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Abstract

Background: Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding
cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding.
Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and
characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease
resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil
palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different
gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease
resistance genes, and the development of an annotation database and bioinformatics tools.

Results: Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes
with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of
the genome have a characteristic broad distribution of GC3 (fraction of cytosine and guanine in the third position
of a codon) with over half the GC3-rich genes (GC3 ≥ 0.75286) being intronless. In comparison, only one-seventh
of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved
domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified.
For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also
identified 210 candidate resistance genes in six classes, grouped by their protein domain structures.

Conclusions: We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of
important categories of genes (GC3-rich and intronless), as well as those associated with important functions, such as
FA biosynthesis and disease resistance. The study demonstrated the advantages of having an integrated approach to
gene prediction and developed a computational framework for combining multiple genome annotations. These results,
available in the oil palm annotation database (http://palmxplore.mpob.gov.my), will provide important resources for studies
on the genomes of oil palm and related crops.
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Background
Oil palm is in the genus Elaeis of family Arecaceae. The
genus has two species - E. guineensis (African oil palm) and
E. oleifera (American oil palm). There are three fruit forms
of E. guineensis, mainly differing in their shell thickness -
dura (thick shell), tenera (thin shell) and pisifera (no shell).
The African oil palm is by far the most productive oil crop
[1] in the world, with estimated production in year 2015/
2016 of 61.68 million tonnes, of which the Malaysian
share was 19.50 million tonnes [2]. Palm oil constitutes
~34.35% of the world’s production of edible oils. Glo-
bally, palm oil is mainly produced from E. guineensis in
the tenera fruit form. E. oleifera is not used commercially
due to its low yield. However, it is more disease-resistant
and can grow in areas where cultivating guineensis is not
feasible, e.g., Central-Southern America. Even then, it is
mainly planted as a backcross to guineensis (interspecific
hybrid) to increase the yield. Nevertheless, it has econom-
ically valuable traits which plant breeders wish to intro-
gress into guineensis, such as a more liquid oil with higher
carotenoid and vitamin E contents, disease resistance and
slow height increment [1].
The importance of oil palm has resulted in interest to

sequence its transcriptomes and genome. Initial efforts
were based on expressed sequence tags (ESTs) [3], but
the technique, while useful for tagging expressed genes,
only provided partial coverage of the coding regions and
genome. Next, GeneThresher™ technology was applied
to selectively sequence hypomethylated regions of the
genome [4]. The oil palm AVROS pisifera genome sequence
was subsequently released in 2013 [5], and this facilitated
completion of the draft oil palm dura genome [6]. With
the genome sequence [5], coupled with genetic and
homozygosity mapping via sequencing, the SHELL gene
was identified [7]. This facilitated an efficient genetic
test to distinguish between the dura, pisifera and tenera
fruit forms. Subsequently, the VIRESCENS gene, which
regulates the fruit exocarp color [8], and the MANTLED
gene, which causes tissue culture abnormality [9], were
also discovered. Accurate genome annotation was critical
for the identification of these genes, and will be crucial for
increasing oil palm productivity.
First gene prediction pipelines appeared in the 1990s.

In 1997, mathematicians from Stanford developed the
Genscan [10] software, followed by a steady stream of
specially designed tools to navigate the complexity of
various genomes. Combining multiple predictors led to
the development of automated pipelines integrating various
types of experimental evidence [11]. A major limitation
shared by many approaches is their relatively poor perform-
ance in organisms with atypical distribution of nucleotides
[12–15]. The GC3 content of the genes plays an important
role, as GC3-rich genes in grasses can be better predicted
by transcriptome-based rather than homology-based
methods [16]. Accurate gene prediction is one of the
most important challenges in computational biology, as the
prediction quality affects all aspects of genomics analysis.
In our effort to overcome the lack of precision in

many predictive models, we developed a computational
framework to generate high quality gene annotations for
oil palm. The framework uses a combination of the
Seqping [17] pipeline developed at the Malaysian Palm
Oil Board (MPOB), and the Fgenesh++ [18] pipeline by
Softberry. Individual components of the framework were
trained on known genes of plants closely related to the
oil palm, such as the date palm, to identify the most
suitable parameters for gene prediction. The best gene
model for each locus was selected to establish a repre-
sentative “high confidence” gene set. Genes associated
with important agronomical traits, namely 42 fatty acid
biosynthetic genes and 210 candidate resistance genes,
were also identified. The gene information and annota-
tions, made available in an oil palm annotation database,
will be an important resource for breeding disease and
stress resistant palms with enhanced productivity. This
paper describes the identification and characterization of
a “high confidence” set of 26,059 oil palm genes that
have transcriptome and RefSeq support, and bioinfor-
matics analysis of the genes, including comparative gen-
omics analysis, and database and tool development.

Methods
Datasets
We used the E. guineensis P5-build of an AVROS pisifera
palm from Singh et al. [5], which contained 40,360
genomic scaffolds (N50 length: 1,045,414 nt; longest
length: 22,100,610 nt; and shortest length: 1992 nt). The
E. guineensis mRNA dataset is a compilation of published
transcriptomic sequences from Bourgis et al. [19],
Tranbarger et al. [20], Shearman et al. [21, 22], and
Singh et al. [7], as well as 24 tissue-specific RNA
sequencing assemblies from MPOB submitted to GenBank
in BioProject PRJNA201497 and PRJNA345530 (see
Additional file 1), and oil palm expressed sequence tags
downloaded from the nucleotide database in GenBank.
This dataset was used as transcriptome evidence, and to
train the Hidden Markov Model (HMM) for gene
prediction.

Fgenesh++ gene prediction
Fgenesh++ (Find genes using Hidden Markov Models)
[18, 23] is an automatic gene prediction pipeline, based
on Fgenesh, a HMM-based ab initio gene prediction
program [24]. We used oil palm genomic scaffolds to
predict the initial gene set, applying the Fgenesh gene
finder with generic parameters for monocots. From
this set, we selected a subset of predicted genes that
encode highly homologous proteins (using BLAST with
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E-value <1.0E-10) to known plant proteins from the NCBI
non-redundant (NR) database. We computed the opti-
mized gene-finding parameters using this subset of pre-
dicted oil palm genes as the training set, and executed the
Fgenesh++ pipeline to annotate the genes in the genomic
scaffolds. The Fgenesh++ pipeline considered all available
supporting data, such as the E. guineensis mRNA dataset
and homologous protein sequences. NR plant, and specif-
ically, palm transcripts were mapped to the oil palm gen-
omic scaffolds, identifying a set of potential splice sites.
Plant proteins were also mapped to the oil palm genomic
scaffolds and high scoring matches were selected to gener-
ate protein-supported gene predictions. This ensured that
only highly homologous proteins were used in gene
identification.
Amino acid sequences from the predicted oil palm

genes were then compared to the protein sequences
from plant NR database using the ‘bl2seq’ routine, with
the similarity considered significant if it had blast percent
identity ≥50, blast score ≥ 100, coverage of predicted pro-
tein ≥80% and coverage of homologous protein ≥80%.
BLAST analysis of the predicted sequences was also car-
ried out against the E. guineensis mRNA dataset, using an
identity cutoff of >90%. Predictions that have both NR
plant RefSeq and E. guineensis mRNA support were
selected for further analysis.
Seqping gene prediction
Seqping [17], a customized gene prediction pipeline
based on MAKER2 [25], was developed by MPOB.
Full-length open reading frames (ORFs) were identified
from the E. guineensis mRNA dataset described above,
using the EMBOSS getorf program. ORFs between 500
and 5000 nt were selected to minimize potential pre-
diction errors. Using BLASTX [26] search, selected
ORFs with E-values <1E-10 were considered signifi-
cantly similar to the RefSeq plant protein sequences.
ORFs with BLASTX support were clustered using
BLASTClust and CD-HIT-EST [27], and subsequently
filtered using the TIGR plant repeat database [28],
GIRI Repbase [29], and Gypsy Database [30] to remove
ORFs similar to retroelements. The resulting set of
ORFs was used as the training set to develop HMMs
for three modellers, GlimmerHMM [31, 32], AUGUSTUS
[33] and SNAP [34] programs, which were subsequently
used for gene predictions. Seqping uses MAKER2 [25] to
combine predictions from the three modelers. All pro-
grams used the default parameters in Seqping. The
predicted sequences were compared to the RefSeq [35]
protein sequences and E. guineensis mRNA dataset by
BLAST. Predictions that have NR plant RefSeq and E.
guineensis mRNA support (E-value cutoff: 1E-10) were
selected for further analysis.
Integration of Fgenesh++ and Seqping gene predictions
To increase the accuracy of annotation, predictions inde-
pendently made by the Seqping and Fgenesh++ pipelines
were combined into a unified prediction set. All predicted
amino acid sequences were compared to protein sequences
in the NR database using BLAST (E-value cutoff: 1E-10).
ORF predictions with <300 nucleotides were excluded.
Predicted genes from both pipelines in the same strand
were considered overlapping if the shared length was above
the threshold fraction of the shorter gene length. A co-
located group of genes on the same strand was considered
to belong to the same locus if every gene in the group over-
lapped at least one other member of the same group (single
linkage approach) at the selected overlap threshold. Differ-
ent overlap thresholds, from 60% to 95% in 5% increments,
were tested to determine the best threshold value, simultan-
eously maximizing the annotation accuracy and minimizing
the number of single-isoform loci. Protein domains were
predicted using PFAM-A [36, 37] (release 27.0) and PfamS-
can ver. 1.5. The coding sequences (CDSs) were also com-
pared to NR plant sequences from RefSeq (release 67),
using the phmmer function from the HMMER-3.0 package
[38, 39]. To find the representative gene model and deter-
mine its function for each locus, we selected the lowest E-
value gene model in each locus and the function of its
RefSeq match. We excluded hits with E-values >1E-10, as
well as proteins that contained words “predicted”, “puta-
tive”, “hypothetical”, “unnamed”, or “uncharacterized” in
their descriptions, keeping only high-quality loci and their
corresponding isoforms. Loci without the RefSeq match
were discarded. The CDS in each locus with the best match
to the RefSeq database of all plant species was selected as
the best representative CDS for the locus. Gene Ontology
(GO) annotations were assigned to the palm genes, using
the best NCBI BLASTP hit to Oryza sativa sequences from
the MSU rice database [40] at an E-value cutoff of 1E-10.

