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Abstract 

Objective  To identify the prognostic indicators of esophageal adenocarcinoma (EAC) for future EAC diagnosis and 
treatment.

Methods  The EAC dataset from The Cancer Genome Atlas was screened for differentially expressed microRNAs 
(miRNAs) and mRNAs associated with EAC. Weighted gene coexpression network analysis was performed to cluster 
miRNAs or mRNA with similar expression patterns to identify the miRNAs or mRNA that are highly associated with 
EAC. Prognostic miRNAs for overall survival (OS) were identified using Cox proportional-hazards regression analysis 
and least absolute shrinkage and selection operator based on survival duration and status. Two types of miRNAs were 
selected to develop a prognostic signature model for EAC using multiple Cox regression analysis. Furthermore, the 
signature was validated using internal validation sets 1 and 2. The receiver operating characteristic curve and con-
cordance index were used to evaluate the accuracy of the signature and validation sets. The expression of miR-421, 
miR-550a-3p, and miR-550a-5p was assessed using quantitative polymerase chain reaction (qPCR). The proliferation, 
invasion, and migration of EAC cells were assessed using CCK8 and transwell assays. The OS of target mRNAs was 
assessed using Kaplan–Meier analysis. Functional enrichment analysis of the target mRNAs was performed using 
Metascape.

Results  The prognostic signature and validation sets comprising mir-421 and mir-550a-1 had favorable predictive 
power in OS. Compared with the patients with EAC in the high-expression group, those assigned to the low-expres-
sion group displayed increased OS according to survival analysis. Differential and qPCR analysis showed that miR-421, 
miR-550a-3p, and miR-550a-5p were highly expressed in the EAC tissues and cell lines. Moreover, the downregulation 
of miR-421 and miR-550a-3p with inhibitor markedly suppressed the proliferation, invasion, and migration in OE33 
cells compared with the negative control. A total of 20 target mRNAs of three miRNAs were predicted, among which 
seven target mRNAs—ASAP3, BCL2L2, LMF1, PPM1L, PTPN21, SLC18A2, and NR3C2—had prognostic value; PRKACB, 
PDCD4, RPS6KA5, and BCL2L2 were enriched in the miRNA cancer pathway.

Conclusion  Prognostic indicators of EAC may be useful in future EAC diagnosis and treatment.
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Introduction
The Global Cancer Statistics 2018 report revealed that 
esophageal carcinoma (ESCA), which is one of the most 
common malignant cancers worldwide, ranked seventh 
in terms of cancer incidence and sixth in terms of cancer-
associated mortality globally [1]. ESCA can be divided 
into esophageal adenocarcinoma (EAC) and esopha-
geal squamous carcinoma [2]. The incidence of EAC has 
increased substantially over the recent decades, and it 
remains a highly fatal disease with a poor prognosis [3, 
4]. The prognostic outcomes for EAC is unfavorable, 
and the 5-year overall survival (OS) is < 15% despite the 
advancements in diagnosis and treatment [5, 6]. Explor-
ing the mechanism that leads to the development and 
progression of EAC would be significant in understand-
ing the poor outcomes of EAC. Thus, there is an urgent 
need to identify more novel and potential indicators that 
can help understand EAC and improve decision-making 
in clinical practice to effectively predict the occurrence, 
progression, and prognosis of this disease [7].

MicroRNAs (miRNAs) are noncoding RNAs that 
play an important role in cell differentiation, prolifera-
tion, and survival by binding to complementary target 
mRNAs, leading to the inhibition or degradation of 
mRNA translation [8]. Increasing evidence has indicated 
that miRNAs can be used in the diagnosis and prognosis 
of various tumors and diseases, including colorectal can-
cer, cutaneous melanoma, acute coronary syndrome, and 
acute myeloid leukemia; however, these are not part of 
standard clinical practice [9–12].

Studies reporting the miRNA biomarkers that improve 
the diagnosis and treatment of EAC are limited. There-
fore, identification of new diagnostic and prognostic 
biomarkers is urgently needed because of the biological 
complexity and unfavorable prognosis of EAC.

