caco2 
cells grown in a Petri dish [175].

Study of chromatin accessibility in cancer organoids 
is becoming a new powerful tool for understanding the 
molecular mechanisms of tumorigenesis and develop-
ment of precision medicine. For instance, using ethanol-
treated colon organoids as model of alcohol-induced 
damage, Devall and colleagues integrated RNA-seq 
with ATAC-seq and identified new differentially acces-
sibly regions of chromatin in colon organoids upon 
treatment with ethanol. Importantly, activation of these 
response factors was not found in 2D cultures, underlin-
ing the importance of three-dimensional growth condi-
tions in recapitulating physiological environment [176]. 

Fig. 4  Epigenomics of organoids. (Top) RNA-seq, ChIP-seq and ATAC-seq techniques allow analysis of gene expression and its regulation at 
epigenetic level. Actively transcribed genes are characterised by a higher accessibility of regulatory elements (promoters and enhancers) and 
binding of specific transcription factors. (Bottom) Organoids have been used to study genome-wide occupancy of several transcription factors
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Additionally, human colon organoids were used to study 
the role of vitamin D on colon homeostasis. Transcrip-
tomics combined with ATAC-seq allowed identifica-
tion of regions with increased accessibility containing 
VDR binding motif [177]. ATAC-seq has been proposed 
as a prognostic platform to profile chromatin acces-
sibility in pancreatic cancer samples. Preliminary data 
revealed a subset of differentially accessible regions 
based on patient’s’ survival [178]. In depth analysis using 
ATAC-seq and H3K27ac ChIP-seq complemented by 
transcriptomics, led to identification of MNX1-HNF1B 
transcriptional axis specifically upregulated in pancreatic 
cancer organoids. Activation of this pathway regulated 
the expression of key genes responsible for maintenance 
of stemness of gastrointestinal cells including MYC, 
SOX9, and OLFM4. Moreover, high-throughput chro-
mosome conformation capture demonstrated that 
expression of identified target genes was supported by 
specific three-dimensional chromatin architecture [179]. 
Interestingly, when comparing chromatin accessibility 
changes in colorectal cancer organoids treated with oxali-
platin, fibroblast growth factor receptor 1 (FGFR1) and 
oxytocin receptor (OXTR) were identified among upreg-
ulated genes, however these results were observed only 
in a subset of patients, highlighting complex heterogene-
ity of epigenetic and transcriptional response to cancer 
treatment [180]. Similarly, in prostate cancer organoids 
ATAC-seq integrated with transcriptomics allowed to 
identify new cancer subtypes such as stem cell–like (SCL) 

subtype. Interestingly, in SCL tumour cells AP-1 complex 
interacts with the YAP/TAZ and TEAD proteins to allow 
subtype-specific chromatin accessibility [181].

Single‑cell epigenomics in organoids 
for developmental research
Chromatin accessibility assays performed in organoids 
have been recently applied to developmental research. 
For instance, transcriptional and chromatin accessibil-
ity dynamics of human medial ganglionic eminence and 
generated cortex-specific organoids from human pluri-
potent stem allowed to confirm that proposed model 
can be used as a platform for generating domain-specific 
brain organoids to study development [182].

Furter breakthroughs are expected, as Kanton et  al. 
have recently established a protocol for simultaneous 
RNA-seq and ATAC-seq at single-cell level in human cer-
ebral organoids. This refined technology allows sequen-
tial transposase-based labelling of DNA and reverse 
transcription in isolated single nuclei [183]. Combined 
single-cell multi-omics can allow an in-depth analysis 
of cell-type specific features during organ development 
[184]. A recent study used combined single-cell RNA and 
ATAC sequencing in the developing and adult human 
retina and in retinal organoids derived from induced 
pluripotent stem cells. This comprehensive analysis 
revealed existence of cell type specific cis-regulatory ele-
ments (CREs) [185].

Fig. 5  Future directions. Future developments will enable a comprehensive analysis of gene expression and chromatin state, including 
three-dimensional chromatin architecture, in organoids
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Conclusions
The establishment of organoids as a research model is 
still in its early stages; still it is already evident their con-
tribution to clarify the highly complex network of events 
leading to disease progression. As we have outlined in 
this review, distinct sequencing approaches have been 
recently employed to compare organoids with conven-
tional cell lines and tissues. Multiple studies have suc-
cessfully proved that three-dimensional cultures can in 
fact recapitulate tissue architecture with high degree of 
fidelity. These efforts have been complemented by tech-
nical optimization of omics techniques and adaptation of 
standard protocols to specific settings dictated by orga-
noid growth conditions. Undoubtedly, next milestone 
in organoid research will be a broader, well-established 
application of multi-omics for basic and translational 
research. For instance, further improvement of spatial 
transcriptomics will reveal new insights into develop-
ment of human organs, previously impossible due to the 
lack of an appropriate model. Combination of chromatin 
accessibility assays with chromatin conformation cap-
ture will uncover complex spatiotemporal architecture 
of chromatin in tissue-specific manner. Improvements 
of ChIP-seq technology will bring study of transcrip-
tion factors to a new a level allowing to globally analyse 
binding profiles within virtually physiological conditions 
(Fig.  5). Furthermore, transcriptional analyses can be 
complimented by emerging single-cell proteomics to get 
a wider picture of gene and protein expression. Finally, 
application of omics to patient-derived organoids will 
enable prediction of treatment response for malignancies 
such as cancer or neurogenerative disorders, a step for-
ward towards life-saving precision medicine.
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