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Abstract

Background: While commonly assumed in the biochemistry commmunity that the control of metabolic pathways is
thought to be critical to cellular function, it is unclear if metabolic pathways generally have evolutionarily stable
rate limiting (flux controlling) steps.

Results: A set of evolutionary simulations using a kinetic model of a metabolic pathway was performed under
different conditions to evaluate the evolutionary stability of rate limiting steps. Simulations used combinations of
selection for steady state flux, selection against the cost of molecular biosynthesis, and selection against the
accumulation of high concentrations of a deleterious intermediate. Two mutational regimes were used, one with
mutations that on average were neutral to molecular phenotype and a second with a preponderance of
activity-destroying mutations. The evolutionary stability of rate limiting steps was low in all simulations with
non-neutral mutational processes. Clustering of parameter co-evolution showed divergent inter-molecular
evolutionary patterns under different evolutionary regimes.

Conclusions: This study provides a null model for pathway evolution when compensatory processes dominate
with potential applications to predicting pathway functional change. This result also suggests a possible mechanism
in which studies in statistical genetics that aim to associate a genotype to a phenotype assuming independent
action of variants may be mis-specified through a mis-characterization of the link between individual gene function
and pathway function. A better understanding of the genotype-phenotype map has potential applications in
differentiating between compensatory changes and directional selection on pathways as well as detecting SNPs
and fixed differences that might have phenotypic effects.
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Background

A long standing goal in molecular evolution and com-
parative genomics is to understand how genes and their
functions evolve. Molecular evolutionary and statistical
genetics analyses have commonly treated protein func-
tion independently of the functions of other proteins
and without consideration of genotype-phenotype maps.
However, mutation works at the level of the gene, while
selection works at the level of the organism in a popula-
tion in an ecosystem. One critical component of the
interplay between molecular biology and organismal
biology is the metabolic pathway that combines the ac-
tions of multiple proteins (enzymes) in the generation of
energy and molecular building blocks. Systems of differ-
ential equations based upon Michaelis-Menten kinetics
have become a common modeling tool for describing
the function of metabolic pathways [1].

But how do pathways evolve and how do their con-
stituent members co-evolve? Within a given pathway,
various enzymes catalyze reactions at different efficien-
cies and rates. Rate-limiting steps are the bottlenecks in
biochemical pathways and can serve as important points
of regulation. Kacser and Burns [2] established the con-
cept of flux control enzymes in a pathway, with a given
set of enzyme rate constants. The distribution of rate-
limiting steps varies across different biochemical net-
works, although current biochemical thought from net-
work control theory is that selection has a strong role in
maintaining efficient pathway function and regulation
through the most controllable points [3—15]. Specific ex-
amples in glycolysis are given in [16]. A correlate of this
is an expectation of evolutionary stability of rate limiting
steps when there is negative (stabilizing) selection on
pathway function (for example, steady state flux that is
not selected to change) [5]. This issue, however, has not
been seriously addressed in the biochemical literature.
Related biochemical expectations suggest that the ob-
served distribution of rate-limiting steps is driven by
pathway architecture [4, 12, 14]. An examination of the
BioModel Database [17] showed glycolysis as the only
pathway with data from multiple species and it shows
no evidence for conserved rate limiting steps controlling
steady state flux [16].

Further, it is unclear from a population genetic per-
spective that stabilizing selection on steady state flux
should give rise to evolutionarily stable rate limiting
steps in the presence of mutation-selection balance (see
[18, 19] for other studies on the role of mutation-
selection balance on molecular systems). The effect of
new mutations on fitness has been characterized [20]
and has large fractions of both strongly deleterious
(lethal) mutations and slightly deleterious mutations.
The frequency and magnitude of slightly deleterious mu-
tations depends upon the mutational space surrounding
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the protein sequence and is linked to its stability and ac-
tivity [21, 22]. At the two ends of the spectrum, the glo-
bally most active sequence will have only degenerative
changes possible, while the globally least active sequence
will have only activating changes possible. In between,
the proportion of changes that increase or decrease ac-
tivity will depend upon the current activity. With such a
mutational process acting on molecular phenotypes
(rather than fitnesses directly), it is expected that en-
zymes with excess activity will accumulate changes that
reduce their activity until they affect pathway flux and
are acted upon by selection. At the level of an individual
enzyme within a pathway, these dynamics have been
described [23].

In this study we use simulations on a simplified path-
way (Fig. 1) to examine the nature of mutation-
selection-drift balance and enzyme co-evolution, towards
an understanding of the evolutionary stability of rate
limiting steps. In addition to selection on flux, two add-
itional biological considerations that have been sug-
gested in the literature are included, selection against
the cost of mRNA and protein synthesis to prevent
wasteful expression [24] and selection against the accumu-
lation of high concentrations of intermediate compounds
that may be toxic to a cell [13]. We have also tested the
role of effective population size and of biophysical as-
sumptions on the number of mutational degrees of free-
dom on the evolutionary dynamics. The analysis suggests
that rate limiting steps may not be stable over long evolu-
tionary periods.