In the past decade, novel biomarkers and therapeu-
tic targets in various cancers have been explored using 
microarray and next-generation sequencing technolo-
gies [13–15]. However, the analyses of related makers 
are inadequate and even contradictory because of the 
different statistical data processing methods used [16]. 
To solve this problem, integrated bioinformatics meth-
ods such as weighted gene coexpression network analy-
sis (WGCNA) have been used in various cancer studies; 
these were initially used to identify miRNA modules that 
are highly associated with EAC [17–19].

In this study, a prognostic model of a signature com-
prising two miRNAs was constructed based on a miRNA 
dataset from The Cancer Genome Atlas (TCGA); two 
prognostic miRNAs were screened for the prognosis of 
EAC. Moreover, the influence of two prognostic miR-
NAs on the proliferation, invasion, and migration of 
EAC cells was assessed. The Metascape database was 

explored for the possible cellular functions and pathways 
of target mRNAs related to this signature. Furthermore, 
seven prognostic target mRNAs were identified through 
Kaplan–Meier analysis. The entire analysis flow chart is 
shown in Fig. 1.

Materials and methods
Data analysis using the EAC cohort of TCGA​
The miRNA-Seq data of 88 tumor tissues and 9 adjacent 
nontumorous tissues (Additional file  1: 1) and clinical 
information for EAC (Additional file  1: 2) were derived 
from TCGA (https://​tcga-​data.​nci.​nih.​gov/​tcga/) at the 
miRNA gene level rather than at mature miRNA level on 
October 19, 2020. For clinical data, clinical information 
from normal patients was deleted. Patient miRNAs with 
a mean value of expression = 0 were removed.

Screening of differentially expressed miRNAs and genes
To identify differentially expressed miRNAs (DEMs) and 
differentially expressed genes (DEGs) in EAC and normal 
samples, edgeR was performed to normalize the gene 
read counts to the trimmed mean of M values [20]. P–
values were adjusted to minimize the false discovery rate 
(FDR) using the Benjamini & Hochberg method [21]. A 
|Fold change| of > 1 and adjusted P-value < 0.05 were con-
sidered significant [22].

To identify DEMs and DEGs associated with EAC, 
WGCNA [23]—an algorithm used to identify gene coex-
pression network via high-throughput expression profiles 
with different traits—was performed to cluster miRNAs 
with similar expression patterns for obtaining the most 
related miRNAs from patients with EAC. WGCNA with 
a softpower of 2 and module size cutoff of 15 were set as 
the threshold for miRNAs, whereas a softpower of 10 and 
module size cutoff of 100 were set as the threshold on the 
basis of the expression values of all mRNAs.

The VennDiagram package [24] was used to intersect 
the results of WGCNA and DEMs identified to screen for 
DEMs associated with EAC.

Construction of a multimicroRNA‑based classifier
Univariate Cox proportional-hazards regression was used 
to identify the relationship between the DEM expres-
sion and OS of 88 patients. To prevent data overfitting, 
miRNAs with a P-value of < 0.05 (candidate variables) 
were rescreened via Lasso Cox regression analysis and 
the sample with a survival time of = 0 was removed [25]. 
Thereafter, stepwise multivariate Cox proportional-haz-
ards regression analysis was performed to evaluate the 
contribution of the selected miRNAs. The regression 
methods were used to construct a classifier. Using a mul-
tivariate Cox regression model to calculate the risk scores 
for all patients and considering the median risk score as 

https://tcga-data.nci.nih.gov/tcga/
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the cutoff value, the patients were divided into high- and 
low-risk groups. The analysis was performed using the 
survival R package (version 2.38, https://​CRAN.R-​proje​
ct.​org/​packa​ge=​survi​val) and rms (version 6.1.1, https://​
CRAN.R-​proje​ct.​org/​packa​ge=​rms). The R package 
“survivalROC” (version 1.0.3, https://​CRAN.R-​proje​ct.​
org/​packa​ge=​survi​valROC), which performs receiver 
operating characteristic curve (ROC) and concordance 
index (CI) analyses using 1-, 2-, 3-, 4-, 5- OS data, was 
used to assess the performance of the prognostic signa-
ture model. The R package “caret” was used to randomly 
assign 43 of the patients to the internal training set and 
44 to the internal testing set. Furthermore, the model of 
prognostic signature was validated using internal valida-
tion sets 1 and 2.

