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Abstract 

The process of splicing messenger RNA to remove introns plays a central role in creat‑
ing genes and gene variants. We describe Splam, a novel method for predicting splice 
junctions in DNA using deep residual convolutional neural networks. Unlike previous 
models, Splam looks at a 400‑base‑pair window flanking each splice site, reflecting 
the biological splicing process that relies primarily on signals within this window. 
Splam also trains on donor and acceptor pairs together, mirroring how the splicing 
machinery recognizes both ends of each intron. Compared to SpliceAI, Splam is con‑
sistently more accurate, achieving 96% accuracy in predicting human splice junctions.
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Background
Ever since the discovery of RNA splicing [1], our understanding of gene transcription 
and expression has grown steadily more complex. Alternative splicing (AS), where exons 
and introns are spliced in different combinations to create multiple gene isoforms, is a 
fundamental mechanism for increasing the diversity of gene function. We now know 
that the vast majority of human multi-exon genes undergo at least some alternative 
splicing [2–7].

Recognizing splice sites computationally is a crucial step in accurately assembling 
gene transcripts and annotating genomes. The most direct method for finding splice 
sites is to use spliced alignment programs such as TopHat [8], SpliceMap [9], Map-
Splice [10], STAR [11], and HISAT2 [12] to align RNA-seq reads directly onto a refer-
ence genome. These alignments provide clear evidence of the locations where introns 
have been spliced out of messenger RNA. However, splice junctions predicted from read 
alignments are not always reliable, and they may contain false positives due to alignment 
errors, as well as transcriptional and splicing noise [13]. Computational tools based on 
machine learning methods such as GeneSplicer [14], MaxEntScan [15], SplicePort [16], 
SpliceMachine [17], and others [18] can help identify some of these false positives. These 
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tools are trained on known splice sites from a target species and are able to recognize 
splice sites based on the properties of the genome sequence alone. In recent years, con-
volutional neural networks (CNNs), which have been highly successful in a variety of 
areas [19–22] have been explored as a possible approach to splice site recognition. Sev-
eral new splice site predictors, including SpliceAI [23], SpliceFinder [24], Spliceator [25], 
SpliceRover [26], and DeepSplice [27] have adopted CNN-based architectures. Atten-
tion-based deep learning models such as DNABERT [28] and Nucleotide Transformer 
[29] have also been recently introduced into the field of splice site prediction, prompted 
by the success of Google’s Transformer architecture [30]. Among these newer methods, 
SpliceAI is considered to represent the state of the art because it has the highest accu-
racy [23].

In this paper, we introduce Splam, a new deep learning approach to splice site pre-
diction in which the system learns to recognize paired donor and acceptor sites from 
genomic sequences. In comparison to SpliceAI, our method uses a much shorter flank-
ing context sequence to predict splice sites, which is more biologically realistic. Unlike 
SpliceAI, which was designed to predict a single canonical set of splice sites for each 
gene, Splam is able to predict the splice sites from multiple distinct isoforms for a sin-
gle gene locus. In our experiments, we demonstrate that Splam is more accurate than 
SpliceAI, and we also show how it can be used to improve the accuracy of genome-
guided transcript assemblers by removing spurious alignments produced by spliced 
aligners.

Results
Splam: an accurate splice junction recognition model

We implemented Splam using a framework based on deep convolutional neural net-
works to predict splice junctions. The design is illustrated in Fig. 1a and is discussed in 
more detail in “Methods”. As illustrated in Fig. 1b and c, the input to Splam is a DNA 
sequence composed of 200 nucleotides (nt) on both sides of the donor and acceptor 
sites, totaling 800 nt, and the output is the probability for every base pair of being a 
donor site, an acceptor site, or neither (see “Methods”).

The Splam algorithm focuses on training the model to recognize splice junction pat-
terns at the “splice junction” level; i.e., it attempts to recognize donor and acceptor sites 
in pairs, just as the spliceosome operates in the cell when it splices out an intron. Note 
that most human genes have multiple splice isoforms, with current annotation catalogs 
containing 5–10 isoforms per gene. Thus, an accurate model of splicing should be able 
to predict all of the introns in these multiple variants. Splam demonstrates this ability, as 
our experiments will show.

In contrast, the current state-of-the-art tool, SpliceAI, was trained on a single iso-
form per gene, and moreover was trained on protein-coding genes only. It was originally 
tested by measuring its ability to predict a single set of splice sites from the canonical 
isoform for each protein-coding gene. Designing a splice site recognition method based 
only on one transcript per gene may result in mislabeling alternative splice sites even 
when they are perfectly valid. Our experiments sought to test the hypothesis that our 
training regimen, which uses the splice sites from multiple isoforms for each gene, might 
result in better predictions. Although our discussion below focuses on comparisons 
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against SpliceAI, we also benchmarked Splam against other neural-network-based splice 
site predictors, described in Additional file 1: Note S1 and Additional file 1: Fig S1 [23, 
25, 31–34]. SpliceAI and Splam both outperformed these competing methods.

To assess the accuracy of Splam versus SpliceAI in recognizing splice junctions, we 
created two distinct inputs to SpliceAI for our experiments. The first, simply called 
SpliceAI, provided 10,400 nt of sequence for each splicing event, following the origi-
nal SpliceAI study’s approach, which included 200 nt upstream and downstream of 
the donor and acceptor sites plus 5000 nt of flanking sequence on both sides of each 
sequence being scored. For the second set of inputs, called SpliceAI-10 k-Ns, only 400 
nt of flanking sequence was provided (along with the entire sequence of the intron). 

Fig. 1 a The Splam model architecture consists of 20 residual units (RU), where b each RU comprises two 
convolutional layers. The convolutional layers utilize a parameter group of 4, along with batch normalization 
and leaky rectified linear unit (LReLU) activations. Blue arrows indicate forward connections, while red arrows 
represent residual connections. Within each RU, the input is connected to the output through a residual 
connection. Overall, the Splam model contains a total of 651,715 parameters. c Splam’s inputs and outputs. 
The input sequence (in blue) uses 400 nt flanking the donor site and another 400 nt flanking the acceptor 
site. The output (in yellow) is an array of labels for all 800 nt. d The one‑hot encoding procedure for the inputs 
and outputs of Splam employed during model training and testing with A represented as [1,0, 0,0] , C as 
[0,1, 0,0] , G as [0,0, 1,0] , T  as [0,0, 0,1] , and N as[0,0, 0,0] . Each pair of donor and acceptor sites is concatenated 
into an 800‑nt sequence as shown, and the  200th and  600th nucleotides are labeled as [0, 1, 0] (for a donor 
site) and [0, 0, 1] (for an acceptor site) respectively (using a 0‑based numbering system)
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The precise inputs are shown in Additional file 1: Fig S2a and discussed in “Methods”. 
Additional file 1: Fig S2b shows the relative amount of sequence data used for prediction 
by Splam, SpliceAI, and SpliceAI-10 k-Ns. As the figure illustrates, SpliceAI uses much 
more context to predict splice sites, even when we replace its normal 10-kilobase (kb) 
flanking input with Ns, because it uses the entire length of the intron. For our experi-
ments, SpliceAI had 14–20 times as many base pairs available to make predictions, but 
despite this advantage, Splam had superior accuracy, as we demonstrate below.

In all experiments described here, programs were trained on genes from all chromo-
somes except Chr1 and Chr9, and then tested on genes from chromosomes 1 and 9, after 
first removing homologous sequences (see “Methods”). This mirrors the training strat-
egy for SpliceAI, which also trained on genes from all chromosomes except Chr1 and 
Chr9 and then tested on chromosomes 1 and 9.

We computed the accuracy of distinguishing positive splice junctions in randomly 
selected subsets of two datasets, designated Positive-MANE and Positive-Alt, from a 
random subset of negative examples of splice junctions in the Negative-1 and Negative-
Random datasets. Positive-MANE comprises splice junctions selected from the MANE 
annotation [35] that are supported by a minimum of 100 alignments in a large collec-
tion of RNA-seq samples from GTEx. Positive-Alt consists of splice junctions present 
in protein-coding genes from the RefSeq [36] annotation but not in MANE, and also 
supported by at least 100 alignments. Thus, all positive examples derive from protein-
coding genes, and for many genes, the data includes more than one isoform. Negative-1 
contains splice junctions on the opposite strand of annotated gene loci, supported by 
exactly 1 alignment, while Negative-Random comprises random GT-AG pairs on the 
opposite strand of annotated genes (see “Methods” for more details).