Results
Mutation-selection-drift balance and rate limiting steps
Pathway evolution was simulated according to several
sets of mutational processes and selective regimes to
evaluate the evolutionary dynamics with simultaneous
mutational and selective pressures acting on pathway
function. After 20,000 generations, all experiments ex-
cept the mutation-only negative control (where selection
was absent) showed that the fitness equilibrium had
been reached (Additional file 1: Figures S20-S21). How-
ever, when the mutational process was designed to
mimic biological mechanisms and adaptive mutation
was limiting, there was still co-evolutionary directional
movement in some parameters without fitness effects,
most notably Ky; (Additional file 1: Figures S5-S19).
When simulating the evolution of metabolic pathways
in a forward population genetic regime and consistent
with previous findings [9, 14], a neutral (towards mo-
lecular phenotype) mutational process led to evolution-
arily stable rate limiting steps, particularly when specific
intermediates were selected as deleterious at high con-
centration (Fig. 2a, panel A) [13]. However, when muta-
tional pressure was applied according to an expected
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Fig. 1 The simplified pathway that was simulated is shown. This pathway contains features of both glycolysis [35] and the methylglyoxal pathway [36].
A constant concentration of compound A is converted to compound F and the steady state flux is measured
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distribution acting upon molecular phenotypes, mutation-
selection balance emerged and no step was stable for a
longer evolutionary period than other steps (Fig. 2a,
panel B). All steps spent only brief evolutionary pe-
riods as rate limiting.

When an intermediate occurs at high concentration
generating concentration-dependent toxicity (methyl-
glyoxal as an example) or becomes subject to cross-
reactivity with other pathways and enzymes that bind at
lower Ky, to such substrates, this can create a selective
pressure against a high concentration of the intermedi-
ate. When a selective pressure was applied against a par-
ticular intermediate (intermediate B), an increase in the
evolutionary period that the producing enzyme was rate
limiting was observed (Fig. 2a, panel D). However, these
experiments still did not display rate-limiting steps with
long evolutionary stability and mutation-selection bal-
ance dominated the evolutionary dynamics. The increase
(of about 5 generations on average) in the half-life of the
first reaction as a rate-limiting step may be due to selec-
tion against overly active enzyme A when compensatory
changes to enzyme B are limiting. Enzyme B did not

show significant differences in the time spent rate limit-
ing when compared with the other 3 enzymes. The over-
all proportion of time that each reaction spent as rate-
limiting is shown in Table 1. In this instance, there was
an increase in the period of time that the reaction lead-
ing to the production of the deleterious intermediate
was rate-limiting, suggesting that sampling of genomes
would observe that this step is flux controlling most fre-
quently, even though it is not evolutionarily stable as
flux controlling.

It is important to note that within each experiment,
there was variability among the replicates. That is,
within each replicate, a particular reaction may have had
higher numbers of consecutive generations in which it
was rate limiting, and this was not necessarily constant
among all replicates. In particular, for the experiment
shown in Fig. 2a, panel B, the variability among repli-
cates is shown in Fig. 2b.

Another important mechanism that has been dis-
cussed is that of selection against expression cost [24].
When the expression cost is included in the fitness func-
tion (Fig. 2a, panel C), there is no difference between the
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Fig. 2 a The evolutionary stability of rate limiting steps is shown through the average number of generations each step was found to remain
rate limiting, once it emerged as rate limiting. Error bars delineate 95 % bootstrap confidence intervals for each set of experimental conditions,
and p-values are for the null hypothesis that the average is constant across each reaction within the experiment. b The variability among
replicates within the experiment investigating selection on flux only is shown. Error bars delineate 95 % bootstrap confidence intervals

enzymes in the period found to be rate limiting. How-  selection and a waiting time for beneficial mutations that
ever, there are trade-offs in the individual parameters in- are governed by a more complex landscape with the
duced by this selective pressure (Fig. 3). While selection  added expression cost term.

against flux alone shows no position-specific effects in

enzyme concentration, the relationship between enzyme  Allele segregation within population

length (expression cost) and flux shows a negative slope  In order to assess the consistency of the observations
(Fig. 3a). The expected patterns are also observed with  made in this simulation with population genetic expecta-
keae (Fig. 3b; positive slope) and with Ky, (Fig. 3c; more  tions given the mutational profile, the amount of segre-
negative slope). That the Ky, values do not fully com-  gating variation in the population was characterized. As
pensate for the expression, especially in the smallest en-  estimated from Kimura and Crow [25] as described in
zymes may be indicative of a combination of weak the Methods section, assuming neutrality, the expected

Table 1 The overall proportion of generations that each reaction spent as rate limiting is shown, pooled across each replication, for
each experiment

Reaction 1 Reaction 2 Reaction 3 Reaction 4 Reaction 5
Positive control 0.9998 0.0002 0.0000 0.0000 0.0000
Selection on flux only 0.1201 0.2048 0.1499 03314 0.1937
Selection on flux and against protein expression cost 0.2137 0.2732 0.1961 0.1790 0.1380