Kaplan–Meier survival analysis
The Kaplan–Meier plotter, a database that integrates the 
resources of TCGA and Gene Expression Omnibus, eval-
uates the effects of mRNAs, miRNAs, and proteins on 
patient survival in 21 cancer types (http://​kmplot.​com/). 
The Kaplan–Meier plotter database was used to analyze 
the effects of miRNAs and their target genes on patient 
survival in EAC.

Expressions in the GC subgroup and target gene prediction 
for microRNAs
The miRbase was used to obtain mature miRNAs of pre-
cursor miRNAs (premiRNA). The miRDB (http://​www.​
mirdb.​org/), R and Hiplot (https://​hiplot.​com.​cn) were 
performed to reshape and visual data of expressions in 
the GC subgroup for mature miRNAs, respectively. The 
miRWalk (http://​mirwa​lk.​umm.​uni-​heide​lberg.​de/), 
miRTarBase (http://​mirta​rbase.​mbc.​nctu.​edu.​tw/), and 
TargetScan (http://​www.​targe​tscan.​org/) databases were 
used to explore target mRNAs. The Cytoscape software 
(Version 3.7.2; http://​www.​cytos​cape.​org/) was used to 
visualize and construct the miRNA–mRNA network.

Functional enrichment analysis
To determine the biological functions and potential 
signaling pathways of overlapping target mRNAs, gene 
ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses were 
performed using the Metascape database (http://​metas​
cape.​org/​gp/​index.​html#/​main/​step1).

Fig. 1  The entire analysis flow chart. QC Quality control, DEA Differentially expressed analysis, DEMs Differentially expressed miRNAs, UCox 
Univariate Cox, MCox Multivariate Cox
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Cell culture and real‑time quantitative polymerase chain 
reaction
A normal human esophageal epithelium cell line (Heec) 
purchased from the Chinese National Infrastructure of 
Cell Line Resource, and two EAC cell lines (OE33 and 
SEG-1) were purchased from the Chinese Binsui Bio for 
in vitro validation.

OE33 cells were cultured in complete medium com-
prising 90% Dulbecco’s modified Eagle’s medium (Inv-
itrogen, Carlsbad, USA) and 10% fetal bovine serum 
(HyClone, USA). SEG-1 and Heec cells were cultured in 
Roswell Park Memorial Institute Medium-1640 (Invitro-
gen, Carlsbad, CA, USA).

TRIzol (Solarbio, China) was used to isolate total RNA 
from whole-cell lysates using the PrimeScript™ RT Rea-
gent Kit (TaKaRa, USA). Bulge-LoopTM miRNA qRT-
PCR primers were used to synthesize cDNA according to 
the manufacturer’s instructions. Real-time quantitative 
polymerase chain reaction (qRT-PCR) was performed 
using Takara Bio Green Premix Ex Taq™ II (Tli RNaseH 
Plus, TaKaRa, USA) following the manufacturer’s instruc-
tions. U6 was used as the endogenous control. All prim-
ers were obtained from RiboBio Co., Ltd., China.

miRNA transfection
miR-421 and miR-550a-3p inhibitors and corresponding 
controls were synthesized and purchased from RiboBio. 
Cells were cultured overnight in six-well plates (2 × 105 
cells/well) and then transfected with miR-421 inhibitor 
(concentration, 100  nM), miR-550a-3p (100  nM), and 
corresponding negative control (100  nM) when the cell 
confluence reached 30–40%. The transfection reagent 
LipofectamineTM3000 (Invitrogen, USA) was used.

CCK8 assay
Approximately 2 × 103 cells per chamber were cultured in 
24-well plates, and then the CCK8 assay was performed 
using the CCK8 kit (Solarbio, China). A microplate 
reader (Bio-Rad, USA) was used to measure the absorb-
ance at an optical density of 450 nm.

Transwell invasion and migration assay
The mobility of transfected cells was detected using tran-
swell chambers (Corning, China); for migration, 5 × 104 
cells per chamber were cultured in transwell chambers 
without basement membrane coating. For invasion, 
1 × 105 cells/chamber were cultured in transwell cham-
bers containing a basement membrane coating. After-
ward, the cells were incubated for 24 h in an incubator at 
37 °C with 5% CO2; the cells of the inner chamber were 
wiped using a swab and cells on the outer chamber were 
fixed using methanol for 15 min and stained using 0.5% 
crystal violet (Solarbio, China) for 30 min. Then, the cells 

were washed three or four times with phosphate buffered 
saline and observed under an inverted phase microscope 
(ZEISS, Germany) to obtain field images.