Intronless genes
Intronless genes (IG) were identified as mono-exonic
genes containing full-length ORFs, as specified by the
gene prediction pipeline. The same approach was ap-
plied to five other genomes: A. thaliana (TAIR10) [41],
O. sativa (MSU 6.0) [40], S. bicolor (Phytozome 6.0), Z.
mays (Phytozome) and Volvox carteri (Phytozome 8.0)
[42]. Lists of non-redundant IG from all six genomes
were obtained, and the oil palm IG were compared to
them using BLASTP (E-value cutoff: 1E-5). The protein
sequences of the IG were also mapped to all NCBI genes
in the archaea, bacteria and eukaryote kingdoms using
BLASTP with the same cutoff.

Resistance (R) genes
All curated plant resistance (R) genes were downloaded
from the database PRGdb 2.0 [43]. A local similarity
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search of known plant resistance genes and oil palm
gene models was done using the BLASTP program with
E-value ≤1E-5. TMHMM2.0 [44] was used to find pre-
dicted transmembrane helices in the known R genes, as
well as in the oil palm candidate R genes, and these
results were used to classify the R genes. Domain struc-
tures of the known and oil palm candidate R genes were
identified using InterProScan. All the domains found
were used to classify the candidate R genes according to
the PRGdb classification. To be considered an R gene,
the gene had to contain all the domains found in known
R genes of its class. Our selection was validated on the
published “resistance” gene motifs [45–49] and each class
further validated via multiple sequence alignment and
phylogenetic tree, using the ClustalW [50] and MEGA6
[51] programs, respectively. The same procedure was used
to identify R genes in A. thaliana [41], O. sativa [40], S.
bicolor, Z. mays and V. carteri genomes. Distribution of
coiled-coil (CC) – nucleotide binding site (NBS) –
leucine-rich repeat (LRR) or CNL class R genes across
16 chromosomes of the EG5 genome build [5] was con-
ducted to identify physical clustering. A cluster of R
genes is defined as two CNL genes located less than
200 kb apart, with no more than eight non NBS-LRR
genes in between them [52, 53].
Fatty acid (FA) biosynthesis genes
A. thaliana, O. sativa, Z. mays, Glycine max and Ricinus
communis amino acid sequences corresponding to 11 FA
biosynthesis genes were obtained from KEGG [54]. The
corresponding amino acid sequences for another three
genes, oleoyl-phosphatidylcholine desaturase [FAD2],
linoleoyl-phosphatidylcholine desaturase [FAD3], acyl-
acyl carrier protein (ACP) thioesterase [FATB], were
obtained from journals [55–58]. These sequences
were compared to oil palm gene models using Exon-
erate [59] with the “protein2dna” alignment model
parameter. The oil palm gene models were annotated
using BLASTX against the RefSeq database. Con-
served domains of these genes were identified using
InterProScan [60] against the HMMPfam database
[36, 61]. Corresponding protein sequences of candi-
date oil palm FA biosynthesis genes and FA biosyn-
thesis genes from other organisms were aligned using
the ClustalW program. The catalytic residues and
conserved motifs of the amino acid sequences of the
corresponding candidate FA biosynthesis genes were
identified from literature [62–73]. Sequences of iden-
tified FA genes having more than one copy were ex-
tracted with additional flanking regions of 10 Mb
upstream and downstream to check for genome du-
plication using the PROmer [74] software with default
parameters.
Expression analysis
To estimate the expression of FA biosynthesis genes,
two Illumina HiSeq 2000 libraries each of mesocarp and
kernel samples in NCBI BioProject PRJNA245226 [5],
were read-mapped to the P5-build of the oil palm genome
using the Tuxedo suite [75, 76]. Fragments Per Kilobase of
transcript per Million mapped fragments (FPKM) was
calculated, with the expression of each gene the mean of
measures from two biological replicates. Expressions of
genes in root, leaf, leaf apex and flower from BioProject
PRJNA201497 were determined by mapping two Roche
454 sequencing transcriptome data for each tissue using
the same method.

Comparative genomics
To identify the orthologs of FA biosynthesis and R genes
in oil palm sequences, OrthoMCL2.0 [77] was used with
its default parameters to construct orthologous groups
across three sets of gene models: E. guineensis, A. thaliana
and Z. mays. The corresponding protein sequences of
these genes were confirmed with BLASTP [26] searches
against the NCBI NR database with default parameters.
Protein members of the cluster sequences were aligned by
two methods, Muscle [78] and MAFFT [79] version 7.
Protein domain sequences were identified using Pfam
[37], InterPro [80], ScanProsite [81] and NCBI CDD [82].
To get an overview of the relationships between selected
orthologous genes, phylogenetic trees were constructed
using MEGA6 [51] and MAFFT [83]. All programs were
used with their default settings.

Results and discussion
Gene models
A variety of tools has been developed for prediction and
annotation of protein-coding genes, such as Fgenesh++
[18], MAKER-P [84], Gramene [85], GeneMark [86, 87],
and Ensembl [88]. Plant genomes (such as A. thaliana,
Medicago truncatula, O. sativa, E. guineensis, Fragaria
vesca and others) are generally annotated using a com-
bination of evidence-based gene models and ab initio
predictions [6, 89–92]. The first version of the oil palm
genome [5], which is from the AVROS pisifera palm, was
published in 2013 with assembled sequences representing
~83% of the 1.8 Gb-long genome. Using this assembly, we
predicted gene models by combining output from the two
pipelines, Fgenesh++ and Seqping [17].
Previous studies of five ab initio pipelines, Fgenesh++,

GeneMark.hmm, GENSCAN, GlimmerR and Grail, to
evaluate gene prediction precision showed that Fgenesh++
produced the most accurate maize genome annotations
[23]. Fgenesh++ is a common tool for eukaryotic genome
annotation, due to its superior ability to predict gene struc-
ture [93–96]. In the oil palm genome, Fgenesh++ predicted
117,832 whole and partial-length gene models of at least
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500 nt long. A total 27,915 Fgenesh++ gene models had
significant similarities to the E. guineensis mRNA dataset
and RefSeq proteins (Fig. 1).
To improve the coverage and accuracy of gene predic-

tion, and to minimize prediction bias, Seqping, which is
based on the MAKER2 pipeline [25], was also used. Seqp-
ing is an automated pipeline that generates species-specific
HMMs for predicting genes in a newly sequenced organ-
ism. It was previously validated using the A. thaliana and
O. sativa genomes [17], where the pipeline was able to pre-
dict at least 95% of the Benchmarking Universal Single-
Copy Orthologs’s (BUSCO) [97] plantae dataset (BUSCO
provides quantitative measures for the assessment of gene
prediction sets based on evolutionarily-informed expecta-
tions of gene content from near-universal single-copy
orthologs [97]). Seqping demonstrated the highest accuracy
compared to three HMM-based programs (MAKER2,
GlimmerHMM, and AUGUSTUS) with the default or avail-
able HMMs [17]. The pipeline was used to train the oil
palm specific HMMs. This was done by identifying 7747
putative full-length CDS from the transcriptome data.
Using this set, the oil palm-specific HMMs for Glim-
merHMM [31, 32], AUGUSTUS [33], and SNAP [34] were
Fig. 1 Integration workflow of Fgenesh++ and Seqping gene
predictions. Trans – Gene models with oil palm transcriptome evidence;
Prot – Gene models with RefSeq protein evidence. # The 26,059 gene
models formed the representative gene set that was used for further
analysis. The representative gene set was also used to identify and
characterize oil palm IGs, R and FA biosynthesis genes
trained. These HMMs were used in MAKER2 to predict oil
palm genes. The initial prediction identified 45,913 gene
models that were repeat-filtered. A total 17,680 Seqp-
ing gene models had significant similarities to the E.
guineensis mRNA dataset and RefSeq proteins (Fig. 1).
The 27,915 and 17,680 gene models from Fgenesh++