The range of precision-recall values at different thresholds obtained by Splam and 
SpliceAI are shown in Fig. 2. Figure 2a displays receiver operating characteristic curves 
(ROC) and precision-recall curves (PRC) for both Splam and SpliceAI at the junction 
level. It demonstrates that Splam and SpliceAI perform nearly identically on splice sites 
from the MANE database but show a noticeable difference in predicting alternative 
splice sites, with Splam performing better. Furthermore, when SpliceAI is not provided 
the 10-kb flanking sequence, its performance drops noticeably. Thus, in this data, Splam 
predicts splice junctions in non-canonical transcripts (Positive-Alt) with far fewer false 
negatives than SpliceAI and SpliceAI-10 k-Ns.

Although the ROC and PR curves for SpliceAI appear excellent, we observed that 
the raw scores for true donor and acceptor sites were often very low, even if they were 
slightly higher than the scores for false sites. Ideally, real splice sites will score close 
to 1, while false ones will be closer to 0. Figure  2b shows that the optimal thresh-
old for SpliceAI is very small (0.0054) and performance quickly drops as the thresh-
old increases. In contrast, the performance of Splam remains stable under a much 
wider range of thresholds. For instance, when using a reasonably high score thresh-
old of 0.8, Splam achieved an overall accuracy of 96.1% on a test set of 40,000 ran-
domly selected examples, with equal numbers of true and false splice junctions, called 
Test40K (see “Methods”); here, accuracy reflects the proportion of correct predic-
tions (positive and negative) out of all predictions. A junction was considered correct 
if both the donor and acceptor sites were predicted correctly. Precision, defined as 
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the proportion of predicted positive junctions out of all predictions, was even higher, 
at 99.6%. Recall, defined as the proportion of true junctions that were correctly pre-
dicted, was slightly lower but still high, at 92.5%. The precision and recall rates for 
donor and acceptor sites considered separately were very similar, at 99.6 and 93.0% 
for both types of sites. By comparison, at the same threshold, SpliceAI had an overall 
accuracy of 74.1% for splice junctions, and 82.1%/84.5% for donors and acceptors on 
the same data (Table 1).

We also investigated whether the donor and acceptor scores were in accord with 
one another; i.e., if the two scores on both ends of an intron were similar. Figure 2c,d 
displays the score differences between donor and acceptor sites for Splam and 
SpliceAI. The plot reveals that although both programs tend to assign very similar 

Fig. 2 a ROC and PR curves on two test sets of splice junctions from human chromosomes 1 and 9. Results 
are shown at the junction level, where the junction score is determined by the minimum of its donor and 
acceptor scores. Plots a(1–2) show results when classifying Positive‑MANE where the negative examples 
included both Negative‑1 and Negative‑Random. The test set, Test22K‑MANE, consisted of 2000, 10,000, 
and 10,000 examples from Positive‑MANE, Negative‑1, and Negative‑Random respectively, yielding a 
positive‑to‑negative ratio of one to ten (see “Methods”). Plots a(3–4) show the results of classifying the 
test set, Test22K‑Alt, consisting of 2000 Positive‑Alt examples (splice sites in RefSeq but not in MANE) and 
the same 20,000 negative examples (see “Methods”). The green curve represents Splam, the orange curve 
represents SpliceAI with a 10‑kb flanking sequence (SpliceAI), and the blue curve represents SpliceAI where 
the 10‑kb flanking sequence is replaced with Ns (SpliceAI‑10 k‑Ns). AUC‑ROC values for (1) and (3) and 
AUC‑PR values for (2) and (4) are shown next to each tool’s name. b Discrimination threshold (DT) plots for 
Splam and SpliceAI on a test set of 2000 Positive‑MANE, 2000 Positive‑Alt, 10,000 Negative‑1, and 10,000 
Negative‑Random examples, using all positive and negative examples from a (Test24K, see “Methods”). Each 
plot shows the precision (blue curve), recall (orange curve), and F1 score (green curve) calculated at different 
thresholds. The threshold at which the F1 score is maximized is indicated by a red dashed line. c, d Kernel 
density plots visualizing the differences between donor and acceptor scores (donor score − acceptor score). 
In d, the score differences between − 0.15 and 0.15 have been removed to provide a closer look at the splice 
junctions where the scores of donor and acceptor were relatively large. The green density plot represents 
Splam, and the orange density plot represents SpliceAI
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scores to both the donor and acceptor flanking an intron, Splam’s scores are in closer 
agreement. Figure 2d shows a zoomed-in view that illustrates how, in a small fraction 
of cases, SpliceAI has a score near zero for one site while the other site scores near 1, 
while the scores for Splam almost never diverge in this manner.

To better understand the score distribution, we investigated the scores produced by 
Splam and SpliceAI on the Test40K dataset (plotted in Additional file 1: Fig S3). Figure 3 
shows the distributions of scores that Splam and SpliceAI assigned to both true and false 
donor and acceptor sites at a threshold of 0.1. For clarity in the figure, we omitted the 
points where Splam and SpliceAI agree and are correct, which totaled 16,820 positives 
and 19,809 negatives, so the figure only shows junctions where at least one program was 
wrong. The largest class of disagreements were the 2609 true splice junctions where 
Splam was correct and SpliceAI was wrong, shown in red. In contrast, there were only 
202 true junctions (light blue) where SpliceAI was correct and Splam was wrong. Fig-
ure 3a (1) illustrates how the Splam scores cluster into two groups, near (0, 0) and (1, 1) , 
corresponding to splice sites where both donor and acceptor are either low-scoring or 
high-scoring. As shown in Fig. 3a (2), SpliceAI is more likely to assign high scores to one 
splice site and very low scores to the other; i.e., the junction scores are inconsistent.

Although SpliceAI has many more false negatives (missed splice sites), Splam does 
have slightly more false positives, 145 versus just 16 for SpliceAI. In general, for splice 
site recognition, we consider the false positives less problematic because the splice-site-
like unannotated sequences (i.e., sequences that either program labels as splice sites 
although they are not annotated as such) are not necessarily true negatives, since they 
might be recognized and spliced at low levels [13]. In contrast, failing to identify legiti-
mate positive splice junctions in MANE or RefSeq (false negatives) is much more likely 
to be a genuine error.

We further focused on positively labeled splice junctions which were correctly cap-
tured by one tool but not the other (Fig.  3b). Our findings indicate that Splam con-
sistently captures more splice junctions compared to SpliceAI across all thresholds. 
Furthermore, Splam outperforms SpliceAI in distinguishing splice junctions in alterna-
tively spliced isoforms (Fig. 3c). Not surprisingly, Splam exhibits even larger improve-
ments when compared to SpliceAI-10  k-Ns, as illustrated in Additional file  1: Fig S4, 
Additional file 1: Fig S5, Additional file 1: Fig S6, and Additional file 1: Fig S7.