Statistical analysis
The pairwise Pearson correlation was used to assess the 
weighted coexpression relationship among all dataset 
subjects in an adjacency matrix. Logrank P-value was 
used to analyze the differences between the low- and 
high-risk/expression groups in survival analyses. Dif-
ferences between the variables were considered sig-
nificant if |log2FC|≥ 1 and adjusted P-value < 0.05 in 
difference expression analysis or A fold change of > 1 and 
P-value < 0.05 in qRT-PCR analysis. The R software (ver-
sion 4.0.1) was used.

Results
Identification of DEMs associated with EAC
DEMs obtained from TCGA included 52 upregulated and 
56 downregulated miRNAs (Fig. 2A–B). Using WGCNA, 
16 coexpression modules were identified, among which 
a brown module, which included 60 miRNAs, showed a 
high association with EAC (Fig. 2C). To obtain the DEMs 
associated with EAC, 28 miRNAs were obtained using 
data between DEMs and the brown module, including 
17 upregulated and 11 downregulated miRNAs identified 
using the VennDiagram package in R (Fig. 2D).

Identification of prognostic microRNA signatures
A total of 4 out of 28 significant miRNAs associated 
with the expression levels in patients with EAC were 
found to be significantly related to the OS on univari-
ate Cox regression analysis (Fig.  3A). Following initial 
filtration, Lasso penal Cox analysis with penalty param-
eters adjusted by tenfold cross-validation was performed 
to further narrow the mRNAs by selecting those that 
occurred > 900 times out of a total of 1000 replicates 
(Fig.  3B–C). Thus, three miRNAs were identified. Mul-
tivariate Cox proportional-hazards regression model 
analysis revealed that the prognostic signature contained 
the following two genes: has-mir-550a-1 and has-mir-421 
(Table 1).

Interestingly, all miRNAs had a hazard ratio of > 1 
and were considered prognostic risk factors (Fig.  3D). 
The results of prognostic risk score, survival status, and 
expression of the two OS-related miRNAs for patients 
with EAC were displayed in (Additional file 3: Fig. 1A–C). 
Kaplan–Meier survival analysis indicated that the OS of 
patients in the low-risk groups was remarkably high com-
pared with that of those in the high-risk groups, imply-
ing that the high-risk groups were associated with a poor 
prognosis (Fig. 4A–C). To evaluate the prognostic model, 
the 1-, 2-, 3-, 4- and 5-year ROC curves and CI values of 
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entirety as well as internal validation sets 1 and 2 were 
plotted. The area under the curve (AUC) values of 1-, 2-, 
3-, 4-, and 5-year entirety were 0.71, 0.72, 0.71, 0.72, and 
0.77, respectively (Fig. 4D). The AUC of internal valida-
tion sets 1 and 2 were > 0.7. Furthermore, the CI values of 
entirety as well as validation sets 1 and 2 were 0.69, 0.68, 
and 0.67, respectively. (Fig.  4E). These results implied 
that the prognostic gene signature performed well in sur-
vival prediction.

OS of prognostic miRNAs
Kaplan–Meier analysis based on optimal cut-off value 
of miRNAs expression was used to explore the prognos-
tic information of mir-421 and mir-550a-1 in order to 
identify OS. The OS of two miRNAs was poorer in the 
high-expression group than in the low-expression group 
(P < 0.05; Fig.  5A–B). To further ensure the accuracy of 
the results, the median was designed to divide expres-
sion grouping of EAC patients. The results showed that 
patients with high expression had a lower overall survival 
than those with low expression (Additional file 3: Fig. 2). 
Previous results have shown that mir-421 and mir-550a-1 

Fig. 2  Identification of differentially expressed microRNAs (DEMs) associated with esophageal adenocarcinoma (EAC). A Volcano plots of DEMs. B 
Heatmap of DEMs in both EAC and adjacent normal samples. C Relationship of DEMs between the modules of the normal samples and those of 
EAC samples. D Venn plots of microRNAs between DEMs and microRNAs in the brown module
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show a higher expression in EAC samples than in para-
cancerous samples (Fig.  5C–D). Therefore, these data 

indicate that mir-421 and mir-550a-1 have prognostic 
value for patients with EAC.