and Seqping respectively were then combined. Since the
ratio of single-gene model to multi-gene model loci in-
creased more rapidly above the 85% overlap between
two loci (Fig. 2 and Additional file 2: Table S1), we set
this value as the overlap threshold. Gene models that
had an overlap ≥85% were grouped into a locus. This
threshold allowed us to minimize false positives in merging
loci, while maximizing true positives in joining gene models
into one locus. The gene models in a single locus must also
be predicted from the same strand. Examples of these over-
laps are shown in Additional file 3: Figures S1a and S1b.
31,413 combined loci (Additional file 2: Table S1) in 2915
scaffolds were obtained, of which 26,087 contained gene
models with PFAM domains and RefSeq annotations. Of
them, 13,228 contained one ORF, 12,111 two, and 748 three
or more. For every locus, the CDS with the best match to
plant proteins from the RefSeq database was selected as its
best representative CDS.
The genomic scaffolds containing predicted genes

were screened by MegaBLAST search against the RefSeq
Representative Genome Database (E-value cutoff: 0; hits
to E. guineensis excluded). If the best BLAST hits were
represented by bacterial or plastid plant genomes, the
scaffolds were marked as potential contaminants. Forty
three potential contaminant scaffolds were identified and
checked manually. The scaffolds were also compared to the
oleifera genome, RNA-seq data and the latest Pisifera
genome builds that MPOB uses internally. Scaffolds with
no support in all three levels were removed from the final
dataset, 24 scaffolds containing 28 loci. The remaining rep-
resentative CDS for 26,059 genomic loci (the “high quality”
dataset) are supported by the oil palm transcriptome and
RefSeq data. The sequences and annotations of the 26,059
genes are available in the PalmXplore system (http://palmx
plore.mpob.gov.my). PalmXplore is an integrated database
system that allows researchers to search, retrieve and
browse oil palm gene information and associated functional
annotations using a series of search engines. The system is
also linked to Blast tools and the oil palm palm genome
browser (MYPalmViewer; http://gbrowse.mpob.gov.my/).
Screenshots of the system are available in Additional file 4.
Gene structure analysis of the high quality dataset

showed that 14% were intronless and 16% contained
only two exons. 395 genes had more than 20 exons. Fur-
ther analyses on these genes using BLASTX (E-value cut-
off: 1E-5) to determine their identity and exon numbers,
showed that 366 had alignment coverage above 90% with
the RefSeq [35] genes. The number increased to 384 genes

http://palmxplore.mpob.gov.my
http://palmxplore.mpob.gov.my
http://gbrowse.mpob.gov.my
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when the cutoff was reduced to at least 80% coverage. The
two oil palm genes with the largest exon number (57
exons) were p5.00_sc00063_p0008 and p5.00_sc00076_
p0105. Detailed examination of gene p5.00_sc00063_
p0008 showed it is similar to serine/threonine-protein
kinase TOR from Musa acuminate,Vitis vinifera, Citrus
sinensis and Theobroma cacao, which also have 57
Fig. 3 Distribution of oil palm gene models. a Number of genes vs. numbe
exons. Interestingly, the oil palm translation activator
GCN1 (p5.00_sc00076_p0105) was similar to the genes
in Phoenix dactylifera, V. vinifera, O. sativa and M.
acuminate with 60 exons. The distributions of exons per
gene and CDS lengths are shown in Fig. 3a and b respect-
ively. Evolutionary conservation of gene structure was
previously described for several species and gene families
r of exons per gene b Number of genes vs lengths of CDS
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[98, 99]. For example, it was estimated that in mouse and
human, 86% of the orthologous gene pairs have the same
number of coding exons [100].
BUSCO analysis [97] of the high quality dataset

showed 90.44% of the 429 eukaryotic BUSCO profiles
available. By comparing to 1440 embryophyta BUSCO
profiles (Additional file 2: Table S2), 85.76% of the
BUSCO genes were found in the predicted gene models,
including 81.25% as complete BUSCO genes, thus quan-
tifying the completeness of the oil palm genome annota-
tion. By comparison, the first set of gene prediction by
Singh et al. [5] in 2013 had matches to only 60.35% of
the embryophyta BUSCO profiles, with 41.60% as complete
BUSCO genes, indicating a big improvement in the latest
gene models. Also, for each gene in the current and 2013
annotation, we compared the best match to the plant
RefSeq database using the NCBI BLASTP program. The
new pisifera annotation has higher identity to the RefSeq
proteins than the old one. The high quality dataset also had
better predictions than the 36,105 gene models identified in
the dura genome [6]. BUSCO analysis (Additional file 2:
Table S2) shows that the pisifera annotations contain 53%
more complete (1170 vs. 765), 55% less fragmented (65 vs.
145), and 61% less missing (205 vs. 530) BUSCO profiles
than those from dura. The average number of exons in
dura is 4.3, and in pisifera 5.4. The predicted mean
CDS length of dura (900 nt) is also shorter than pisifera
(1232 nt).
Nucleotide composition of oil palm genes
One important characteristic of a genome is the fre-
quency of guanine and cytosine occurring in the third
codon position, GC3, which is defined as C3þG3

L
3= Þð , where L

is the length of the coding region, C3 the number of
cytosines, and G3 the number of guanines in the third
position of codons in the coding region [16]. Two types
of GC3 distribution have been described - unimodal and
bimodal [16, 101, 102]. Genes with high and low GC3

peaks have distinct functional properties [102]. GC3-rich
genes provide more targets for methylation, exhibit more
variable expression, more frequently possess upstream
TATA boxes and are predominant in stress responsive
genes. Different gene prediction programs have variable
bias to different classes of genes, but GC3-rich genes are
reported to be especially hard to predict accurately
[103]. The distribution of GC3 is bimodal in grasses and
warm-blooded vertebrates, and unimodal in other spe-
cies sequenced to date [104].
The distribution of GC3 in oil palm is unimodal with a

long tail towards high values of GC3. Figure 4a shows
the distribution of GC3 in the high quality dataset. We
ranked all genes by their GC3 contents and designated
the top 10% (2606 ORFs) as GC3-rich (GC3 ≥ 0.75286)
and the bottom 10% as GC3-poor (GC3 ≤ 0.373239).
Two of the remarkable features that distinguish GC3-rich
and -poor genes are the gradients of GC3 and CG3-skew,
defined as CGskew

3 ¼ C3−G3
C3þG3

, where C3 and G3 are the fre-

quencies of cytosines or guanines in the third position of
the codon, correspondingly. An increase in the CGskew

3 from
5' to 3' has been linked to transcriptional efficiency and
methylation status [16, 102, 105] of the GC3-rich genes.
Figure 4c and d show the positional gradients of nucleotide
composition. The GC3 content of GC3-rich genes increases
from the 5' to 3' end of the gene, but decreases in GC3-poor
genes. Despite the relatively small number of GC3-rich
genes in the oil palm genome, there are characteristic
patterns of positional gradients (Fig. 4c and d) near the pre-
dicted start of translation, as also found in other well-
annotated genomes [16].
The dinucleotide CG relative abundance (a.k.a. “genomic

signature”) is defined as ρCG ¼ f CG
f C f G

; where fx is the fre-

quency of a (di)nucleotide x [106]. Similar to grasses, and
other previously analyzed plant and animal species
[16, 102], the oil palm genome signature differs for
GC3-rich and GC3-poor genes (Fig. 4b). The GC3-rich
genes are enriched and the GC3-poor genes depleted
in the number of CpG sites that are potential targets
for methylation. Gene ontology analysis shows that
many of the GC3-rich genes are stress-related, while
many of the GC3-poor genes have housekeeping func-
tions (see GO annotation in Additional file 2: Table
S3). The depletion of CpGs in GC3-poor genes is con-
sistent with their broad constitutive expression [16].
This analysis is based on the classification described
above where the GC3-rich genes were defined as the
top 10% genes with the highest GC3 content, and the
GC3-poor genes the bottom 10% of all genes with the
lowest GC3 content. If there is no relationship between nu-
cleotide composition and GO categories, the distribution of
genes in the GO categories would be the same for all the
genes in the entire genome. However, the goodness-of-fit
test shows that, for example, in the GO categories ‘response
to abiotic stimulus’, ‘response to endogenous stimulus’ and
‘secondary metabolic process’, the number of genes in GC3-
rich and -poor categories differ from uniform distribution
at p-value = 6.12E-13, 6.68E-08 and 1.56E-06 respectively.
We calculated the distribution of nucleotides in the oil

palm coding regions. The following models of ORF were
considered: Multinomial (all nucleotides independent,
and their positions in the codon not important), Multi-
nomial position-specific and First order three periodic
Markov Chain (nucleotides depend on those preceding
them in the sequence, and their position in the codon
considered). Additional file 2: Tables S4-S7 show the
probabilities of nucleotides A, C, G and T in GC3-rich
and -poor gene classes. Note that both methods predict