Selection on flux and against a deleterious intermediate 0.7018 0.0259 0.0421 0.0814 0.1488
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Fig. 3 In evaluating the influence of selection against the cost of protein expression on the evolutionary dynamics or parameters, the relationship
of enzyme length to a enzyme concentration, b k.., and ¢, and Ky, is shown when selection acts on expression cost in addition to flux and
when it acts only on flux. Each point represents the average value from each replicate. In each panel, p-values correspond to the question of
whether the slopes are different from each other, as assessed by mixed-effects interaction models

number of alleles for each parameter in the population
is 1.6 alleles per parameter segregating at any time. The
observed values that were calculated from the selection
on flux only experiment are greater than the expectation
when neutral, but of the same order of magnitude. Over
2000 generations, the mean for all of the parameters was
found to be 2.75 with a standard deviation of 0.33. The
minimum and the maximum of the range were found to
be 1.85 and 3.77 correspondingly. For the reaction pa-
rameters involved only in the forward direction, the
mean for 2000 generations was found to be 2.48 (stand-
ard deviation 0.37), with the range minimum of 1.53 and
maximum of 3.8. The difference in the parameters re-
flects the action of selection, particularly with regard to
the reverse parameters.

Patterns of co-evolution

When mutation-selection-drift balance occurs under
negative (stabilizing) selection, individual parameter values
are still changing. After controlling for systematic direc-
tional change in Ky, patterns of parameter co-evolution
can be examined as a characteristic of the co-evolutionary
fitness landscape. As expected, without selection, muta-
tional pressure alone results in no significant clusters (as
assessed via bootstrapping) (Fig. 4a). When selection acted
on flux alone (Fig. 4b) and when it acted on both flux and
against a high concentration of a deleterious intermediate
(Fig. 4d), the parameters of an enzyme formed significant
clusters, largely independent for each enzyme. When se-
lection acted on flux and against total expression cost
(Fig. 4c), clusters surprisingly corresponded to positions
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within a pathway rather than to enzyme length. This may
be due to the complex fitness landscape in this simulation
that was limited by adaptive mutation, although the exact
cause of this particular pattern is not immediately clear.

Selection for the first step to be rate-limiting with a neu-
tral mutational process (Fig. 4e) also showed fewer clus-
ters with ke, values and Ky values clustering by pathway
position, consistent with prior observations [9].
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Is mutation-selection-drift balance just drift in a small
population in disguise?

It might be conceived that the results shown in Fig. 2
are an artifact of a small effective population size and
simply reflect drift, arguing that any semblance of
mutation-selection balance as a limit to pathway control
will disappear with a larger effective population size. To
test this, a new simulation scheme was developed with-
out explicit individuals, but maintaining explicit genera-
tions. This approximation to the population genetic
process (with added caveats as described in Methods)
enabled us to evaluate the average length of time a step
remained rate limiting under an identical to above small
(10%) population size and under a much larger popula-
tion size (10°) with selection just on metabolic flux. As
seen in Fig. 5a, a very similar pattern of the distribution
of rate limiting steps is obtained with the large and small
population sizes, suggesting that mutation-selection bal-
ance operates in both small and large population sizes
on metabolic pathways, consistent with our expectations.
The scaling of the number of generations that differs be-
tween Figs. 2 and 5 is a product of the different muta-
tional and fixation processes in the different experiments
and the presence of segregating variation from a high
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mutation rate in the first set of experiments. In that
case, shifts were due to population dynamics rather than
the fixation of new mutations.

Haldane’s relationship and mutational processes
Haldane’s relationship describes the relationship between
the various kinetic parameters in establishing an equilib-
rium that is consistent with thermodynamic observations
of energy differences between reactants and products. In
the simulations shown thus far, the mutational parameters
are independently free to vary. Haldane’s relationship con-
strains the values of the parameters as acted upon by mu-
tation by the thermodynamics of the reaction, although
the joint effects of mutations are not currently modelable
(see [16] for some discussion of this in the context of gly-
colysis as well as [26]). In the simplest case, Haldane’s rela-
tionship reduces 4 parameters to 3° of freedom, although
more degrees of freedom are added with additional prod-
ucts and substrates, regulation, cofactors, and more com-
plex equilibria. It is well known that modulation of Ky is
used biologically to regulate the direction of the reaction
[26]. However, the precise scheme that was simulated
under had one too many degrees of freedom, so the effect
of this was tested.
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Fig. 5 a The evolutionary stability of rate-limiting steps for experiments with small (10%) and large (10°) population sizes was evaluated, with
altered simulation assumptions from Fig. 2. Error bars delineate 95 % bootstrap confidence intervals found across 30 replicates for both sets of
population size. b The evolutionary stability of rate-limiting steps, subject to the constraint dictated by Haldane's relationship, is shown. Error bars
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In the experiment constrained by Haldane’s relation-
ship, the evolutionary stability of the rate-limiting steps
has a similar average generation length of each reaction
as rate-limiting, which is approximately 200 generations
in both cases (Fig. 5a, b). Simulating under Haldane’s re-
lationship generates a noticeably more flat distribution
across reactions steps as well as less variance.