Generalization to other species

A frequent concern about deep learning methods is whether they simply memorize the 
training data, or if their predictive models will work on data that diverges from what they 

Table 1 Accuracy, recall, and precision for predicting human splice junctions using a score 
threshold of 0.8 for Splam and SpliceAI in the Test40K dataset, which contained 20,000 positive 
examples and 20,000 negative examples (see “Methods”)

Tools Junction accuracy (%) Junction recall (%) Junction 
precision 
(%)

Splam 96.1 92.5 99.6

SpliceAI 74.1 48.1 99.9
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Fig. 3 a Scatter plots for Splam (1) and SpliceAI (2) on a test set, Test40K, consisting of 10,000 Positive‑MANE, 
10,000 Positive‑Alt, 10,000 Negative‑1, and 10,000 Negative‑Random examples, with each dot representing 
a splice junction. The red dashed lines show the 0.1 cutoff threshold used here to label splice sites as true or 
not. The smaller plots in the second and the third columns show subsets of junctions where one program 
was correct while the other was incorrect (TP and FN, or FP and TN), and the fourth column shows subsets of 
junctions where both programs made the wrong prediction (either FP or FN). b Number of splice junctions at 
all thresholds where Splam and SpliceAI disagree with each other. The green curve represents the instances 
where Splam correctly predicts them as true positives but SpliceAI predicts them as false negatives; the 
orange curve represents the instances where SpliceAI correctly predicts them as true positives but Splam 
predicts them as false negatives. The vertical dashed red line represents the 0.1 threshold used in a. c Score 
density plots for Splam (in green) and SpliceAI (in orange) for donor and acceptor scores on sites found in the 
MANE dataset (Positive‑MANE, first row) and sites found in RefSeq but not MANE (Positive‑Alt, second row)
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have seen in training. To evaluate the generalization ability of Splam’s model of splic-
ing, we collected data from three successively more distant species and applied Splam to 
each of them, without re-training. For comparison, we also applied SpliceAI to the same 
data.

For this experiment, we chose genes from three highly curated reference genomes: 
chimpanzee (Pan troglodytes), mouse (Mus musculus), and the flowering plant Arabi-
dopsis thaliana. For each genome, we extracted a random sample of 25,000 introns along 
with flanking sequences, as defined by the reference annotation (see “Methods”), and 
applied both Splam and SpliceAI. The results are shown in Fig. 4.

For both Splam and SpliceAI, the mammalian datasets (chimpanzee and mouse) show 
similar score distributions to their scores on human splice sites, indicating that both 
programs achieved some generalization. However, in both cases Splam’s scores show a 
tighter distribution around 1.0, indicating that it recognizes the non-human splice sites 
somewhat more strongly. For the plant genome, though, which is far more distant from 
human, Splam still assigns very high scores to a large majority of splice sites, as shown 
in the figure, while SpliceAI seems to recognize very few annotated splice sites. Thus 
despite (or possibly because of ) its much smaller input window, Splam’s performance 
generalizes quite well, even to species as distant as plants.

In addition, we evaluated Splam and SpliceAI using datasets of negative examples for 
these species (see “Methods”), and both programs exhibited prominent peaks near 0 

Fig. 4 Comparison of score distributions for Splam (green) and SpliceAI (orange) when applied to 25,000 
randomly chosen splice sites from chimpanzee (left), mouse (center), and Arabidopsis thaliana (right). Results 
for donor sites are shown across the top, and acceptor sites on the bottom. Scores assigned by each program 
are plotted along the x‑axis, while densities for both donor and acceptor sites are plotted on the y‑axis. The 
darkened vertical line through the distribution marks the median value, and the two neighboring dotted 
lines represent the first and third quartiles. The scores for Splam exhibit a narrow distribution that peaks 
near 1.0, illustrating that the vast majority of annotated splice sites are assigned high scores, even in the 
A. thaliana genome. Scores for SpliceAI are more spread out for the chimpanzee and mouse, and the scores 
for A. thaliana splice sites show an M‑shaped distribution peaking at 0 and 1 with a median near 0.5, rather 
than just peaking near 1
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(Additional file 1: Fig S8). Notably, even in the plant genome, Splam consistently demon-
strated low false negatives across different thresholds, outperforming SpliceAI (see ROC 
and PR curves in Additional file 1: Fig S9).

At a score threshold of 0.8, the recall of Splam for splice junctions is 91, 87, and 80% 
for chimpanzee, mouse, and Arabidopsis  thaliana respectively. At the same threshold, 
SpliceAI had recall rates of 57, 47, and 20% (Table  2). The results when using a score 
threshold of 0.1 are shown in Additional file 1: Table S1.

Worth noting is that A. thaliana has far shorter introns, with an average length of 168 
nt compared to 6200 nt for humans and other mammals. No measurable correlation 
between intron length and score was observed for either Splam or SpliceAI (Additional 
file 1: Fig S10).

Effect of filtering low‑scoring spliced alignments on transcriptome assembly

One crucial step in many transcriptome analyses involves aligning spliced reads to the 
genome, using an alignment program such as HISAT2 [12] or STAR [11]. The output 
from these programs might contain two types of erroneous alignments: (1) incorrect 
alignments due to sequencing errors, repeats, or other sequence artifacts (computational 
noise), and (2) correct alignments of reads that result from noisy splicing (biological 
noise). Either computational or biological noise [37] can lead to systematic underesti-
mates of transcript abundance levels and large increases in the number of false positive 
genes and transcripts [13]. We reasoned that Splam could distinguish novel splice junc-
tions from both types of noisy junctions, which would receive low scores from Splam. To 
assess Splam’s efficacy on ambiguous, unannotated splice junctions in RNA-seq align-
ments, we created a series of unannotated splice junction datasets with varying levels of 
support, ranging from Novel-2 to Novel-100, as described in the “Methods” section. Our 
observations showed that while splice junctions are predominantly predicted as nega-
tive junctions for those with low spliced alignment support, those supported by a higher 
number of spliced alignments receive higher average scores from Splam (see Additional 
file 1: Note S2 and Additional file 1: Fig S11 and S12). We also evaluated the splice junc-
tions supported by over 10,000 spliced alignments in the GTEx dataset, excluding those 
present in the MANE annotation, which comprised 149,901 junctions. Splam tended to 
give these well-supported junctions relatively high scores, with a mean score of 0.66 for 

Table 2 Accuracy, recall, and precision for donor sites, acceptor sites, and splice junctions at the 
score threshold of 0.8 for Splam and SpliceAI in chimpanzee (Pan troglodytes), mouse (Mus musculus), 
and the flowering plant Arabidopsis thaliana 

Tool Accuracy (%)
(Donor / Acceptor / 
Junction)

Recall (%)
(Donor / Acceptor / 
Junction)

Precision (%)
(Donor / 
Acceptor / 
Junction)

Pan troglodytes Splam 95.7 / 95.7 / 95.5 91.4 / 91.4 / 91.0 99.9 / 99.9 / 99.9

SpliceAI 84.6 / 86.0 / 78.7 69.2 / 72.0 / 57.3 99.9 / 99.9 / 99.9

Mus musculus Splam 93.6 / 93.7 / 93.3 87.3 / 87.4 / 86.6 99.9 / 99.9 / 99.9

SpliceAI 80.0 / 82.1 / 73.6 59.7 / 64.2 / 47.3 99.9 / 99.9 / 99.9

Arabidopsis thaliana Splam 90.7 / 90.4 / 90.0 81.4 / 80.9 / 80.2 99.9 / 99.9 / 99.9

SpliceAI 68.2 / 67.8 / 60.0 36.3 / 35.7 / 20.0 99.8 / 99.9 / 99.9
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both donor and acceptor sites, and 66.7% of these junctions scored above 0.5 for both 
sites.

We also evaluated the effectiveness of using Splam to improve the quality of transcrip-
tome assemblies by removing low-scoring splice junctions. Using the workflow illus-
trated in Fig. 5 and further detailed in “Methods”, we processed 20 randomly selected 
RNA-seq samples, of which 10 were prepared using a poly-A capture library prepara-
tion, and 10 were prepared using ribosomal RNA depletion.

First, we compared all the splice junctions in the alignment files before and after fil-
tering with Splam to all introns in the RefSeq GRCh38.p14 version 40 annotation file. 
While some of the splice junctions in the alignment files are no doubt real, an accurate 
filtering procedure should increase the intron precision, while minimizing the decline 
in intron recall as computed with respect to RefSeq (see “Methods”). Indeed, Splam’s 
results do follow this pattern, as illustrated in Fig.  5. Figure  5c and Additional file  1: 
Table S2 show the metrics for the 10 poly-A RNA-seq samples. The precision scores for 
each sample showed a substantial absolute percentage increase, ranging from 14 to 25%, 
with only a minimal reduction in recall (less than 1%). Figure 5d and Additional file 1: 
Table S3 illustrate the results for the 10 rRNA depletion samples, where precision exhib-
ited even higher absolute percentage improvements, ranging from 28 to 37%, with only a 
slight decrease in recall, ranging from 0.7 to 1.0%.