Fig. 4 GC3 distribution in oil palm gene models. a GC (red) and GC3 (blue) composition of coding regions of E. guineensis. b Genome signature
for GC3-rich and -poor genes. c GC3 gradient along the open reading frames of GC3-rich and -poor genes. d CG3 skew gradient along the open
reading frames of GC3-rich and -poor genes. Figures c and d: x-axis is number of codons in coding sequence. Figure d: C3 and G3 is frequency of
cytosine or guanine in third position of codon. CG3 is frequency of cytosine and guanine in third position of codon
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GC3-poor genes with greater imbalance between C and
G, than GC3-rich genes (0.05 vs. -0.1). This is consistent
with the prior observation [102] that GC3-rich genes
have more targets for methylation than GC3-poor genes,
and that some cytosine nucleotides can be lost due to
cytosine deamination.
GC3-rich and -poor genes differ in their predicted

lengths and open reading frames (Additional file 2:
Table S8). The GC3-rich genes have gene sequences
and ORFs approximately seven times and two times
shorter, respectively, than the GC3-poor genes. This is con-
sistent with the findings from other species [16, 101, 102].
It is important to note that GC3-rich genes in plants tend
to be intronless [16].

Intronless genes (IG)
Intronless genes (IG) are common in single-celled eu-
karyotes, but only a small percentage of all genes in
metazoans [107, 108]. Across multi-cellular eukaryotes,
IG are frequently tissue- or stress-specific, GC3-rich with
their promoters having a canonical TATA-box [16, 102,
107]. Among the 26,059 representative gene models with
RefSeq and oil palm transcriptome evidence, 3658
(14.1%) were IG. The mean GC3 content of IG is
0.668 ± 0.005 (Fig. 5), while the intron-containing (a.k.a.
multi-exonic) genes’ mean GC3 content is 0.511 ± 0.002,
in line with the estimates for other species. IG are over-
represented among the GC3-rich genes (GC3 > =0.75286).
36% of intronless genes are GC3-rich, in comparison
with an overall 10% in all oil palm genes (Chi-squared
test p-value < 10−16). Intronless genes constitute 51% of
the GC3-rich genes. Their CDS are, on average, shorter
than multi-exonic CDS: 924 ± 19 nt vs. 1289 ± 12 nt.
On average, there is one intronless gene per 9.5 multi-
exonic genes on any scaffold containing intronless genes.
There is no difference in nucleotide composition and
CpG frequency between short scaffolds that contain
intronless genes, multi-exonic genes and no genes.
The distribution of IG in the whole genome is different

for various functional groups [16, 108]. For example, in the
oil palm genome, 29% of the cell-signaling genes are intron-
less, compared to just 1% of all tropism-related genes
(Additional file 2: Table S9). The distribution of genes
by GO categories is similar to that in O. sativa. It has
been shown that in humans, mutations in IG are asso-
ciated with developmental disorders and cancer [108].
Intronless and GC3-rich genes are considered to be
evolutionarily recent [16] and lineage-specific [107], po-
tentially appearing as a result of retrotransposon activ-
ity [108, 109]. It is reported that 8–17% of the genes in
most animals are IG, ~10% in mice and humans [107]
and 3–5% in teleost fish. Plants have proportionately
more IG than animals, 20% in O. sativa, 22% in A.
thaliana [110], 22% in S. bicolor, 37% in Z. mays, 28%
in foxtail millet, 26% in switchgrass and 24% in purple
false brome [111]. We have independently calculated
the fraction of IG in O. sativa, A. thaliana, S. bicolor
and Z. mays using the currently published gene models



Fig. 5 GC3 contents of oil palm intronless and multi-exonic genes
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for each species, with results of 26%, 20%, 23% and
37%, respectively (Additional file 2: Table S10). To es-
tablish a reference point, we calculated the fraction of
IG in the green algae, V. carteri, and found 15.8%. High
IG in grasses is not surprising, since they have a clearly
bimodal distribution of GC3 composition in their cod-
ing region, with the GC3-peak of this distribution dom-
inated by IG [16].
Using BLASTP, we found 543 IG (14.84% of oil palm

IG) conserved across all the three domains of life:
archaea, bacteria and eukaryotes (Fig. 6). These genes
are likely essential for survival [112]. A total 736 oil palm
IG had homologs only with eukaryotic and bacterial genes,
while only 40 IG had homologs with eukaryotic and archaea
genes (and not with bacteria). We speculate (due to the ex-
treme growth conditions of archaea [113, 114]) that there
are (1) fewer opportunities for horizontal gene transfer from
archaea than from bacteria to the oil palm genome, and/or
(2) possible ancestral gene loss on the archaeal branch
in the process of adaptation. Considering three of the
most economically important eukaryotic groups [Metazoa
Fig. 6 Classification of oil palm intronless genes (IG) in different taxonomy
high quality loci and 3658 oil palm IG (in parenthesis) into three domains
sub-diagram shows the distribution of oil palm IG from the eukaryote do
and Animals. ORFans refers to the unique sequence that shares no signifi
(animals), Fungi and Viridiplantae (green plants)] we ob-
served 1373 oil palm IG shared among them. A significant
portion of the oil palm IG (1863) was only homologous to
Viridiplantae. These proteins may have evolved, or been
regained, only in plants, even as other organisms lost their
ancestral genes during evolution [110].
Reciprocal BLAST was carried out to verify the homolo-

gies of oil palm candidate IG to produce a set of high con-
fidence oil palm IG. We found 2431 (66.46%) proteins
encoded by oil palm IG to have orthologs in A. thaliana,
O. sativa or Z. mays that are also intronless, indicating
that intronlessness is an ancestral state [115, 116]. In con-
clusion, from our representative gene models, we estimate
that about one-seventh of the genes in oil palm are intron-
less. We hope that this data will be a resource for further
comparative and evolutionary analysis, and aid in under-
standing IG in plants and other eukaryotic genomes.

Resistance (R) genes
Plants differ from animals in many aspects, one of them
is the lack of an antibody-based immune system. Instead,
groups. The Venn diagram shows the projections of 26,059 oil palm
of life based on homology, archaea, bacteria and eukaryotes. The
main into three major taxonomy groups of life - Green Plants, Fungi
cant similarity with other organisms
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they have protein-based mechanisms to recognize invad-
ing pathogens [117–119]. The genes encoding for such
proteins are called “resistance”, or “R” genes. They play
an important role in the plant’s early detection and sig-
naling mechanism against biotic and abiotic stresses.
Using homology, we identified 210 oil palm candidate R
genes from the 26,059 representative gene models with
RefSeq and transcriptome evidence (see Additional file
1). This is ~0.80% of the high-quality genes identified in
the oil palm genome, a similar ratio to that of an earlier
study on the hypomethylated regions of the E. guineensis
genome, where 52 (0.94%) candidate resistance genes
were identified among 5505 gene models [4]. A similar
frequency was also observed in A. thaliana and O. sativa
- 0.95% and 0.71% resistance genes, respectively. The oil
palm candidate R genes were compared to those in
banana (M. acuminata) and O. sativa, and 693 orthologs
(253 in M. acuminata, 440 in O. sativa) were identified
for 204 of the genes.
The candidate genes were divided into six classes by

their protein domain structure [43]. Comparison of the
distribution of oil palm candidate R genes with such
genes identified using the same method in other plants
showed that CNL class genes had the highest representa-
tion in monocots, with O. sativa having the largest per-
centage (51.8%). A. thaliana, which is dicotyledonous, has
two additional classes, TNL (Toll/interleukin-1 NBS-LRR)
and RPW8-NL, while the colonial green algae V. carteri is
missing most of the R gene classes in its genome. TNL,
the most prevalent class in A. thaliana, is predominantly
found in dicots [120]. The CNL and TNL classes both
belong to the NBS-LRR family [121]. TNL can be differen-
tiated from CNL based on the Toll/interleukin-1 (TIR)
receptor domain at the N-terminus structure [120].
We did not identify any TNL gene in the analyzed