Discussion

Low evolutionary stability of rate-limiting steps caused
by mutation-selection balance appears to be an expect-
ation for control in metabolic pathways when pathway
flux is under negative (stabilizing selection), even when
there is a preference for a particular reaction to be flux
controlling (as in the reaction leading to a deleterious
intermediate). It is clear that in nature, not all pathways
are under selection for a constant flux, but may be tem-
porally regulated. More complex regulatory schemes are
expected to result in a more complex landscape and lon-
ger times to reach a fitness equilibrium, but mutation-
selection-drift balance should still play an important
role. Relatedly, processes that constantly shift the fitness
equilibrium, such as shifting selection (see for example
[27]) or shifting population sizes might be expected to
show interesting evolutionary dynamics. Although the
fitness equilibrium is never reached, this would provide
a very different mechanism of generating flux controlling
steps than control theory suggests.

In this study, only a linear pathway was examined.
There is no reason to expect mutation-selection balance
to not apply to branched pathways or cycles, although
the dynamics of equilibration may in fact be different.
This remains an interesting topic for future study.

A further layer of complexity is that this work has pro-
ceeded with a fixed network whereas network structure
evolves in natural systems. Duplication [28] and the ex-
istence and evolution of promiscuous functions [29, 30]
are known to give rise to specific processes of network
growth [31]. The dynamics of this type of differential
equation system evolution have been studied in a com-
munity ecology setting [32] and the co-evolutionary
landscapes that emerge may be different from those with
a static structure.

With an understanding of the co-evolution of parame-
ters under negative selection, it will be interesting to ob-
serve if this pattern changes when positive directional
selection is applied to a pathway flux. This would give a
probabilistic basis to examining patterns of co-evolution
in a pathway to differentiate between compensatory pro-
cesses and directional selection. These models could also
potentially be used to differentiate between negative and
positive directional selection in an Approximate Bayes-
ian Computing framework, where constraint on pathway
flux gives rise to lineage-specific patterns of enzyme
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evolution that can be compared to data from gene family
analysis.

Lastly, one debate that has consistently arisen in the
molecular evolution community is that of the relative
importance of changes in gene expression and changes
in coding sequence evolution [33]. Mechanistic frame-
works like this with roots in either a Boltzmann Distri-
bution or Michaelis-Menten Kinetics, when coupled to a
protein level mutational model (see for example [34]),
have the potential to describe the mutational opportun-
ity to affect phenotypes through changes in either pro-
tein concentrations or protein coding sequence function
parameters (like Ky or ke, although predictions on en-
zymatic reactions are more complex than binding). Devi-
ations from this mutational opportunity (for example,
from additional levels of constraint) would be inform-
ative about the molecular nature of both compensatory
and adaptive evolution.

Relatedly, the field of statistical genetics has commonly
made an assumption that the action of a variant is con-
stant against all genetic backgrounds. In the simulations
here, the effect of a variant that reduces enzyme activity
will have a flux and fitness effect in some parameter
(genetic) backgrounds and not in others. Statistically,
this averaging would result in low power to detect causal
variants. An understanding of the dynamics associated
with processes like mutation-selection balance could be
used to generally improve models used for understand-
ing the genotype-phenotype map in various biological
systems, including in human genetic disease.

Conclusions

Many studies in comparative genomics study each gene in
isolation and thereby miss the equilibrium that mutation,
selection, and drift generate, including inter-molecular
compensatory changes. Under several population gen-
etic and selective regimes, the dynamics of enzyme co-
evolution with ultimate negative selection on pathway flux
were characterized, resulting in a general lack of evolu-
tionarily stable rate-limiting steps. From this, expected
patterns of enzyme co-evolution with negative selection
were generated using a clustering approach. This ultim-
ately provides a null model for pathway evolution under
stabilizing selection.

Methods

Simulated evolution of metabolic pathways

To evaluate the role of mutation-selection-drift balance
in biochemical pathway evolution, a population of cells
with a key metabolic pathway was evolved under differ-
ent selective schemes. The simplified kinetic model de-
signed to capture features of glycolysis [35] and
methylglyoxal metabolism [36] is shown in Fig. 1. The
glycolysis-like aspects of the pathway include the
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feedback loop (as an approximation to glycolysis regula-
tion) and the synthesis of final metabolite F as analogous
to pyruvate in a linear pathway. The methylglyxoxal-like
pathway elements include the toxic intermediate (B) as
analogous to methylglyoxal (a highly toxic intermediate)
and again, the synthesis of the final metabolite (F) is
analogous to pyruvate.