Fig. 3  Identification of prognostic microRNAs (miRNAs). A Univariate Cox regression analysis of four differentially expressed miRNAs (DEMs). B, C 
Lasso-penalized Cox regression analysis of four DEMs. D Multivariate Cox regression analysis of three DEMs

Table 1  Prognostic value of the two microRNAs in patients with esophageal adenocarcinoma in The Cancer Genome Atlas cohort

HR Hazard ratio, CI Confidence interval

Symbol Log2FC Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value Coefficient

mir-421 1.42 1.714(1.202–2.558) 0.005 1.490(1.029–2.158) 0.038 0.399

mir-550a-1 1.84 1.826(1.329–2.900) 0.002 1.734(1.219–2.759) 0.004 0.606
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Verification of the expression of miR‑421, miR‑550a‑3p, 
and miR‑550a‑5p
The mature miRNAs of premiRNAs, miR-421, miR-
550a-3p, and miR-550a-5p were identified using miRbase 
database, and the expression of Mature mir-421 and mir-
550a-1 in the EAC subgroup was analyzed. As a result, 
they expressions are correlated with the vast majority 
of tumor grade, stage, M, N, T and gender compared 
with normal samples (Additional file 3: Fig. 3 and Addi-
tional file 3: Fig. 4). Importantly, the expression of miR-
421, miR-550a-3p, and miR-550a-5p was verified using 
qRT-PCR analysis of Heec, OE33, and SEG-1 cells. The 
expression of these miRNAs was higher in OE33 and 
SEG-1 cells than in Heec cells (Fig. 6). Because the miR-
550a-3p expression was the highest in miR550a-3p and 

miR-550a-5p, miR-550a-3p and miR-421 were selected 
for the subsequent experiments.

Suppression of miR‑421 and miR550a‑3p inhibited 
the proliferation, invasion, and migration of EAC cells
miR-421 and miR-550a-3p inhibitors were transfected 
into OE33 cells. The results showed that the downregu-
lation of miR-421 and miR-550a-3p with inhibitor mark-
edly suppressed the proliferation (Fig. 7A–D), migration 
(Figs. 7E and F), and invasion (Figs. 7G and H) of OE33 
cells compared with the negative control.

Identification of DEGs associated with EAC
Differential analysis showed that 3,390 mRNAs were 
DEGs according to the critical value (FDR < 0.05 and 

Fig. 4  Kaplan–Meier curves and prediction of signature model and validation sets for the low- and high-risk groups
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|log2FC|> 1). Of these, 1,155 were upregulated and 2,235 
were downregulated (Additional file 3: Fig. 5A). Moreo-
ver, the distribution of the significant DEGs was assessed 
via heatmapping (Additional file 3: Fig. 5B).

Five mRNA modules were identified using WGCNA 
(Additional file  3: Fig.  5C). Among these five mRNA 
modules, the blue module had a strongly-connected 
gene coexpression network with EAC (Additional file 3: 
Fig. 5C). A total of 610 DEGs associated with EAC were 
obtained from the genes between DEGs and the blue 
module, including 432 upregulated and 178 downregu-
lated mRNAs (Additional file 3: Fig. 5D).

Construction of the miRNA–mRNA network and functional 
enrichment analysis of downregulated target mRNAs
Upregulated miRNAs are known to promote or inhibit 
the occurrence and progression of tumors by downreg-
ulated target mRNAs. Therefore, we used these down-
regulated target genes for subsequent analysis. The 
downstream target mRNAs with reference to the three 

mature miRNAs are identified using miRDB, miRTar-
Base, miRWalk, and TargetScan. Moreover, potential 
mRNAs, which were only shared by the downregulated 
DEGs associated with EAC and at least two databases, 
were selected to enhance the accuracy of the prediction 
(Fig. 8A–C). The results revealed an association between 
the miRNAs and their corresponding 20 target mRNAs 
(Fig. 8D).