monocot genomes, including that of the oil palm. This is
in line with Tarr and Alexander [122] who also did not
find TNL genes in monocots. It is therefore assumed
that R genes in monocots predominantly contain leucine
zipper regions that facilitate formation of the conserved
CC structure at the N-terminal of NBS-LRR genes, as
previously indicated [123]. The CC domain is required
for protein-protein interaction [46] while the LRR domain
interacts with the avirulence (Avr) gene product from path-
ogens to activate the plant defense system [124]. Plants pro-
ducing specific R genes are resistant to pathogens which
produce the corresponding Avr gene products. The fraction
of R genes across the plant genome suggests the import-
ance of these genes for both monocots and dicots (Fig. 7a).
CNL genes form the most abundant class in the oil palm

genome. A total 141 genes were identified, of which 133
have orthologs in other plants. The remaining eight are
unique to the oil palm and may be involved in palm-
specific interactions with pathogen Avr gene products.
Validation using multiple sequence alignments of the
oil palm CNL genes and their orthologs showed a con-
served kinase-2 motif with the last residue W (Tryptophan)
in the NBS domain in most of the oil palm CNL genes. Of
the 141 oil palm CNL genes, only nine do not have the final
residue, W. The W residue is highly conserved in non-TIR
NBS-LRR genes [120]. The percentage of CNL genes
(67.14%) agrees with Staskawicz et al. [125] who re-
ported that the majority of disease resistance genes in
plants contain the NBS-LRR domain [126].
Another class of R genes critical for plant defense is

the Kinase class. This class contains an intracellular serine/
threonine protein kinase (STK) domain which plays an
important role in many plant processes, including plant-
pathogen interaction [46, 48, 127, 128]. Pto, an R gene pre-
viously identified in the tomato genome to confer resistance
against Pseudomonas syringae pv. tomato strains, is a
Kinase [47, 129]. There are several features defining the Pto
gene in tomato - Pto activation domain [127], autophos-
phorylation sites [46, 48, 127], P + 1 loop [129] and N-
myristoylation motif [128]. Seven candidate genes in the oil
palm genome have the required features. Sequence align-
ment between the candidate genes and Pto revealed several
highly conserved sites in the Pto activation domain.
However, the third autophosphorylation site in the acti-
vation domain had a threonine to glycine mutation
(Additional file 3: Figure S2), which was reported to re-
duce the plant hypersensitive response [127].
The remaining R genes identified were RLP, RLK and

Mlo-like. The high-quality oil palm dataset contains
three RLP and three RLK genes. Both classes contain the
transmembrane and LRR domains [46], but only RLK an
additional STK domain (Fig. 7b). RLP and RLK genes
function as pattern recognition receptors (PRRs) in the
transmembrane region, and are activated in the initial
detection of a pathogen in the plant [130, 131]. Other
plants, such as A. thaliana (9.8% RLK and 4.0% RLP)
and O. sativa (10.5% RLK and 5.4% RLP), have higher
percentages of these genes in their genomes. Since none
of the oil palm transcripts used in the gene prediction
process originated from stress-related tissues, the number
of predicted R-genes may be under-estimated. The actual
percentage of these two classes may be higher, but only
the six identified RLK and RLP genes were expressed in
the transcriptomes used. Oil palm also has 13 candidate
Mlo-like genes, classified by having the Mlo domain [46].
The first member of this class, MLO gene from barley,
was expressed in leaf in response to invasion by a fungal
pathogen, Erysiphe graminis f sp. Hordei. MLO (mildew
locus O) is an intrinsic protein with six transmembrane
regions [132] while the palm MLO-like candidates have
six/seven transmembrane regions.
About 70% of the 210 candidate R genes were distrib-

uted across the 16 oil palm chromosomes of the EG5



Fig. 7 Classification of candidate R genes. a Distribution of the genes in oil palm, A. thaliana, Z. mays, O. sativa, S. bicolor and V. carteri b Examples of
key domains identified via InterProScan in oil palm candidate R-genes. Number of identified candidate oil palm genes are in brackets
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genome build [5] (Additional file 3: Figure S3). One
hundred one of the 141 CNL class R genes were found
on 14 of the chromosomes, of which 62 formed 23 clus-
ters by chromosomal location. The highest number of
clustered CNL class R genes (42%) were on chromosome
2. R genes in other plants (such as thale cress, flax,
barley, lettuce, maize, potato, rice, soybean and tomato)
also form location clusters [133]. Plant resistance is de-
termined by (direct or indirect) interaction of the plant
R genes with pathogens’ Avr genes, and evolves to adapt
to the different forms of Avr genes [124, 134]. Co-
located R genes recognize different pathogens and are
hypothesised to share function and pathogen recognition
systems [133].
Since R genes are important for the plant survival
and its surveillance system, the R genes-related do-
mains appear to be evolutionarily conserved across all
sequenced plant genomes, including that of oil palm.
The high-quality dataset was used to find the neces-
sary domains to classify the R genes into six classes.
Identification of these candidate genes is useful for
marker development and gene expression studies dur-
ing infection, especially for basal stem rot, one of the
most devastating oil palm diseases in South-East Asia.
Comparing the oil palm genome with those of other
monocots, it was possible to identify R genes for fur-
ther functional characterization, and reveal homolo-
gous sequences in related crops.
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FA biosynthesis genes
Oil palm is unique in that it produces different oils with
distinct fatty acid profiles in its mesocarp and kernel.
The E. guineensis mesocarp oil is ~50% saturated (39.2–
45.8% palmitic acid [C16:0], 3.7–5.1% stearic acid
[C18:0] and 0.9–1.5% myristic acid [C14:0]), 37.4–44.1%
monounsaturated (mainly oleic acid [C18:1]) and ~10.5%
polyunsaturated (10.2% linoleic acid [C18:2] and 0.3%
linolenic acid [C18:3]) [135]. The kernel oil is more sat-
urated, with mainly medium chain fatty acids - lauric
([C12:0], ~48%), myristic (~15%) as well as palmitic
(~8%) acid [136]. Kernel oil also contains about 15%
oleic acid. The fatty acid compositions also vary noticeably
between E. guineensis and E. oleifera [137, 138]. E. oleifera
mesocarp oil is typically less saturated (53.5–68.7% oleic
acid, 11.9%-26.9% linoleic acid and 0.0%-1.9% linolenic
acid) [138]. Forty-two oil palm (E. guineensis) genes in-
volved in FA biosynthesis, including two multifunctional
acetyl-CoA carboxylases (ACCase), were identified (see
Additional file 1). Figure 8a and b show the numbers of
oil palm genes in the FA biosynthesis pathway, and oil
palm fatty acid composition respectively. The conserved
catalytic residues were identified via sequence alignment
of the corresponding amino acids (Additional file 3:
Figures S4-S15). This method was used by Li et al. [65]
to study the candidate FA biosynthesis genes of Arachis
hypogaea L. Twenty seven FA biosynthesis genes were
categorized in 10 classes based on the conserved
Fig. 8 Fatty acid biosynthesis in E. guineensis a Schematic pathway diagram
genes are in brackets. b Fatty acid composition in mesocarp and kernel
catalytic residues of their corresponding amino acid
sequences, and six identified by their conserved motifs.
The remaining nine genes encoding ACCase were
mainly classified by homology. Using a 70% identity
cut-off, 39 candidate oil palm FA biosynthesis genes
had 94 corresponding orthologs in A. thaliana (29) and
Z. mays (65). Overall, these results showed that the classi-
fications were consistent with the annotations of A. thali-
ana and Z. mays genes. The three remaining candidate
genes, one acyl-ACP thioesterase (EgFATB_1) and two
stearoyl-ACP desaturases (EgFAB2_3 and EgFAB2_4),
were defined as singletons. Closer examination of
EgFAB2_3 indicates that the gene could be truncated, as
it had a gap in its genomic region, making it a singleton.
ACCase plays an important role in de novo FA bio-

synthesis as it catalyzes the first committed step in the
pathway [139]. Analysis of the ACCase genes showed
that oil palm contains both the multi-subunit (CT [3
copies], BCCP [2 copies], BC [2 copies]), and multifunc-
tional (2 copies) forms. This agrees with Wan Omar et al.
[140]. who reported two distinct forms of ACCase in oil
palm. After the first committed step, stepwise addition of
two-carbon residues from malonyl-ACP continues until
palmitoyl-ACP (C16:0-ACP). C16:0-ACP is then con-
verted to C18:0-ACP by β-ketoacyl-ACP synthase II
(FABF) [141]. Biochemical analysis showed that the FABF
activity, and level of C18:1 are negatively related with the
level of C16:0 [136]. FABF activity in E. guineensis was
for fatty acid biosynthesis. Numbers of identified oil palm candidate
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only <50% of several accessions of E. oleifera [136].
Although E. guineensis has three copies of FABF, expres-
sion analysis showed a dominant copy in the mesocarp
and kernel. EgFABF_1 is at least 2.8× and 19.2× more
highly expressed in mesocarp and kernel respectively than
the other two copies (Fig. 9a), suggesting that the conver-
sion of C16:0-ACP to C18:0-ACP is mainly driven by it.
Overexpression of this gene copy may drive palm oil to
higher oleic acid content. The second copy of FABF,
EgFABF_2, is also expressed in both the mesocarp and
kernel samples but at lower levels. This is in line with Umi
Salamah et al. [142] who reported that the FABF identi-
fied, similar to EgFABF_2 (93% identity at nucleotides
level), was also expressed in both mesocarp and kernel
samples at relatively higher levels than in other tissues
using northern blot analysis. The remaining EgFABF_3
has very low expression.
Stearoyl-ACP desaturase (encoded by FAB2 [143–145])