Second, we evaluated the impact of the Splam removal procedure on downstream 
transcriptome assembly. We ran StringTie [38] on both the original alignment files and 
the Splam-cleaned alignment files and compared how closely the transcript assemblies 
match the RefSeq gene annotation file. A successful removal procedure would improve 
both the precision and recall of transcriptome assembly. Among the 10 poly-A capture 
samples, the number of matching transcripts remained almost unchanged, while the 
precision scores consistently improved by an absolute percentage of 2.1 to 2.7% (Fig. 5e 
and Additional file 1: Table S4). For the 10 ribosomal RNA depletion samples, both met-
rics showed even more substantial improvements. Following the Splam removal process, 
we consistently observed an increase of 500 to 600 matching transcripts being assem-
bled, while precision showed a 5.5 to 6.5% absolute percentage improvement (Fig. 5f and 
Additional file 1: Table S5). Other transcriptome assembly metrics, such as the number 
of matching intron-chains, assembled hypothetical exons, and missed exons from the 
annotation, show the same picture: by eliminating low-scoring spliced alignments, we 
achieve more accurate assemblies of transcripts from both poly-A capture and riboso-
mal RNA depletion RNA-seq samples, with a particularly notable impact in the latter 
samples (see Tables S6-S11).

Discussion
In this study, we presented Splam, a convolutional neural network that recognizes splice 
junctions in their genomic context. An important principle that we used in designing 
Splam was that the input should be constrained to be biologically realistic. The previ-
ous state-of-the-art CNN-based system, SpliceAI, relies on a window of 10,000 base 
pairs flanking each splice site plus the entire intronic sequence, which is far larger than 
what the splicing machinery in the cell can possibly recognize. Introns are flanked by a 
5’ donor site and a 3’ acceptor site, usually beginning and ending with the dinucleotides 
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Fig. 5 a The workflow of a typical RNA‑seq pipeline. b The modified workflow using Splam to remove 
spurious alignments. c–f Effects of using Splam to remove low‑scoring splice junctions from RNA‑seq 
experiments. c–d Results of comparing introns in the RefSeq annotation with splice junctions extracted 
from the alignment files of 10 poly‑A capture (c) and 10 rRNA depletion (d) RNA‑seq samples. Each dot 
corresponds to a sample, with the original and Splam‑cleaned samples connected by an arrow. e,f Results 
of comparing RefSeq transcripts with assembled transcripts from the same alignment files of poly‑A capture 
(e) and rRNA depletion (f), before and after Splam clean‑up. As in c and d, each dot corresponds to a sample, 
and the original and Splam‑cleaned samples are connected by arrows. The x‑axis in all plots shows precision, 
defined here as the percentage of predicted introns/transcripts that match RefSeq. The y‑axis in a,b shows 
intron recall, defined as the percentage of RefSeq introns that were captured in the files. In c,d, the y‑axis 
shows the number of assembled transcripts that matched RefSeq transcripts
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GT and AG. A short window of sequence around each end is recognized by the spliceo-
some, as well as a branch point about 35–40 bases upstream of the acceptor site [39]. In 
addition to these three limited regions, short motifs within the introns and exons known 
as splicing enhancers and repressors might also affect the splicing process. In total, then, 
at most a few hundred nucleotides determine whether or not an intron is recognized and 
spliced out. Notably, all of the crucial sequences involved in splicing and spliceosome 
assembly are localized in close proximity to the donor and acceptor sites. Thus, it should 
only be necessary to look in these regions to predict splice sites. We were concerned 
that the performance improvements observed in SpliceAI when increasing the flanking 
sequences from 80 to 10,000 nt, as described in [23], may have been due to overfitting or 
memorization of the training set.

We conducted two sets of experiments to evaluate some key parameters in Splam’s 
design. In the first set, we trained the model on input sequences ranging from 40 to 800 
nt, as described in Additional file 1: Note S3 and Additional file 1: Fig S13. Those experi-
ments led us to choose 800 nt as the input for our final model. In the second experiment, 
we conducted an ablation study to determine the optimal number of residual groups 
within the neural network, varying this number from one to five. That experiment, 
described in Additional file 1: Note S4 and Additional file 1: Fig S14, led us to choose five 
residual groups for the model’s configuration.

Unlike previous systems, Splam analyzes donor and acceptor sites jointly, to cap-
ture dependencies between splice sites. This dual-window approach is not intended 
for exhaustive scanning across entire chromosomes, which might require considering 
a quadratic number of donor–acceptor site candidates. Instead, Splam is designed for 
evaluating putative splice junctions that have supporting evidence either from align-
ments of RNA-seq data or from existing annotation.

In the biological context, donor and acceptor sites are not independent. Therefore, 
rather than training separately on the two types of splice sites, Splam is designed and 
trained to recognize pairs of donor and acceptor sites, mimicking the behavior of the 
spliceosome. Although there is a strong correlation between Splam’s donor and accep-
tor site scores, the model is intentionally designed to produce distinct scores for each. 
This design can be useful in cases where the scores differ suggesting that one of the sites 
might be weaker than the other.

We also showed that the Splam model generalizes quite well, as illustrated by our 
evaluations on chimpanzee, mouse, and Arabidopsis thaliana. Unsurprisingly, its perfor-
mance on chimpanzee was very similar to its performance on human, but perhaps more 
surprising was its accuracy in predicting splice sites in a plant genome, where it obtained 
81.4% sensitivity on donors and 80.9% sensitivity on acceptors. We would expect that if 
re-trained on species-specific data, Splam would improve even further on those species.

We also tested Splam’s ability to remove spurious splice junctions from the output of a 
spliced aligner. We showed that when used in this manner, Splam can create alignment 
files that contain many fewer noisy splicing events while losing only a small number of 
true splice sites. When the cleaned files are used as input to a transcriptome assembler 
such as StringTie2, we not only observed higher precision but also an increased num-
ber of assembled transcripts that matched known transcripts. These improvements were 
particularly notable when the filtering process was applied to RNA-seq data generated 
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using rRNA depletion, which generally contains many more incompletely processed 
transcripts.

Conclusions
Splam is a new deep-learning-based splice site predictor providing a faster and more 
accurate method for predicting splice junctions. Moreover, Splam offers a reliable and 
efficient solution for cleaning up erroneous spliced alignments, which is shown to 
substantially improve transcript analysis of both poly(A) and ribo-depleted RNA-seq 
libraries.

Methods
Generating high‑quality datasets for splice junctions

We curated two sets of positive examples, “Positive-MANE” and “Positive-Alt”, and two 
sets of negative examples, “Negative-1” and “Negative-Random”, to serve as high-qual-
ity datasets for training and testing the Splam model. Additionally, we prepared a series 
of testing datasets, from Novel-2 through Novel-100, to evaluate splice junctions with 
varying levels of spliced alignment support. DNA logos for these datasets are presented 
in Fig. 6a. The MANE data was taken from the RefSeq GRCh38 MANE release 1.0 file. 
Note that Refseq and GENCODE agree 100% on all MANE annotations [35]. To cre-
ate the Positive-Alt dataset, we used RefSeq annotation version 110 [36], from which 
we collected all splice junctions missing from MANE. The resulting annotation file con-
tains information about (1) the location of all annotated splice junctions and (2) the label 
information of the indices of the donor and acceptor site for each splice junction. We 
used GRCh38 assembly version 40 as the reference genome sequence.

Positive dataset creation

We first ran TieBrush [40] to consolidate the HISAT2 alignments of 9795 samples, col-
lected across 31 histological types by the GTEx consortium project, into a single com-
pressed BAM file. This TieBrush file was recently used to build the CHESS (v3) gene 
catalog [37]. Following the consolidation, we extracted all splice junctions from the BAM 
file using the Regtools junctions extract command [41].