This model is expressed in terms of a system of ordin-
ary differential equations where reactions are described
by reversible Michaelis-Menten kinetics. Each enzyme
has parameters for enzyme concentration [Enzyme]
(mmol/l), the catalytic constant (k. (mmol/l/s), the
Michaelis constant for the substrate (IKy;) (mmol/l), the
reversible catalytic constant (k.,) (mmol/l/s), and the
Michaelis constant for the product (Kyy) (mmol/l). The
kinetic model has a single inhibitory reaction that is de-
scribed in the system by the inhibition constant K;
(mmol/l). The COPASI [37] modeling environment is
used to solve this system of equations. The steady state
solution is used, with a constantly replenishing concen-
tration of A and mass action to utilize F, as described in
Additional file 1: Table S1.

In order to model the evolutionary process, a forward
time simulation with discrete generations is employed.
In general, the simulation represents each individual in
the population as an instance of the described model,
subjecting this model individual to mutations which may
elicit fitness effects, and then sampling individuals based
on fitness to populate the next generation using weighted
sampling with replacement. The pathway architecture re-
mains unchanged during the course of the simulations.
These simulations proceed by establishing an initial popu-
lation of 100 homogenous individuals with parameter
values given in Additional file 1: Table S1. Because a set of
differential equations must be solved for each individual
in each generation, the population size was limited by
computational capacity. It is not expected that the results
obtained in this study are driven by the size of the popula-
tion. Each forward simulation was repeated 5 times. Muta-
tions were introduced with a probability of 3*10~® per
parameter per individual per generation. Ky; and k., were
treated as evolving independently, although there is a
mechanistically unpredictable degree of dependence (and
link to protein stability) in their evolution in nature from
current understanding, as described below. The muta-
tional effect on the catalytic rate constant and enzyme
concentration (both indicated by p below) are derived
from a normal distribution with variable mean 4, , where

ty,, = —0.01e" P
The mutational effects on the binding constants (K)

are described by a standard normal distribution with a
variable mean 4, ,
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1

Hr: = Z0.01e% s

The index value c is used to scale the mutational ef-
fects, with the following values for each constant:

2.5 x 1072, Aenzymeconcentration
2.5 x 1072, Ainhibitionconstant
1.0 x 1072, Acatalyticconstant
3.3" x 107%, Areversiblecatalyticconstant
1, Aproductconstant
3.3 x 1072, Areversableproductconstant

Cc =

This mutational scheme allows for scaling across orders
of magnitude in kinetic parameters and generates a distri-
bution of mutational effects with a bias towards slightly de-
grading change that is dependent upon the activity and
expression level of the protein. The mutational scheme is
consistent with current thought in molecular evolution,
where the range and distribution of mutational effects are
influenced by the current state [22]. Most of the mutations
are slightly deleterious or neutral, while advantageous mu-
tations are rare, although slightly less so as the activity of
the molecule decreases. Intuitively, as a sequence decreases
in fitness contribution, the number of sequences with
higher potential fitness contribution increases and as it in-
creases in fitness contribution, the number of sequences
with a higher potential fitness contribution decreases, as
expected by Fisher’s geometric model.

Five different selection schemes were employed to
examine the influence of various factors on pathway
evolution. The first scheme involved selection on steady
state flux alone, where the fitness of an individual is de-
scribed below:

1
F 1 >0A07

1 + e~ (Aux-650
Values in this logistic function control the asymptotic
fitness and the gradient of the flux to fitness relation-
ship. As enzymes reach limits of adaptation because of
the ability to utilize products, so do pathways, where the
end products are also subjected to the rules of binding
and catalysis [23, 38, 39]. The asymptote of 650 and
slope of 0.07 are arbitrary, but are chosen to reflect the
ultimate utilizable flux. Changing them would be ex-
pected to alter the distribution of fitness effects (fraction
of deleterious changes at equilibrium), but not the over-
all evolutionary dynamics of the system. A second (nega-
tive control) scheme was implemented to examine
mutational opportunity and mutational pressure. In this
experiment individuals were sampled at random from
the population and only the mutational process acted.
Another control was used to examine the evolutionary
stability of rate limiting steps, by implementing a scheme
with selection on the first reaction rate to become rate
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limiting by preventing the buildup of the intermediate
after the reaction, and using a neutral mutational distri-
bution (with respect to molecular phenotype) that elimi-
nated mutational pressure. We used the multiplicative
fitness function,

E,, = F,F,
where
1
F, = pr ]

Here, [B] is the concentration of the deleterious me-
tabolite and s (9.4 x 107 is a scalar chosen to control
the flux and the intersection point of the two curves. As
indicated, the mean of the mutational distribution is set
at 0, and the distribution is parameter-independent.