plays a crucial role in determining the ratio of saturated to
unsaturated C18 fatty acids in plant membranes and stor-
age lipids. Multiple alignment of the corresponding amino
acid sequences of the oil palm and other plants FAB2 genes
Fig. 9 Transcriptome analysis of a FABF, b FAB2, c FAD2, d FAD3, e FATA a
identified two important motifs (EENRH and DEKRH). In
this study, the FAB2 gene has the highest number of copies
among all the FA biosynthesis genes identified. This is not
unexpected as oil palm has moderate oleic acid in both its
oils, ~40% in its mesocarp oil and ~15% in its kernel oil.
FAB2 is a very active enzyme in the developing oil palm
mesocarp and any effort to increase the oil oleic acid
content may not therefore require upregulating the gene(s)
expressing stearoyl-ACP desaturase [135]. Ortholog analysis
showed that two oil palm FAB2 genes (EgFAB2_3 and
EgFAB2_4) are singletons while four (EgFAB2_1, EgFAB2_2,
EgFAB2_5 and EgFAB2_6) are similar to orthologs in A.
thaliana and Z. mays.
EgFAB2_1, EgFAB2_5 and EgFAB2_6 are in the same

clade as FAB2 genes encoded by AT2G43710 (SSI2),
AT5G16240 (S-ACP-DES1) and AT3G02630 (S-ACP-
DES5) in A. thaliana (Fig. 10). This is interesting because
SSI2 is involved in determining the 18:1 pool in A. thaliana
leaf [146] and has a substrate preference for C18 over C16
fatty acids [146, 147]. Surprisingly, EgFAB2_1 has the high-
est expression in the mesocarp and kernel (Fig. 9b), sug-
gesting that it is the dominant copy of the FAB2 gene, and
nd f FATB genes in mesocarp and kernel



Fig. 10 Evolutionary relationship of FAB2 in oil palm (E. guineensis), A. thaliana and Z. mays. Analyses carried out using UPGMA method in MEGA
6 software. Abbreviations: Eg - E. guineensis; At - A. thaliana; Zm - Z. mays

Chan et al. Biology Direct  (2017) 12:21 Page 14 of 23
largely responsible for desaturating C18:0-ACP to C18:1-
ACP in de novo FA biosynthesis in the tissues. EgFAB2_6
also has a relatively high expression in the mesocarp, but is
lower in the kernel. The gene may also contribute to the
production of C18:1-ACP in the mesocarp, as knocking out
SSI2 in A. thaliana only reduced the desaturase activity by
90% [146]. EgFAB2_3 and EgFAB2_5 are hardly expressed
in the mesocarp, but highly in the kernel, indicating tissue
specific expression. Both may play a more important role in
C18:1 production in the kernel than mesocarp. EgFAB2_2
has the highest divergence from the other four genes in the
phylogenetic tree, and is orthologous to the A. thaliana
gene, AT1G43800. Northern analysis of AT1G43800 in A.
thaliana showed that the gene is not expressed in the leaf,
stem, root, flower or silique [146]. This is in line with the
oil palm 454-transcriptome data, which showed that
EgFAB2_2 is not expressed in the leaf, root or stalk, with
only slight expression in the flower (data not shown). Based
on expression analysis, EgFAB2_2, like EgFAB2_3, and
EgFAB2_5 may play more important roles in C18:1 produc-
tion in the oil palm kernel than mesocarp. The remaining
copy of the FAB2 gene (EgFAB2_4) has very low expression
in the mesocarp and kernel.
C18:1 may be further desaturated to polyunsaturated

fatty acids in the plastid or endoplasmic reticulum (ER).
FAD2 and FAD3, localized in the ER, are responsible for
the synthesis of C18:2 and C18:3, respectively, in storage
oils. EgFAD2_1 and EgFAD3_1 are the dominant copies
of FAD2 and FAD3, respectively, that probably drive the
desaturation of C18:1 in the mesocarp (Fig. 9c-d). The
expression data showed higher FAD2 and FAD3 expression
in the mesocarp than kernel, consistent with the fact that
the mesocarp oil contains some C18:2 and C18:3, both of
which are insignificant in kernel oil.
Acyl-ACP thioesterases terminate de novo chain elong-

ation by hydrolyzing the acyl-groups on acyl-ACP fatty
acids [148, 149]. The unesterified fatty acids released are
exported to the ER for modification, such as assembly into
triacylglycerols and/or membrane lipids. Thioesterases are
either FATA or FATB, depending on their specificity for
acyl groups - FATA prefers unsaturated and FATB satu-
rated. Six oil palm acyl-ACP thioesterase genes were identi-
fied. The corresponding amino acid sequences of the genes
contain two conserved motifs, NQHVNN and YRRECG.
However, the conserved YRRECG motif in oil palm and
other plants differed from the PFAM HMMLogo
(Additional file 3: Figures S14 and S15), in line with Voelker
et al. [150], who postulated plant thioesterases as a different
class of enzymes from those of animals and bacteria.
Multiple alignment, BLAST, and ortholog analysis of the
corresponding amino acid sequences (Additional file 3:
Figure S16) were able to classify EgFATA_1 and EgFATA_2
as oleoyl-ACP thioesterase (FATA) genes. EgFATA_1 and
EgFATA_2 are highly similar to experimentally derived
oleoyl-ACP thioesterase AAD28187.1 in E. guineensis [151],
with 97% and 89% BLASTP identity respectively, and to



Chan et al. Biology Direct  (2017) 12:21 Page 15 of 23
NP_001292940.1 from J. curcas (69% identity, 76% positives)
and XP_007049712.1 from T. cacao (72% identity, 90% posi-
tives). Both these sequences have high homology and
formed a clade with other characterized plant FATA genes.
The remaining four could not be differentiated via sequence
analysis but expression data suggested that they function
as FATB to hydrolyze saturated acyl-ACPs. EgFATB_1 is
not expressed in the mesocarp but has very high expres-
sion in the kernel, indicating that it is mainly involved in
fatty acid chain termination in the kernel (Fig. 9f).
As oil palm accumulates 48% C12:0 and 15% C14:0 in

its kernel oil, EgFATB_1 probably encodes for a thioesterase
with substrate specificity for medium chains, i.e. lauryl- or
myristoyl-ACP thioesterase. EgFATB_2 and EgFATB_3, only
moderately expressed in the mesocarp and kernel, are prob-
ably involved in the formation of C16:0 since the acid accu-
mulates to ~44% in the mesocarp oil and 15% in the kernel
oil. The remaining acyl-ACP thioesterase (EgFATB_4) was
only detected at very low levels in both the mesocarp and
kernel, and may code for stearoyl-ACP thioesterase as palm
oil and palm kernel oil only contain 3.7–5.1% [135] and
0.5–5% [152] stearic acid, respectively.
Comparison of the genomic locations of the FA biosyn-

thesis genes in the oil palm genome showed that three genes,
namely EgFABF, EgFABH and EgFAD3, showed duplication
events (Additional file 3: Figure S17). This is in accordance
with the segmental duplications of chromosome arms re-
ported by Singh et al. [5]. The study identified and character-
ized 42 key genes involved in FA biosynthesis in E.
guineensis. This is the first study to identify key FA biosyn-
thesis genes in both the oil palm mesocarp and kernel
through sequence and gene expression analysis. The compre-
hensive information will help pave the way to an understand-
ing of the different mechanisms involved in producing the
unique fatty acid profiles of palm mesocarp and kernel oils.