To increase the accuracy of the donors and acceptors extracted from the TieBrush 
file, we filtered the junctions to retain only those that were supported by more than 100 
alignments. We used the RefSeq annotation to extract the coordinates of all protein-
coding genes and intersected these with the reliable (100 + alignments) splice sites. The 
resulting splice sites were categorized as “Positive-MANE” if they were in MANE, and 
“Positive-Alt” if they were only in RefSeq but not in MANE. This gave us a set of anno-
tated splice junctions from protein-coding genes that also had strong alignment evi-
dence. Overall, we identified 181,123 splice sites in Positive-MANE and 96,484 splice 
sites in Positive-Alt.

Negative dataset creation

We considered several ways to generate negative splice junctions. For instance, we 
could select random unannotated GT-AG pairs from the genome as negative splice 
sites. GT-AG pairs account for more than 98% of all splice sites in mammalian 
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genomes in GenBank [42], but the vast majority of random GT-AG pairs are not 
splice junctions. However, the patterns of these artificial junctions might differ greatly 
from true splice sites, making them easy to learn but less useful for rejecting tran-
scriptional noise. Arbitrarily labeling unannotated junctions as negatives would also 
be inappropriate because some of them may actually be spliced. This could happen 
because of incomplete annotation, transcriptional noise, or other reasons [13, 43].

Nonetheless, we needed to generate an accurate set of negative examples for train-
ing Splam, and we adopted two approaches. The first approach involved selecting ran-
dom GT-AG pairs on the genome and requiring them to be on the opposite strand 
from known protein-coding genes. Overlapping genes are very rare in eukaryotes 
[44–48], so these will almost certainly be negative examples. We selected random 

Fig. 6 a Illustration of the four types of splice sites used for training and testing Splam: Positive‑MANE, 
Positive‑Alt, Negative‑1, and Negative‑Random. Positive‑MANE sites (blue) are selected from the MANE 
database and supported by at least 100 alignments, while Positive‑Alt sites (green) are present in the RefSeq 
database but missing from MANE, and also supported by at least 100 alignments. Negative‑1 sites (orange) 
occur on the opposite strand of a known gene and are supported by only 1 alignment, and Negative 
Random sites (red) are random GT‑AG pairs on the opposite strand that do not overlap with any known splice 
sites and have no alignment support. b DNA logos for donor and acceptor site for Positive‑MANE, Positive‑Alt, 
Negative‑Random, Negative‑1, Novel‑50, and Novel‑100 display the conservation of residues at each position 
in the training set created for this study. Each panel displays 40 nucleotides, centering on the donor and 
acceptor sites. The y‑axis represents the level of conservation, measured in bits, with 0 representing equal 
probability among “A”, “C”, “G”, and “T”, and 2 representing a single‑nucleotide dominating the position
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GT-AG pairs in this fashion to generate 4,467,910 splice junctions, which we call the 
Negative-Random set.

Second, we wanted a set of negative examples that resembled true splice junctions, 
but that were likely to be non-functional. To generate this set, we chose splice junctions 
with only a single alignment supporting them in the TieBrush file and further required 
that they be on the strand opposite from a protein-coding gene. Because they have an 
alignment supporting them, these splice junctions might represent transcriptional noise, 
making them more useful for training. This approach generated a set of 2,888,042 splice 
junctions, which we refer to as Negative-1.

RNA‑seq novel junction dataset creation

In practice, RNA-seq alignments contain many unannotated splice junctions with differ-
ent levels of evidence suggesting they may bound a possible intron. To evaluate Splam’s 
recognition of “negative” splice junctions, we expanded our test dataset by adopting the 
same criteria used for the Negative-1 but varying the levels of spliced alignment support. 
This led to datasets named Novel-2 through Novel-100, based on the number of sup-
porting spliced alignments. It is important to note that these datasets were solely used 
for evaluating Splam and were not seen during the training process. The underlying logic 
for this approach is that splice junctions with a greater count of biological read supports 
are more likely to represent unannotated novel splice junctions.

Evaluating the donor and acceptor sites in positive and negative datasets

Figure 6b shows DNA logos for each of our positive and negative datasets, showing the 
sequence composition and conservation levels. The donor and acceptor patterns for 
Positive-MANE and Positive-Alt are almost identical, indicating that splice junctions in 
MANE and alternatively spliced transcripts from RefSeq have the same consensus, as 
expected for positive examples. The two negative datasets show almost no pattern of 
conservation, although the Negative-1 group has a very small amount of conservation 
immediately adjacent to each splice junction. The two groups of negatively labeled splice 
junctions are clearly distinguishable from the annotated true splice sites. For the Novel-
x datasets, DNA logos from Novel-50 and Novel-100 categories show slight differences 
compared to Negative-1, especially in the acceptor sequences, where faint signals of a 
polypyrimidine tract appear upstream of the conserved AG acceptor motif. This indi-
cates that while these unannotated junction sets are mostly negative, a small portion of 
positive splice junctions might exist within the Novel-50 and Novel-100 datasets. Addi-
tional file 1: Table S12 reports the numbers of dinucleotides at the donor and acceptor 
sites, and Additional file  1: Fig S15 illustrates the ratio of canonical to non-canonical 
splice sites.

Splam input and output data encoding

For curating input splice sites, we extract a 400-nt sequence centered around each end 
of an intron, learning the splicing pattern at the junction level. This approach facilitates 
local prediction of a splicing event, removes any canonical transcript bias, and elimi-
nates the reliance on a larger window size, which for SpliceAI includes the whole intron 
and 10,000 nt of flanking sequences.
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For every splice junction coordinate, we used gffread [49] to extract sequences of 400 
nt around donors and acceptor sites, in total 800 nt. In cases where the intron length 
falls between 200 and 400 base pairs, we select a 200-nt sequence from both the donor 
and acceptor sides, with overlapping sequences allowed. For introns shorter than 200 
nt, we include the entire intron with Ns inserted to extend the sequence to 200 nt for 
both donor and acceptor sites. The input sequences are then one-hot encoded, with 
[A,C ,G,T ,N ] represented as [1, 0, 0, 0] , [0, 1, 0, 0] , [0, 0, 1, 0] , [0, 0, 0, 1] , and [0, 0, 0, 0] . 
One-hot encoding was chosen its simplicity and because it is widely used in similar 
applications, including SpliceAI [23], Basenji [50], Spliceator [25], SpliceFinder [24], and 
Enformer [51].

In terms of the labeling of splice sites, we one-hot encoded the  200th nucleotide (the 
donor site) as [0, 0, 1], and the  600th nucleotide (the acceptor site) as [0, 1, 0] (using a 
0-based numbering system). Nucleotides at non-donor and acceptor sites were labeled 
as [0, 0, 0] . For the input sequences, over 95% of them had GT as their  200th and  201st 
nucleotides, and AG as their  598th and  599th nucleotides. We also note that 8 donor sites 
had “TT” and another 8 donor sites had “GA” in the MANE database (Additional file 1: 
Table S12).

Splam model architecture design

The model design of Splam mainly follows the architecture of SpliceAI with some 
optimizations. We utilized a deep residual convolutional neural network (CNN) that 
incorporates grouped dilated convolution layers within the residual units (Fig. 1a). The 
input to the model is 800 nt of one-hot encoded DNA sequence, with the dimension of 
3 × 800, and the output is a 3 × 800 array with the predicted probability that each base 
is a donor site, acceptor site, or neither (Methods: “Splam input and output data encod-
ing”). The Splam program outputs the nucleotide scores at positions 200 and 600 as the 
donor and acceptor scores, respectively. We constructed the Splam model using PyTorch 
framework version 1.13.0 [52].

The Splam model consists of 20 residual units, each containing two convolutional lay-
ers, and each convolutional layer follows a batch normalization and a Leaky rectified lin-
ear unit (LReLU) [53] with a negative slope of 0.1 as shown in Fig.  1a. We define the 
inputs of a residual unit using four hyperparameters: F  for the number of filters, W  for 
the window size, D for the dilation rate, and G for the number of groups. These input 
hyperparameters are represented as (F ,W ,D,G) in Fig. 1b. The input to a convolutional 
layer is defined as (F ,W ,D) . Two key ideas used in the Splam model architecture are (1) 
residual connection and (2) grouped dilated convolution.