A fourth experiment was implemented to examine the
role of preventing the buildup of the deleterious inter-
mediate on pathway evolution, resulting in the same
multiplicative fitness function above. This experiment
used the biological (parameter dependent) mutational
distribution as previously outlined. Finally, the cost of
protein production was also considered using another
multiplicative fitness function where s is a normalizing
constant (1.0 x 107°), costaa (30.3) and cost,ue (49.2) re-
flect the per unit costs of synthesis [24], and enzyme
lengths are given in Additional file 1: Table S2,

F, = F\F3,
where

1

1+ 5-(cOStprotein + COStmrna)

F3

and
COStprotein = costAA{[EnzymeA}lengthA + [EnzymeB|lengthg
+[EnzymeCllengthc + [EnzymeD|lengthp
+[EnzymeE]lengthg }

3.lengthy-[EnzymeA|  3-lengthg-[EnzymeB]

1000

COStyuRNA = COStnuc{ 1000

3.lengthc - [EnzymeC]
1000

3.lengthp-[EnzymeD]
1000

3-lengthg - [EnzymeE|
1000

Each of these simulations was run for 22,000 genera-
tions and the point of mutation-selection balance was
reached by generation 20,000 under each of these select-
ive schemes (the scheme with no selection did not reach
equilibrium because there is no mutation-selection
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balance without selection). The point of mutation-
selection balance was determined by the stability of the
fitness of the median individual across generational time
as assessed by observation of approximately equal rates
of positive and negative changes (Additional file 1: Fig-
ures S20—S21). The point of balance was confirmed for
the experiment with selection on flux alone by replicate
experiments approaching the same point from lower
fitnesses that were reached from higher fitnesses
(Additional file 1: Figure S1).

Identification of rate limiting steps

The sensitivity of each of the reactions across the last
2000 generations was determined by reducing each reac-
tion rate of the median individual by 10 % while fixing
the rest of the reaction rates. The difference in flux be-
tween the perturbed and unperturbed systems was used
a measure of sensitivity, and the most sensitive step was
determined by the reaction for which this value was the
largest.

Examination of evolution and coevolution

Examination of parameter evolution and co-evolution
was based upon the values in the median individual at
each generation for the 2000 generations after equilib-
rium was reached. Since the reversible and inhibitory re-
action constants have minimal impact on the system,
they were removed from the analysis. Five replicates of
the same experiment were analyzed together and the
rate of change of each parameter was calculated for
every generation. In order to control for directional
change within enzyme concentrations, catalytic, and
binding constants, the average amount of change is
calculated for each group and removed from each par-
ameter within the group. 10,000 replicates were boot-
strapped from this dataset by random re-sampling
within each replicate and complete linkage clustering
was performed using absolute correlations as a measure
of relatedness between the rates of change (Additional
file 1: Figures S22—S26) [40]. The largest clusters signifi-
cant at the 0.05 level are used to identify co-evolving
parameters.

Simulations with variable population sizes

In order to evaluate the effects of population size on the
evolutionary stability of rate-limiting steps, experiments
with two different population sizes (10* and 10°) were
performed, where the small population size was a con-
trol for the results of the previous set of experiments.
For this purpose, several simplifications to the procedure
were made for computational tractability. In each gener-
ation, a single mutation was proposed per generation, with
mutational effects and fitness as above for the experiment
with selection on pathway flux. The Kimura fixation
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probability was used to evaluate the fixation of proposed
mutations, eliminating an explicit population and any
probability of multiple segregating changes. We have

l_e—ZCNesp
l// = l—e_ZCNfs

representing the fixation probability, where N, is the
population size, c is the ploidy (haploid, c=1), s is the
selective coefficient (f’/fy-1, where {’ is the fitness after
mutation and f, before) and p is the initial frequency of
the allele in a population. The initial frequency p was set
to % rather than 1/N for computational efficiency, giving
the property that a neutral mutation has a 50 % chance
of fixation, which scales the selective coefficient. The ef-
fects of population size played out in rising from a 0.5
frequency to fixation and the introduction of new muta-
tions was independent of population size.

The population scheme was run for 200,000 genera-
tions per experimental replicate and the rate-limiting
step length was calculated as was previously described.
Both population sizes were run for 30 replicates.

Simulations with more thermodynamic realism

To evaluate the effects of biophysical constraints on the
reaction landscape, simulations where mutations were
constrained by Haldane’s relationship were performed
for the 10° population size. Although more degrees of
freedom are possible with regulation, multiple substrates
and products, and the involvement of cofactors, the sim-
plest expression shows that four parameters which are
non-independent as,

kcat * KMr

I<eq - kcutr * KM

Here, Kq is the equilibrium constant driven by the
thermodynamics of the reaction. For this experiment,
kinetic parameter initial values were set according to
Haldane’s relationship (Additional file 1: Table S3) To
maintain the ratio, the mutational scheme was modified
from that for other experiments described above. Muta-
tions for Ky and Ky, are drawn from a normal distribu-
tion with a mean at -1 %. The mutational effect for
Keads also drawn from a normal distribution with a
mean at -1 % and has a modifier that is dependent on
the original ratio of k., and ke, and the ratio of mutated
Ky and Ky, Keaee is calculated from Haldane’s relation-
ship with the mutated k.., Ky, Ky, This experiment was
replicated for 30 times. Rate-limiting step lengths were
evaluated as was previously described.