Conclusions
An integrated gene prediction pipeline was developed, enab-
ling annotation of the African oil palm genome, and deriving
a set of 26,059 high quality and thoroughly validated gene
models. BUSCO analysis showed that our high-quality gene
models contain at least 90% of the known conserved ortho-
logs in eukaryotes, making our gene prediction collection the
most reliable annotation of the oil palm genome. With the
results, we conducted an in-depth analysis of several import-
ant gene categories: intronless, resistance and FA biosyn-
thesis. The prevalence of these groups was similar across
several plant genomes, including those of A. thaliana,
Z. mays, O. sativa, S. bicolor, G. max and R. commu-
nis. Coding regions of the oil palm genome have a
characteristic broad distribution of GC3, with a heavy
tail extending to high GC3 values that contain many
stress-related and intronless genes. GC3-rich genes in
oil palm are significantly over-represented in the
following GOslim process categories: responses to abiotic
stimulus, responses to endogenous stimulus, RNA transla-
tion, and responses to stress. We found approximately one-
seventh of the oil palm genes identified to be intronless.
Two hundred ten R genes grouped in six classes based on
their protein domain structures were also identified. Lipid-,
especially FA-related genes, are of interest in oil palm
where, in addition to their roles in specifying oil yield and
quality, also contribute to the plant organization and are
important for biotic and abiotic stress signaling. We identi-
fied 42 key genes involved in oil palm FA biosynthesis,
which will be especially useful for oil palm breeders.
The results from our study will facilitate understanding

of the plant genome organization, and be an important
resource for further comparative and evolutionary ana-
lysis. The study of oil palm genes will facilitate future
advances in the regulation of gene function in the crop,
and provide a theoretical foundation for marker-assisted
breeding for increased oil yield and elevated oleic and
other valuable fatty acids.
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ing really a big number of various tools, that makes it a
top quality genome annotation initiative. Very important
is that the authors combined the pure computational
efforts with the experimental transcriptomics analysis
(using RNA-seq) which helped them to perform better
gene annotation and also gives additional possibility for
functional interpretation of the results. In summary, I
am recommending this manuscript for rapid publica-
tion, which will provide the community with a new rich
resource for analysis of these very important genome.
1) The own tissue-specific RNA-sequencing data (from

MPOB) used in the paper should be better described.
Ideally in a separate section.
Author’s response: We thank the reviewer for the kind

suggestion and have added the list of the RNA-sequencing
libraries in Additional file 1.
2) Rules of integration between results of the two pipe-

lines used should be also a bit better described. The
Table 2 is a little bit confusing. Perhaps an example with
overlapping gene models coming from two different
tools could be helpful for the reader.
Author’s response: To merge pipelines, we looked at

clusters of genes with continuous overlap within the
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cluster at different percentages of the length. Each gene in
the cluster overlaps with at least one other gene from the
cluster at a given overlap threshold (single linkage ap-
proach). ORF predictions with < 300 nucleotides were ex-
cluded. We tested different overlap thresholds from 60%
to 95% in 5% increments, as shown in Fig. 2. Gene
models from the same strand predicted from the two
pipelines are considered to belong to the same locus if the
gene models within the locus overlap at the selected
threshold with at least one other gene in the locus. In a
locus, gene models can overlap at different regions as
shown in Additional file 3: Figure S1a. Gene models that
do not meet the overlap threshold will form different sets
of genes (Additional file 3: Figure S1B). Overlap of 85%
was selected as the best threshold, as the rate of increase
in the number of single gene loci was higher after this
threshold level. The representative gene model for each
locus was selected based on the gene model with the low-
est E-value comparison to RefSeq in the respective locus.
The details of how the representative gene models are se-
lected are described in Methods section (Line 246-263).
3) Concerning the intron-less genes (IG). I think that

more explanations are needed to argue that the IG genes
are actually “working” genes in genome, but not possible
pseudo-genes. As we can see from the Table 1, only a frac-
tion of the predicted genes has got evidence from the tran-
scriptomics and RefSeq that they are actually transcribed.
What is the fraction of IG genes has got such evidence?
Author’s response: The IG genes that were character-

ized in the manuscript originated from the 26,059 repre-
sentative genes models with both RefSeq and oil palm
transcriptome evidence. They are from the “high-confi-
dence” subset of all genes presented in the Fig. 1. This is
also mentioned in Line 358-360. Table 1 was changed to
a flow chart (Fig. 1) to improve clarity.

Reviewer’s report 2: Igor Rogozin, NIH, USA
Reviewer comments
The paper describes a new annotation of 26,059 oil palm
genes using two independent gene-prediction pipelines,
Fgenesh++ and Seqping. The authors identified 42 key
genes involved in FA biosynthesis in oil palm. For three
of these genes, namely EgFABF, EgFABH and EgFAD3,
recent duplication events were detected.
1) I would define GC3 in the Abstract.
Author’s response: The description of GC3 has been

added to the Abstract (Line 109).
2) "with a heavy tail of high GC3 regions harboring

many intronless and stress-related genes..." Is this result
supported by statistical test(s)?
Author’s response: Additional text had been added in

the GC3 (Line 442-443) and GO analysis (Line 415-423)
sections to address this issue. 36% of the intronless genes
were GC3-rich while GO analysis showed that there were
higher representations of stress-related genes in the GC3-
rich gene set as compared to all the oil palm genes.
3) "Our analysis indicates that de novo FA biosynthesis

in the oil palm mesocarp and kernel is driven primarily by
EgFAB2_1." I am not sure that the authors have enough
support for this statement. Maybe I missed something.
Author’s response: We agree with the reviewer and

have removed the statement. In the results section, the
gene is listed as “the dominant copy of the FAB2 gene,
and largely responsible for conversion of C18:0-ACP to
C18:1-ACP in de novo FA biosynthesis in the oil palm
mesocarp and kernel” as it has the highest expression in
both tissues. We thank the reviewer for his comments.
4) Conclusions in the Abstract looks too general:

"...while providing theoretical foundation for marker-
assisted breeding of this globally important crop". The
authors may try to make this section more specific.
Author’s response: We are grateful to the reviewer for

his recommendations and have edited the Conclusions
section in the Abstract to better reflect the manuscript.

Reviewer’s report 3: Vladimir A. Kuznetsov, Bioinformatics
Institute, Singapore
Reviewer comments
In this study, the authors develop an integrated gene-
finding framework and applied it to identify high quality
oil palm gene models using the pisifera scaffold assembly
and combining mapping pipelines. The best gene model
for each locus was selected to establish a representative
“high confidence” gene set. This paper provides identifi-
cation and characterization of the “high confidence” set
of 26,059 oil palm genes that have transcriptome and
RefSeq support, and is supported by bioinformatics ana-
lysis of the genes. The study includes comparative gen-
omics and regular bioinformatics analyses, statistical
tests and new database. It is a well- designed and inter-
esting study. However, several important statements, re-
sults and their interpretation have to be clarified and
improved.
1) I suggest to revised the Abstract. Background. Re-

place a common introduction sentences “Emergence of
rapid and inexpensive DNA sequencing technology has
led to an avalanche of data waiting to be transformed
into valuable insight about genome organization and
function. A typical starting point for genome analysis is,
customarily, annotation” onto more specific scientific
problem(s) in the oil palm genome biology (e.g., accurate
gene annotation) and the alignment of the methods and
results to the palm oil industry needs (oil yields and
quality) and/or economic efficiency of the industry.
“This paper presents a study of the oil palm genome, in-
cluding comparative genomics analysis, along with the
development of the relevant database and < bioinformat-
ics> tools.” Method section information is not present.
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Results: The sentence “Our analysis indicates that de
novo FA biosynthesis in the oil palm mesocarp and ker-
nel is driven primarily by EgFAB2_1.” is too strong for a
bioinformatics paper. Conclusions. The conclusion is
week and is not specific. The phrase “The study of oil
palm genome will facilitate further understanding of its
genetic regulation” is not a main result of this study.
The phrase “providing theoretical foundation” is not cor-
rect in the context of the aims of this study.
Author’s response: We agree with the reviewer and

have edited the Abstract. The Background section had
been changed to provide some information on the oil
palm and the reasons for the study. Although we do not
have a Methods section, which is in line with the require-
ments of the journal, the methods used had been incorpo-
rated into the Results section. We agree with the
reviewers that the statement for EgFAB2_1 is too strong
and have removed it. The conclusions have also been edi-
ted to better reflect the manuscript.
2) Information about database should be included in

the Method/Result sections.
Author’s response: Information on how to access the

database is available in the Declaration section. We have
also added this information in the Abstract section. Infor-
mation on the database has also been added to the Re-
sults section (Line 360-364) and Additional file 4.
3) Three-four major results should be summarized in

the conclusion.
Author’s response: We thank the reviewer for the con-

structive comment and have edited the Conclusions sec-
tion in the Abstract to better reflect the manuscript.
4) Introduction Goals: You should better specify a goal

and problem’s vision. For example, the objectives of the
programme complex and the database may be: 1. To de-
velop a high standard gene reference/annotation system
for the oil palm genome analysis. 2. To map the genes
and regulatory DNA signals/sequences associated with
important agronomic traits. 3. To develop and use the
genome information to solve the disease and stress re-
sistant palms with enhanced productivity.
Author’s response: The final paragraph of the Intro-

duction section has been edited to better reflect the goals
of the project.
5) Methods The workflow for the gene prediction

method and the data analysis should be included.
Author’s response: We have improved the Methods