Residual units were first proposed by He et al. in 2015 [54] to solve the training accu-
racy degradation problem [55, 56]. The residual mappings (shortcut connections) allow 
one to train the deeper model by simple stochastic gradient descent (SGD) with back-
propagation and can result in accuracy gains from the increment in the depth of the 
model. The concept of residual connection is widely used in deep neural networks today 
to prevent the vanishing/exploding gradient problem. In Splam, the input of a residual 
unit is connected to its output through a residual connection.

In the Splam model, the 1-D convolutional layers in each residual unit have a dila-
tion rate parameter, denoted as D . The dilation rate determines the spacing between the 
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values in the convolutional filter, allowing the network to have a larger receptive field 
without increasing the number of parameters without loss of resolution or coverage [57]. 
The dilated convolution operation is defined as follows:

where Fin is the input feature, Fout is the out feature, K  is the convolutional kernel, n rep-
resents the index of the output feature, and ∗D represents the dilated convolution opera-
tion (Equation ( 1 )). In Splam, the dilated convolutional kernel captures features from a 
neighboring region spanning D × (W − 1) in Fin , encompassing a total of 2D × (W − 1) 
neighboring positions for the input of the respective residual unit.

The idea of grouped convolution in Splam was inspired by the cardinality concept, 
which refers to the number of parallel paths present in a block, as seen in ResNext [58]. 
The concept of grouped convolution dates back to AlextNet [19] and is implemented in 
widely used open-source machine learning frameworks such as Caffe [59], Keras [60], 
TensorFlow [61], and PyTorch [52]. The use of grouped convolution allows for substan-
tial memory savings with minimal loss of accuracy, which can further push the model 
deeper [62]. In a grouped convolution with G groups, F/G filters are applied to each 
F/G portion of the input, resulting in a G× reduction in the number of parameters used. 
In Splam, each residual unit consists of two convolutional layers where F  is set to 64 and 
the group parameter is set to 4.

A group of four residual units (RUs) forms a bigger residual group, and 20 RUs are 
clustered into five residual groups, in the order of blue, green, orange, yellow, and purple 
in Fig. 1. Residual groups are stacked such that the output of the i th residual group is 
forward-connected to the i + 1 th residual group (forward connections colored in blue).

Furthermore, the output of each residual group undergoes a convolutional layer, with 
the parameters (64, 1, 1) , which is then added to all the other outputs of residual groups 
(residual connections colored in red), which then is passed into the last convolutional 
layer in (3, 1, 1) and a softmax layer, generating a 3-dimensional input Tensor with three 
channels lying in the range [0, 1] and summing to 1. F  is set to 64 for all convolutional 
layers. For each residual group, W  is set to 11, 11, 11, 21, and 21, and D is set to 1, 5, 
10, 15, and 20, in sequence. G is 1 by default for all convolutional layers but set to 4 in 
the residual units. For each nucleotide position, its total neighboring span in the Splam 
model is S =

20
i=1 2Di × (Wi − 1) . In total, there are 651,715 parameters in Splam.

Model training and testing

Splam was trained on a MacBook Pro 2021 Apple M1 Pro chip with 16 GPU cores, 16 
Neural Engine cores, and 16 GB unified RAM using PyTorch “mps” mode.

Splitting splice junctions into training and testing datasets

After collecting and curating the splice junctions to be used for training and testing, 
we divided them into two datasets: one for model training and the other for testing. 
For model training, we utilized all the splice sites on the main chromosomes, except 
Chromosomes 1 and 9. For model testing, we used the splice sites on the held-out 

(1)Fout(n) = (Fin∗DK )(n) =
∑

s+Dt=n

Fin(s)× K (t)



Page 18 of 26Chao et al. Genome Biology          (2024) 25:243 

Chromosomes 1 and 9, after removing splice sites from genes that had paralogs on the 
other chromosomes.

As discussed in the main text, we curated two sets of positive splice sites: Positive-
MANE and Positive-Alt. Out of the 181,123 splice sites in Positive-MANE, 155,048 were 
allocated to the training dataset and 26,075 to the testing dataset. For Positive-Alt, out 
of the 96,484 splice sites, 83,025 were allocated to the training dataset and 13,459 to the 
testing dataset. In total, 238,073 positive splice sites were used for model training. We 
also curated two types of negative splice sites, Negative-Random and Negative-1. Out of 
the 4,467,910 splice sites in Negative-Random, 3,834,401 were allocated to the training 
dataset and 633,509 to the testing dataset. For Negative-1, out of the 2,888,042 splice 
sites, 2,494,489 were allocated to the training dataset and 393,553 to the testing dataset. 
In total, we randomly selected twice as many negative splice sites as positive splice sites, 
totaling 238,073 for both Negative-Random and Negative-1. This resulted in a total of 
476,146 negative splice sites being utilized for model training.

Four test datasets for evaluating Splam

We generated four test datasets, namely Test40K, Test22K-MANE, Test22K-Alt, and 
Test24K. These datasets were derived from sampling the human splice junctions test 
dataset described in “Methods”.

Test40K encompasses 10,000 splice junctions each from Positive-MANE, Positive-Alt, 
Negative-1, and Negative-Random examples, maintaining a positive-to-negative ratio of 
one-to-one.

Test22K-MANE, Test22K-Alt, and Test24K share the same 10,000 Negative-1 and 
10,000 Negative-Random examples with Test40K. To simulate the sparsity of true 
junctions in the genome, we created a test set with a positive-to-negative ratio of 1:10, 
downsampling the initial 10,000 Positive-MANE and 10,000 Positive-Alt to 2,000 Posi-
tive-MANE and 2,000 Positive-Alt, respectively.

In sum, Test22K-MANE consists of 2000 Positive-MANE, 10,000 Negative-1, and 
10,000 Negative-Random examples; Test22K-Alt consists of 2000 Positive-Alt, 10,000 
Negative-1, and 10,000 Negative-Random examples; and Test24K consists of 2000 Pos-
itive-MANE, 2000 Positive-Alt, 10,000 Negative-1, and 10,000 Negative-Random. We 
used these datasets to evaluate Splam’s ability to recognize splice junctions discussed in 
“Results”.

Splam training hyperparameters

To train Splam, we used a batch size of 100 and trained it for 15 epochs. We employed 
the AdamW [63] optimizer with a default learning rate of 0.03. A 1000-step warmup was 
utilized [64], with the learning rate increasing linearly from 0 to 0.03. The learning rate 
then decreased following the values of the cosine function between 0.03 and 0 [65].

We further improved Splam’s performance by changing the loss function. Instead of 
the commonly used cross entropy (Eq. (2)), we replaced it with focal loss (Eq. (3)) [66].

(2)
LossCLE = −

∑

class∈{donor,acceptor,neither}

Iclass × log(Pclass)
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Iclass is the ground-truth label and Pclass is the Splam output score for each class 
(donor, acceptor, or neither). Comparing the two equations, we can see that Eq. (3) has 
an additional modulating term, (1− Pclass)γ . This term scales the cross-entropy loss 
dynamically, with the scaling factor decreasing to zero as confidence in the correct class 
increases. In other words, the focal loss approach puts more emphasis on the misclas-
sified challenging data points where Splam is more likely to make incorrect predictions 
and penalizes these data points by an additional (1− Pclass)γ scale. In Splam, we set 
γ = 2 . In summary, focal loss quantifies the level of inaccuracy in predictions by down-
weighting the influence of easy examples during training, enabling the model to swiftly 
prioritize challenging examples.

Paralogs removal in testing dataset

We removed the paralogs from the testing dataset as follows: we first split the tran-
scripts on Chromosomes 1 and 9 and the remaining chromosomes and extracted the 
transcript sequences using gffread [49] into two FASTA files. We then used nucmer [67] 
with default parameters to align the two files and ran show-coords with the -lcr option 
to obtain the alignment coordinates. We removed alignments with sequence similarity 
greater than 80% and the alignment coverage percentage for the query greater than 50%. 
We found a total of 2943 paralogous transcripts, and any splice sites in the testing data-
set that were from these paralogs were removed.