Characterizing allele segregation with explicit populations
In order to estimate the observed allele segregation
within each population, the number of alleles for each
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parameter was calculated. Parameter numbers were cal-
culated within each population for 2000 generations
every 10 generations (total of 200 data points for each
parameter) as the mean of total number of alleles per
generation (for all parameters and for forward reaction-
only parameters). Mean and standard deviation per 2000
generations were retrieved for each parameter as well as
the minimum and maximum of the dataset. These values
were compared with the expected allele segregation
number as calculated for the population with a select-
ively neutral regime as previously described by Kimura
and Crow [25],

n=2Nu+1

Here n is the number of alleles for particular param-
eter, 1 is mutation rate, and Ne the effective population
size.

Statistical tests and bootstrap confidence intervals

For the simulation experiments exploring the evolution-
ary stability of the rate limiting step, we performed per-
mutation tests under the null hypothesis of no stability.
Stability was measured by the number of consecutive
generations that a reaction remained rate limiting, once
it became the rate limiting step, and under the null hy-
pothesis, each reaction should have the same average
number of consecutive generations. For each of the rep-
licates, the correspondence between each reaction and
its average time spent as rate limiting was permuted,
and the average absolute deviation of each reaction from
the overall mean was calculated. In this manner, a null
distribution was generated through 100,000 permutation
replicates, and an empirical p-value was found by com-
paring the average absolute deviation in the actual data
as compared to this null distribution.

Confidence intervals for each average number of con-
secutive generations that a reaction was rate limiting
were constructed by first bootstrapping the replicates,
and then bootstrapping the consecutive runs within each
selected replicate. In this manner, a Monte Carlo sam-
pling distribution for each average was generated, and
95 % confidence intervals were generated by taking the
2.5th and 97.5th percentiles from each bootstrap sam-
pling distribution. Error bars in the corresponding
figures reflect these confidence intervals.

To test the question of whether selection has an effect
on expression cost, we examine enzyme concentration,
kear and Ky against the length of the enzyme. Using the
2000 generations at equilibrium across the five replica-
tions and comparing the selection against flux experiment
to the selection against flux and protein expression, we
ran a linear mixed-effects model with random effects for
the replicates, and an interaction term for enzyme length
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and experiment. The null hypothesis is that the interaction
term is equal to O, or in other words, that the different se-
lection regimes have the same effect on expression cost.
Due to computational burden within the mixed-effects
model when attempting to account for the correlation
structure induced by the Markovian nature of the simula-
tions, only the unique values of each corresponding out-
come variable were selected to be fit in the model, and
standard linear mixed-effects models were run with a
random effect for each replicate. While this loss of infor-
mation is suboptimal, this should result in conservative in-
ference. Assumptions of homoskedasticity and linearity of
the relationship between enzyme length and parameter
observations appear to be satisfied. The small effective
sample size may be a concern, but should also lead to con-
servative inference. Statistical significance of the inter-
action term was assessed via likelihood ratio tests
comparing the interaction model to the null model, which
did not contain the interaction term.

Reviewers’ comments

We thank the reviewers for their reviews of our manu-
script. Reviewer 2 included minor comments that have
not been included for publication, but have improved
the readability of the manuscript.

Reviewers’ report 1: Arne Elofsson, Stockholm University,
Sweden

Reviewer summary

The authors describe a simulations of enzymatic reac-
tions and identifies rate limiting steps.

Reviewer recommendations to author
One problem with this paper is that I am not convinced
that the main reason to do this study is correct. The au-
thors claim: “While commonly assumed in the biochem-
istry community that the control of metabolic pathways
is thought to be critical to cellular function.”. However,
they do not provide a single reference to that this really
is commonly assumed, or if this is really true. Certainly
it varies from pathway to pathway. It is certainly very
important to have a very close control over glucose
levels in the blood (see the problem for people with dia-
betes), while lactase efficiency can vary by many orders
of magnitude without a large impact on fitness. I would
interpret the results in a different way than the authors
do. I do not agree with the claim “The evolutionary sta-
bility of rate limiting steps was low in all simulations
with non-neutral mutational processes. ” Instead I think:
If you select for positive control or against deleterious
intermediates the first step is almost always rate limiting
step if not it can be any step.

Author Response: The main objective of the study is
the ultimate differentiation between compensatory
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processes and directional selection in pathways after the
characterization of the expected evolutionary dynamics
of pathways with negative selection on pathway function.
This is currently not well understood. There is indeed an
implicit assumption of pathway stasis, from biochemistry
textbooks that describe “glycolysis” and other pathways,
to model organism studies that seek to transfer functions
from one organism to another to GWAS and QTL studies
that assume that pathway regulation and sensitivity are
constant.

The selective regime we have applied in this study is
fairly simple. It is definitely the case that the nature of
the evolutionary dynamics will be altered with more
complex regulatory schemes. However, these do not pro-
vide selective pressures for extra activity and evolutionar-
ily stable control. With selection against the deleterious
intermediate, there is a preponderance of cases where
this step re-emerges as rate limiting more frequently than
others. However, it is not stable in an evolutionary sense
as rate limiting, given its short half-life in remaining flux
controlling when it emerges as such. Further, the first step
is only the rate limiting step when that is the step leading
to the deleterious intermediate; it is not generally the first
step that is rate limiting when there is a deleterious
intermediate. With lactase, it is unclear to us that the
excess activity in the enzyme is stable across distantly re-
lated species and we would predict otherwise.