GO enrichment analysis of biological processes indi-
cated that the target mRNAs of three maturing miRNAs 
were mainly enriched in behavior, cellular response to 
lipid, cellular response to hormone stimulus, dephos-
phorylation, and positive regulation of defense response 
(Fig. 8E). Figure 8E shows the enriched molecular func-
tion GO terms. Unfortunately, cellular components 
were not enriched when the P-value was < 0.01. The 
KEGG pathway analysis revealed that the target mRNAs 
participate in miRNAs in cancer pathways (Fig.  8G). 
Therefore, these target mRNAs may be associated with 

Fig. 5  Overall survival (OS) and expression analyses. A, B OS of mir-421 and mir-550a-1, respectively. C, D Expression value of mir-421 and 
mir-550a-1, respectively
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cellular response, transmembrane transporter activities, 
and miRNAs in cancer pathways.

Survival analysis of downregulated target mRNAs
To explore the prognostic value of downregulated target 
mRNAs, their OS was assessed using the Kaplan–Meier 
plotter database. Patients in the low-expression group 
had a reduced OS compared with those in the high-
expression group when the P-value was < 0.05 (Fig. 9A–G 
and Table  2), except for ELAVL2 (Fig.  9H and Table  2), 
where the seven target mRNAs in the EAC and adja-
cent samples and those of they all were poorly expressed 
(Fig.  9I). Regarding the other target mRNAs, these 
genes had no prognostic value (P < 0.05; Additional 
file  3: Table  1). Therefore, these data suggested that the 
signature of the following seven downregulated target 
mRNAs—ASAP3, BCL2L2, LMF1, PPM1L, PTPN21, 
SLC18A2, and NR3C2—have a prognostic value in EAC.

Discussion
In this study, we used bioinformatics, particularly 
WGCNA, to identify 28 DEMs associated with EAC; 
two of these miRNAs were then selected to establish 
the prognostic signature model of EAC via multiple Cox 
regression analysis.

This study discovered two crucial miRNAs associated 
with a poor EAC prognosis and constructed a prognostic 
model comprising these miRNAs that had upregulated 
expression in the EAC tissues. For the two prognostic 
miRNAs (mir-550a-1 and mir-421), the mature miR-
NAs of mir-550a-1, mir-421, miR-421, miR-550a-3p, and 
miR-550a-5p were identified using the miRbase database. 
The suppression of miR-421 and miR-550a-3p inhibited 
the proliferation, invasion, and migration of EAC cells. 
The unfavorable prognosis of miR-421 in EAC has been 
reported previously, and upregulated miR-421 expression 
has been identified as an unfavorable prognostic marker 
in EAC [26]. The overexpression of miR-421 facilitates 
cell proliferation in non-small-cell lung cancer (NSCLC) 
[27]. In addition, the association of miR-421 with various 

Fig. 6  Expression of prognostic microRNAs indicators in the cell lines
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tumors has garnered growing attention. For example, 
the upregulated miR-421 expression has been shown to 
inhibit the proliferation and metastasis of colorectal can-
cer by targeting MTA1 [28]. Moreover, circAHNAK1 
suppresses the proliferation and metastasis of triple-
negative breast cancer cells by modulating the miR-421 
expression (29). Similarly, circSETD3 acts as a sponge for 
miR-421 and inhibits the growth of hepatocellular carci-
noma [30]. N-Myc has been shown to promote the devel-
opment of neuroendocrine therapy resistance in prostate 

cancer through the differential regulation of the miR-421 
pathway [31]. Although the prognostic value of miR-421 
in EAC and the mechanism of miR-421 in other can-
cers have been validated, the mechanism through which 
this operates in EAC remains unclear. The present study 
shows that the high expression of miR-421 in EAC cells 
may be a useful prognostic indicator in EAC.