For Splam model testing, we randomly selected 10,000 splice sites from the paralog-
removed testing dataset for each of the four test set groups.

Testing SpliceAI

In order to achieve optimal results with SpliceAI, the final splice site score was deter-
mined by averaging the outputs of five models, as recommended by the developers 
of SpliceAI. Throughout our experiments, we employ this ensemble approach for all 
SpliceAI analyses.

Running Splam on closely related and distant non‑human species

In this experiment, we aimed to evaluate Splam’s ability to generalize to different species 
by benchmarking the performance of Splam against SpliceAI in scoring donor–acceptor 
site pairs. Thus, we took the same approach as described in Results: “Splam: an accurate 
splice junction recognition model” and ran both programs at the splice junction level: 
collecting junctions from non-human species and evaluating one junction at a time.

Extracting splice junctions from GFF files as the positive testing dataset

We downloaded the target non-human reference annotations in GFF format, along 
with assembly reports and genome sequences in FASTA format, from the NCBI FTP 
server (specifically, Pan troglodytes and Mus musculus) and TAIR database (Arabidopsis 
thaliana) at https:// www. arabi dopsis. org/. For each genome, we filtered out any incor-
rectly overlapping exons and extracted introns from all isoforms of each gene as splice 

(3)
LossFL = −

∑

class∈{donor,acceptor,neither}

Iclass × (1− Pclass)γ × log(Pclass)

https://www.arabidopsis.org/
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junctions using gffutils version 0.12.0 [60]. The final output of this step is a BED file with 
supporting strand, parent ID, and chromosome information. This comprises the positive 
dataset to be used for evaluation.

Creating the negative testing dataset

To produce compelling pseudo-splice-junction data for the negative dataset, we com-
piled the protein-coding genes for each species and followed a similar approach as in 
the creation of the human Negative-Random dataset (Methods: “Negative dataset crea-
tion”). For each gene, we selected the strand opposite to the given protein-coding gene 
locus. Second, we generated a random start position within the boundaries of the locus 
and searched forward until finding a canonical GT donor site if on the + strand, or CT 
acceptor site if on the − strand. If none were found, we ended the current attempt. Next, 
we selected a random starting intron length from the interval [200, 20000] , and jumped 
forward by this amount from the initial site. Starting from here, we searched forward to 
find a canonical AG acceptor site if on the + strand, or AC donor site if on the − strand. 
If none were found, we ended the current attempt. Otherwise, we recorded the donor 
site and acceptor site positions as a splice junction. We repeated this process for a total 
of 20 attempts per gene locus to produce our negative dataset.

Processing splice junctions for Splam and SpliceAI

Using the obtained coordinates from the positive and negative datasets, we pre-pro-
cessed the splice junctions to fit the requirements for each model. For Splam, we 
extracted a 400-nt uppercase sequence for both donor and acceptor sites, as described in 
Methods: “Splam input and output data encoding”, resulting in an 800-nt input sequence 
for each splice junction. In cases where the donor and acceptor sites were < 400 nt apart, 
we allowed the flanking sequences to overlap in the intronic region, resulting in dupli-
cated segments near the center of the input sequence. If the sites were exactly 200 nt 
apart, the intronic flanking sequences of the two sites would be identical. In cases where 
the sites were < 200 nt apart, we truncated the flanking sequences to the end of the 
intronic region (i.e., the donor or acceptor site itself ) and padded the remainder with Ns. 
No matter the case, the resulting input sequence would always be exactly 800 nt long.

For SpliceAI, we extracted the entire intron sequence with a 10,400nt context (5200 
nt flanking each side) as described in Methods: “SpliceAI benchmarking”. If the flank-
ing sequence went out of the chromosome’s range, we truncated to the boundary of the 
chromosome and padded the remainder with Ns. Thus, the length of the SpliceAI input 
sequence was 10.4 kb plus the intron length.

In order to run the SpliceAI models in a reasonable time, we randomly sampled 25,000 
splice junctions from both the positive and negative datasets and ran Splam and SpliceAI 
on each junction, following the protocols outlined in Methods: “SpliceAI benchmarking”.

Applying Splam to remove spurious spliced alignments

One application of Splam is to remove spliced alignments with low-scoring splice junc-
tions. Users can run Splam on alignment files (BAM). We assess the results at the intron 
level and the transcriptome assembly level.
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Sample information of RNA‑seq data

We randomly selected 20 RNA-seq samples that were collected and sequenced by 
the Lieber Institute for Brain Development. Among these samples, 10 were prepared 
using poly-A capture and 10 were prepared using ribosomal RNA depletion. These 
samples were obtained by the Lieber Institute from developing and mature human 
dorsolateral prefrontal cortex (DLPFC). All FASTQ files of these samples are pub-
licly available via Globus collections jhpce#bsp2-dlpfc at https:// app. globus. org/ file- 
manag er? origin_ id= 0dd03 924- 6853- 11e9- bf44- 0e4a0 62367 b8& origin_ path=% 2F 
and jhpce#bsp2-hippo at https:// app. globus. org/ file- manag er? origin_ id= 96be2 0a2- 
6853- 11e9- bf44- 0e4a0 62367 b8& origin_ path=% 2F. We then aligned these samples to 
GRCh38 version 40 patch 14 with HISAT2.

Splam removal procedure workflow overview

Splam removal procedure would occur as a step in RNA-seq data analysis after 
spliced alignment and before transcriptome assembly (Fig. 5a). The Splam removal 
step is highlighted by the red box, and a detailed breakdown of the trimming process 
is presented in Fig. 5b.

Before running the Splam spliced alignment removal procedure, users need to pre-
pare three files, which are (1) a target alignment file in BAM format, (2) a refer-
ence genome in FASTA format, and (3) the released Splam model in PT format. This 
workflow can be done in three lines of code:

1. Extracting splice junctions from the alignment file:
$ splam extract − P − o tmp_out < INPUT alignment file > 
2. Scoring extracted splice junctions:
$ splam score − G < INPUT  reference  genome >  − m < INPUT splam 

model >  − o tmp_out tmp_out/junction.bed
In this step, Splam takes the splice junctions in the BED file generated in the pre-

vious step, encodes the data described in Methods: “Splam input and output data 
encoding”, and scores them using the trained Splam model (see Methods: “Splam 
model architecture design” and “Model training and testing”). Splam automatically 
detects the environment and runs in “cudo” mode if CUDA is available. If the com-
puter is running macOS, Splam will check if mps mode is available. If neither “cuda” 
nor “mps” are available, Splam will run in “cpu” mode.

3. Cleaning up the alignment file:
$ splam clean − o tmp_out
Subsequently, Splam proceeds to iterate through the alignments. Splam can run 

on alignment files of both single-end and paired-end RNA-seq samples. Any align-
ment containing any spurious splice junctions is removed, and if it is paired, Splam 
updates the flags to unpair reads for both the aligned read and its mate. Moreover, 
if a read is multi-mapped, Splam updates the NH tag for the alignment itself and all 
other alignments. The outcome of this spliced alignment removal step is a cleaned, 
sorted alignment file (BAM) along with an alignment file comprising the discarded 
alignments.

https://app.globus.org/file-manager?origin_id=0dd03924-6853-11e9-bf44-0e4a062367b8&origin_path=%2F
https://app.globus.org/file-manager?origin_id=0dd03924-6853-11e9-bf44-0e4a062367b8&origin_path=%2F
https://app.globus.org/file-manager?origin_id=96be20a2-6853-11e9-bf44-0e4a062367b8&origin_path=%2F
https://app.globus.org/file-manager?origin_id=96be20a2-6853-11e9-bf44-0e4a062367b8&origin_path=%2F
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Metrics for intron matching

Two metrics, intron precision and recall, are used to assess the alignment file at the 
intron level. Intron precision is calculated as the ratio of true positives (TP) to the 
sum of true positives and false positives (TP + FP), where TP represents the number 
of introns in the alignment file that match the RefSeq annotation, while FP represents 
the number of introns in the alignment file that do not match the annotation. Intron 
recall, on the other hand, is computed as TP/(TP + FN). In this case, TP again repre-
sents the number of introns in both the alignment and the RefSeq annotation, while 
FN denotes the number of introns present in the annotation file but not in the align-
ment file.