Reviewers’ report 2: David Ardell, University of California-
Merced, USA

Reviewer summary

I am not an expert on Metabolic Control Analysis
(MCA) or Biochemical Systems Theory. My assessment
of the present work is that it is a highly original synthe-
sis of ideas and models that appears to have been well-
implemented, that the conclusions drawn are well-
founded from the results obtained, and that the results
challenge apparently accepted wisdom regarding the evo-
lutionary stability of rate-limiting steps in non-branching
metabolic pathways. The review of prior literature and
contextualization of results in the introduction and dis-
cussion are sufficient, yet further efforts here might benefit
some readers, to dispel confusions and to better connect
the results to prior work. For example, in his textbook “A
First Course in Systems Biology,” E.O. Voit writes “MCA
was originally conceived to replace the formerly wide-
spread notion that every pathway has one rate-limiting
step, which is a slow reaction that by itself is credited with
determining the magnitude of flux through the pathway...
In linear pathway sections without branches, the rate-
limiting step was traditionally thought to be positioned at
the first reaction, where it was possibly inhibited through
feed-back exerted by the end product. In MCA, this con-
cept of a rate-limiting step was supplanted with the
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concept of shared control, which posits that every step in
a pathway contributes, to some degree, to the control of
the steady-state flux.” In light of this, perhaps the author’s
results might profitably be considered as extending MCA’s
notion of distributed control in metabolic pathways to dis-
tributed selection pressures on their component enzymes
coevolving on a rugged landscape. A valuable contribution
made by this work, in my opinion, is the example it
provides of another relatively simple biological system that
under the simplest evolutionary scenarios — namely sta-
bilizing selection on its output — explores a large neutral
network of solutions (in this case, of kinetic parameters).
In summary, I believe the present work is an important
contribution to its field.

Reviewer recommendations to author
There are many points where the presentation and
narrative could be improved to increase impact, espe-
cially for those unfamiliar with some among the many
different disciplines and subjects touched on by this
work.

Author Response: We thank the reviewer for his sum-
mary. We have tried to improve the readability of the
manuscript and to better introduce disparate concepts.

Reviewers’ report 3: Shamil Sunyaev, Harvard Medical
School, USA

Reviewer summary

This manuscript challenges the idea of evolutionary sta-
bility of rate limiting steps in linear pathways. Extensive
computer simulations demonstrate that rate limiting
steps exist for only short evolutionary times. This is an
interesting result.

Reviewer recommendations to authors
I find the section “Allele Segregation within Population”
confusing. I suggest that the authors would clarify this
section. Also, how stable are the results with respect to
effect sizes and directions of incoming mutations?
Author Response: We thank the reviewer for his sum-
mary. We have added a new introduction to the allele
segregation section to improve clarity. The trajectories of
effect sizes and directions of incoming mutations that are
sampled for each parameter are shown in the Supple-
mentary Figures. They derive from the mutational
process described in the Methods section.

Additional file

Additional file 1: Table S1. The initial values given to parameters in
the system at the start of each evolutionary simulation where equilibrium
is approached from above are shown. Table S2. The lengths of each
enzyme, given in the number of amino acids, are shown. Table S3. The
initial values given to kcat, kcatr, KM and KMr parameters in the system at

Page 13 of 14

the start of the evolutionary simulation when constrained with Haldane's
relationship are shown. Keq and AGO for each reaction are also shown.
Figure S1. The fitness value of the median individual demonstrating that
the same point of mutation-selection balance is reached when simula-
tions begin at a lower fitness. Figures $2-S4. The evolution of parameter
values for the experiment which started from a lower fitness are shown.
Figures S5-S19. The averaged median of parameters after the point of
mutation-selection balance is shown. Figure S20. The rate of change in
averaged median fitness across each of the simulations is shown for A)
mutation only, B) selection on flux alone, C) selection on flux and against
total expression cost, D) selection on flux and against a high concentration
of a deleterious intermediate, and E) non-biological neutral mutation,
selection on flux, and for the first reaction to be rate limiting. Blue
denotes a positive rate of change and red denotes a negative rate
of change. Figure S21. Average median fitness across each of the
simulations is shown for A) mutation only, B) selection on flux alone,
Q) selection on flux and against total expression cost, D) selection on
flux and against a high concentration of a deleterious intermediate,
and E) non-biological neutral mutation, selection on flux, and for the
first reaction to be rate limiting. Figures $S22-S26. Complete linkage
clustering of parameter values for each selective scheme are shown,
resulting in the data in Fig. 4. (PDF 1185 kb)
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[E], [Enzyme], the concentration of the enzyme; k.4, catalytic constant; K,
inhibition constant; Ky, Michaelis constant; mRNA, messenger ribonucleic
acid; N, effective population size; y, mutation rate.
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