section to provide more details of the processes used
and added the flowchart of the pipeline. The details
of the gene prediction are described in the Methods
section under the headers “Fgenesh++ Gene Predic-
tion” and “Seqping Gene Prediction”. The processes to
integrate the gene models from both pipelines are de-
scribed in the “Integration of Fgenesh++ and Seqping
Gene Predictions” section.
6) Database. In fact, you did not use your DB to
support the results. The DB should be more import-
ant part of your work, to be described and actively
used in the study. You may provide the figure(s)
showing Web interface and add user-friendly help/
comment information. A few examples (figure(s)) of
the useful tracks supporting the major statements
(known important and novel genes, joint tracks of the
gene models and transcription data and key regula-
tory signals etc.) could make this study more interest-
ing and attractive.
Author’s response: The database, PalmXplore is an

integrated database system that allows researchers to
search, retrieve and browse the oil palm gene infor-
mation and associated functional annotations using
a convenient interface and fast database on the
back-end. It was developed as a tool for researchers
to easily search and access the results of this study.
The URL of the database is available in the Abstract
and Declaration section. We have also added add-
itional information on the database in the Results
section (Line 360-364) and Additional file 4.
7) pp.8-9 Reproducibility and availability issues: Infor-

mation about the “high confidence” gene set, chromo-
some coordinates of these genes should be available in
(new) master table. Information about gene structure
and annotation shown for the intronless, two and more
exons genes could be useful for future studies. p.11 “all
genes by their GC3 content and designated the top 10%
(2,605 ORFs) as GC3-rich (GC3≥0.75), and the bottom
10% as GC3-poor (GC3≤0.37).” Reproducibility and ac-
cessibility of main data/results is an important issue.
Could you please include in (new) master table data for
2605 ORFs with explicit presentation of the GC3-rich
and GC3-poor, and GC-skew characteristics of the
genes/transcript isoforms, specifying the intron-less and
multiple exon genes, UTRs, exon and intron locations?
The data base should be also updated accordingly. The
including help file, summary statistics and a few exam-
ples will be much appreciated.
Author’s response: We have included a table in Add-

itional file 1. The location and structure of the genes is
available in the PalmXplore database. The URL of the
database has been included in the manuscript.
8) p. 11 and Fig. 3. “Despite the relatively small num-

ber of the GC3-rich genes in the oil palm genome, there
are characteristic patterns of positional gradients (Fig. 3c
and d) near the predicted start of translation…”. Fig. 3c
and d does not provide information about the frequency
distribution of GC3 in upstream or downstream regions
of the transcription start site (TSS). You should con-
struct that frequency distribution function using the
GC-skew sequence data for TSS of the annotated genes
of interest.
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Author’s response: GC3 is a frequency of cytosines and
guanines in the third position of codon. It is therefore
only used to define the cytosines and guanines levels of
the coding regions. The present manuscript focuses on the
generation, characterization and annotation of high
quality gene models or the genic regions of the oil palm
genome. Although we agree that characterization of the
promoter region is important, it is not within the present
scope of the manuscript. We are currently working on the
best method to predict the TSS and promoter regions
accurately.
9) p.11 and Fig. 3d CG3 skew gradient along the open

reading frames of GC3-rich and -poor genes. Axis Y
shows the CG-skew score calculated by Eq. CG-
skew = (C-G)/(C + G). However, in the main text this
formula was not introduced and discussed; instead,
CG3-skew = (C3-G3)/(C3 + G3) was introduced and dis-
cussed, where the C3 and the G3 were not defined.
Please explain and make appropriate corrections.
Author’s response: We thank the reviewer for the com-

ment. There was a typo error in the y-axis of Fig. 3 (now
Fig. 4) and it has been corrected. Fig. 3d (now Fig. 4d)
now shows CG3-skew. We have also added an explan-
ation in the figure legend.
10) p.11 Analysis of the GC contents, GC-skew

characteristics in exons are not enough to character-
ise the regulatory signals and biological complexity of
the genes at the genome and transcriptome scales.
For the identification of gene regulatory signals, spe-
cifically for the transcription initiation and termin-
ation, it is important to analysis the GC-skew regions
and the G-rich clusters in the proximal promoter re-
gions of a gene, gene body, downstream gene region
(not only the exons). These kinds of signals can pro-
vide specific gene expression regulation often associ-
ated with the transcriptional R-loop formation
sequences. It has been shown that the R-loop forma-
tion structures (RLFS) could be reliably identified/pre-
dict by QmRRFS tool [Wongsurawat et al., NAR,
2012; Jenjaroenpun et al., NAR, 20,015], predicting
the RLFS sequences within the proximal gene regions
and in gene body at accuracy 90–92%. Mapping RLFS
data, you could increase power and the specificity of
the gene models. This analysis could provide the links
of the gene models with key regulatory signals related
to initiation of transcription, polymerase pausing sites,
alternative starts and splice variances, open chromatin
regions, disease critical regions etc. All these genome
signals are strongly associated with RLFS locations
[Wongsurawat et al., NAR, 2012; Jenjaroenpun et al.,
NAR, 20,015, Ginno et al., Genome Res., 2013, Sanz
et al., Molecular Cell, 2016]. The RLFS analysis may
make this study more interesting, novel and biologic-
ally important.
Author’s response: This is an excellent suggestion. We
used QmRRFS to find R-loop forming sequences (RLFS)
in the region [ATG-2000, ATG + 40] of each gene [153–
156]. We found that the region immediately upstream
from ATG, [ATG-200, ATG] is significantly enriched for
RLFS (p-value ~ 0.0). However, the study of R-loops,
which are essential for transcriptional processes, is not
part of the present study that focuses on the coding re-
gions, and will be part of the next study. Also, the oil
palm genome currently does not have a collection of full-
length cDNA sequences. Once we are able to predict the
oil palm TSS accurately, we will analyze CG skews, R-
loops and other features. These analyses will be presented
in a separate manuscript once the analysis is complete.
11) p. 11 Gene ontology analysis shows that many of

the GC3-rich genes are stress-related, while many of the
GC3-poor genes have housekeeping functions (see GO
annotation in Additional file 2: Table S2). However,
Table 2 shows more diverse (and actually interesting) re-
sults, which also suggest a weakness of authors’ state-
ment. Indeed, sorting out the GO categories in
Additional file 2: Table S2 by the score S = (CG3-rich –
CG3-poor)/(CG3-rich + CG-poor) at smallest cut-off
value of the score equals |0.2|, we observed, that 10
most strong terms (oxygen binding, structural molecule
activity, secondary metabolic process, translation,
sequence-specific DNA binding transcription factor, re-
sponse to abiotic stimulus, cell growth, response to en-
dogenous stimulus (last ranked term)) are following the
condition S > 0.2 (CG3-rich). Furthermore, the 17 GO
terms (regulation of gene expression and epigenetic,
motor activity, RNA binding, nucleotide binding, nucle-
ase activity, lipid binding, kinase activity, nucleic acid
binding, chromatin binding, translation factor activity,
nucleic acid binding, signal transducer activity, protein
metabolic process, catabolic process, hydrolase activity,
embryo development, cell cycle, response to extracellular
stimulus (last ranked term)) are following the condition
S < −0.2 (CG3-poor). I propose that the more balanced
and complete analysis, interpretation and discussion of
the GO enrichment data analysis will be carried out.
Author’s response: We have calculated the enrichment

statistics:(#GC3-rich-#GC3-poor)/Total number of genes,
(#GC3-rich-#GC3-poor)/(#GC3rich + #GC3-poor), and
also computed the chi-squared statistics. The results are
shown in the GO enrichment table in Additional file 1.
12) Additional file 2: Table S8 Could you please ex-

plain and discuss the observed differences between per-
centage intronless (PI) genes in GC3 -rich genes
belonging to the same GO branch “growth” (PI = 19%),
“cell growth” (PI = 13%), “cell cycles” (PI = 6) Table 8)?
How many of the “cell cycle” genes are included in
“growth” and “cell growth” categories? How many of the
“cell cycle genes” are unique?
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Author’s response: There are no genes that belong to
all three categories (“growth”, “cell growth”, and “cell
cycle”). However, there are genes in the intersection of two
categories. The numbers of annotated genes that fall into
the three categories are as follows:
The annotations of the INTRONLESS genes are listed
below:

13) Intronless genes analysis It may be important and
interesting to carry out meta-gene analysis providing the
density function of GC-skew and RLFS sequence occur-
rences (count of the number of the sequences in a given
nucleotide location) within TSS vicinity for the intron-less
genes and the genes having multiple introns. It may pro-
vide new knowledge about structural and regulatory roles
of the RLFS and GC-skew sequences in the intronless
genes and the multi-exon genes in the oil palm genome.
Author’s response: This analysis will be conducted in

our next paper dedicated to TSS prediction and analysis
of regulatory sequences.
Additional files

Additional file 1: Includes information of oil palm RNA-seq data, anno-
tation of IG, R genes and FAB genes, GO and GC3. (XLSX 8028 kb)

Additional file 2: Supplementary Tables. (DOCX 44 kb)

Additional file 3: Supplementary Figures. (DOCX 4776 kb)

Additional file 4: Additional file 4 provides screenshots of PalmXplore.
(DOCX 962 kb)
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