Regarding the two mature miRNAs of mir-550a-1 
(miR-550a-3p and miR-550a-5p), to the best of our 
knowledge, the association of miR-550a-3p and 

Fig. 7  Effects of the suppression of miR-421 and miR-550a-3p on the proliferation, invasion, and migration of OE33 cells. Paired t test *P < 0.05, 
**P < 0.01, and ***P < 0.001
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Fig. 8  Prediction of target mRNAs and establishment of a microRNA (miRNA)–mRNA axis and Gene ontology enrichment and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analysis of the 20 target mRNAs. A, B, and C overlapped target mRNAs were analyzed using the predicted 
target mRNAs, differentially expressed genes (DEGs) associated with esophageal adenocarcinoma, and significantly-downregulated mRNAs, 
respectively. D miRNA–mRNA network was constructed using the three miRNAs for EAC prognosis and 20 overlapped target mRNAs. E Biological 
process. F Molecular function. G KEGG pathways
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miR-550a-5p with EAC has not been studied previously. 
miR-550a-3p reportedly shows high expression and is 
associated with significantly reduced OS in melanoma 
[32]. The upregulated expression of miR-550a-3p sig-
nificantly promotes the cellular proliferation, invasion, 

and migration in NSCLC, whereas the knockdown of 
the miR-550a-3p expression inhibits cancer growth and 
metastasis [33]. Recent studies have shown that high 
expression of miR‐550a‐3p reverses the inhibitory effect 
of the increased LINC00261 expression, and the reduced 

Fig. 9  Overall survival of the target genes and their expression in EAC and adjacent tissues. Wilcoxon test *P < 0.05, **P < 0.01, and ***P < 0.001
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SDPR expression reverses the growth-promoting effect 
of miR‐550a‐3p in breast cancer stem cells [34]. Regard-
ing miRNA-550a-5p, a previous study demonstrated that 
patients with lung adenocarcinoma in the miR-550a-5p 
high-expression group had a shorter OS than those in 
the low-expression group [35]. Transfection of an miR-
550a-5p mimic promotes cell migration in colorectal 
cancer [36]. Recent evidence suggests that miR-550a-5p 
shows high expression and promotes tumor prolifera-
tion by binding to LIMD1 in lung adenocarcinoma [37]. 
Furthermore, the in vitro expression of miR-550a-3p and 
miR-550a-5p was higher in EAC cells than in esophageal 
epithelial cells; however, the expression of miR-550a-3p 
was more significant, suggesting that miR-550a-3p plays 
an important role in the prognosis, occurrence, and pro-
gression of EAC. Nonetheless, these findings must be 
validated in future studies.

Metascape database analysis revealed that the target 
mRNAs PRKACB and PDCD4 of miR-550a-3p as well 
as RPS6KA5 and BCL2L2 of miR-550a-5p were associ-
ated with miRNA cancer pathway, providing important 
clues for subsequent studies on the mechanism underly-
ing EAC development. Unfortunately, no target gene for 
miR-421 was enriched in miRNA cancer pathway. Nev-
ertheless, these findings should be further explored in 
subsequent studies. Furthermore, seven prognostic tar-
get mRNAs—ASAP3, BCL2L2, LMF1, PPM1L, PTPN21, 
SLC18A2, and NR3C2—were obtained through Kaplan–
Meier analysis. Among these mRNAs, the prognostic 
values and mechanisms of LMF1, PPM1L, and PTPN21 
have rarely been reported in cancers. To our best knowl-
edge, the correlation between the four other prognostic 
target mRNAs and EAC has not been studied previously. 
miRNA-143-3p reportedly inhibits the metastases of 
colorectal cancer by targeting ASAP3 [38]. The inhibition 
of BCL2L2 results in the high expression of miR-335-5p, 
which increases cisplatin sensitivity in ovarian can-
cer [39]. The low expression of SLC18A2 reduces OS in 

prostate cancer [40]. Downregulated NR3C2 expression 
is associated with a poor prognosis and aggressive char-
acteristics in nondistant metastatic clear-cell renal cell 
carcinoma [41].

Overall, the consistency of our findings with previous 
studies confirms the high reliability of the analysis meth-
ods used in this study. However, the detailed mechanisms 
of miR-421, miR-550a-3p, and miR-550a-5p that influ-
ence the tumorigenesis and development of EAC by tar-
geting mRNAs require urgent attention.

In conclusion, we analyzed the EAC data obtained 
from TCGA using combined bioinformatic approaches 
and cell experiments and identified prognostic indicators 
of two miRNAs associated with seven prognostic target 
mRNAs as the possible indicators for future EAC diagno-
sis and treatment.
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