Metrics for transcript assembly

In evaluating the assembled transcripts, we examined two metrics: the total number 
of assembled transcripts that match the RefSeq database and the transcript precision. 
Transcript precision is calculated as the ratio of true positives (TP) to the sum of true 
positives and false positives (TP + FP). Here, TP represents the assembled matching 
transcripts, while FP represents the hypothetical transcripts. The transcript precision 
reflects the proportion of assembled transcripts that are actually inside the annota-
tion file.

Applying Splam to score introns in annotation files and assembled transcripts

Users can run Splam on (1) annotation files or (2) assembled transcripts in three 
lines of code. Splam iterates through the GFF file, extracts all introns in transcripts, 
and writes their coordinates into a BED file. The BED file consists of six columns: 
CHROM, START, END, JUNC NAME, INTRON NUM, and STRAND. Splam scores 
every extracted intron and outputs the scores of each donor and acceptor site.
$ splam extract − o tmp_out < INPUT annotation file > 
$ splam score − G < INPUT reference genome >  − m < INPUT Splam model >  − o 

tmp_out tmp_out/junction.bed

Last, users can generate reports on the number of low-scoring splice junctions 
in each transcript and filter out transcripts with a high ratio of bad splice junctions 
using a user-defined threshold.
$ splam clean − o tmp_out

SpliceAI benchmarking

All the experiments of SpliceAI are conducted on a 24-core, 48-thread Intel(R) 
Xeon(R) Gold 6248R Linux computer with 1024 GB memory, running in “cpu” mode 
and using a single thread of execution.

Formatting SpliceAI input and output data

The SpliceAI model requires a 10,000-nt context to run, meaning that the input 
sequence needs to be padded with 5000 nt of flanking sequence on either side. We 
included the full intron sequence plus an additional 200 nt before and after, to ensure 
that SpliceAI had at least as much input sequence as Splam. In the “SpliceAI” version, 
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we extracted the full 5.2-kb flanking sequence from the genome (Additional file  1: 
Fig S2a). In the “SpliceAI-10  k-Ns” version, we replaced the outer 5000 nt on each 
flanking sequence with Ns (zero-padding, as outlined in [23]), leaving only a 200-
nt sequence from the genome. Although SpliceAI outputs scores for every position 
inside the 10-kb flanking sequences, for evaluation we only extracted the scores for 
the donor and acceptor sites.

Testing the SpliceAI model

Pursuant to the methods described in [23], we ran SpliceAI on large datasets in dis-
crete batches, with a batch size of 500 splice junctions. We one-hot encoded the input 
sequence, loaded the resulting tensor into the SpliceAI model, and extracted the output 
into donor, acceptor, and non-splice-site channels. Each channel was a list containing 
the corresponding scores for every nucleotide in the input sequence. The channels were 
then written to their respective files, with every line representing a different splice junc-
tion. We repeated this process for all 5 SpliceAI models, then averaged the donor and 
acceptor site scores.

Executing and speeding up SpliceAI predictions

In order to do batch prediction, we created a separate bash script to execute the above 
model testing process in increments of 500 (batch size), up to the size of the input data-
set. We employed a wrapper script for ease of access and to prevent memory leakage.

Additionally, to speed up the pipeline across models and for both “noN” and “N” 
modes, we multi-threaded the bash execution to run the 10 targets (5 models, 2 modes) 
concurrently.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059‑ 024‑ 03379‑4.

Additional file 1: Supplementary Note S1‑S4, supplementary Fig S1‑S15, and supplementary Table S1‑S12.

Additional file 2: Review history.

Acknowledgements
We thank Markus J. Sommer, Jakob Heinz, and Natalia Rincon for useful discussions and for their help in naming Splam.

Peer review information
Tim Sands was the primary editor of this article and managed its editorial process and peer review in collaboration with 
the rest of the editorial team.

Review history
The review history is available as Additional file 2.

Authors’ contributions
KC, SLS, and MP designed the research. KC designed and trained the Splam model. KC ran all experiments on human 
splice sites. AM and KC conducted the cross‑species generalization analysis. KC developed the software to improve align‑
ment files. KC, AM, SLS, and MP wrote the manuscript.

Funding
This research was supported in part by the U.S. National Institutes of Health under grants R0I‑HG006677 and 
R01‑MH123567, and by the U.S. National Science Foundation under grant DBI‑1759518.
This work was carried out at the Advanced Research Computing at Hopkins (ARCH) core facility (rockfish.jhu.edu), sup‑
ported by the National Science Foundation (NSF) grant OAC 1920103.

https://doi.org/10.1186/s13059-024-03379-4


Page 24 of 26Chao et al. Genome Biology          (2024) 25:243 

Availability of data and materials
The Splam project is freely available on github at: https:// github. com/ Kuanh ao‑ Chao/ splam under the MIT license [68] and 
is available on PyPi: https:// pypi. org/ proje ct/ splam/. The Splam documentation is available at: https:// ccb. jhu. edu/ splam/.
Splam was built and trained using the PyTorch [52] framework. The core of Splam is implemented in C +  + using hstlib 
[69] and the samtools merge and sort scripts [70]. C +  + libraries were compiled and linked to Python using Pybind11 
[71] (https:// github. com/ pybind/ pybin d11). The scripts for Splam training and data analysis are freely available on GitHub 
at: https:// github. com/ Kuanh ao‑ Chao/ splam‑ analy sis‑ resul ts [72]. The Splam source code can be accessed in Zenodo 
at https:// doi. org/ 10. 5281/ zenodo. 12791 441 [73]. All the training and testing data used in this study can be accessed in 
Zenodo at https:// doi. org/ 10. 5281/ zenodo. 10957 161 [74].

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 11 August 2023   Accepted: 28 August 2024

References
 1. Berget SM, Moore C, Sharp PA. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci. 

1977;74:3171–5.
 2. Baralle FE, Giudice J. Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol. 

2017;18:437–51.
 3. Johnson JM, Castle J, Garrett‑Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker 

DD. Genome‑wide survey of human alternative pre‑mRNA splicing with exon junction microarrays. Science. 
2003;302:2141–4.

 4. Kalsotra A, Cooper TA. Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet. 
2011;12:715–29.

 5. Licatalosi DD, Darnell RB. RNA processing and its regulation: global insights into biological networks. Nat Rev Genet. 
2010;11:75–87.

 6. Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Muñoz MJ. Alternative splicing: a pivotal step between eukary‑
otic transcription and translation. Nat Rev Mol Cell Biol. 2013;14:153–65.

 7. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human tran‑
scriptome by high‑throughput sequencing. Nat Genet. 2008;40:1413–5.

 8. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA‑Seq. Bioinformatics. 
2009;25:1105–11.

 9. Au KF, Jiang H, Lin L, Xing Y, Wong WH. Detection of splice junctions from paired‑end RNA‑seq data by SpliceMap. 
Nucleic Acids Res. 2010;38:4570–8.

 10. Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM. MapSplice: 
accurate mapping of RNA‑seq reads for splice junction discovery. Nucleic Acids Res. 2010;38:e178–e178.

 11. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast univer‑
sal RNA‑seq aligner. Bioinformatics. 2013;29:15–21.

 12. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph‑based genome alignment and genotyping with HISAT2 and 
HISAT‑genotype. Nat Biotechnol. 2019;37:907–15.

 13. Varabyou A, Salzberg SL, Pertea M. Effects of transcriptional noise on estimates of gene and transcript expression in 
RNA sequencing experiments. Genome Res. 2021;31:301–8.

 14. Pertea M, Lin X, Salzberg SL. GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res. 
2001;29:1185–90.

 15. Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. In: 
Proceedings of the seventh annual international conference on Research in computational molecular biology. 2003. 
p. 322–31.

 16. Dogan RI, Getoor L, Wilbur WJ, Mount SM. SplicePort—an interactive splice‑site analysis tool. Nucleic Acids Res. 
2007;35:W285–91.

 17. Degroeve S, Saeys Y, De Baets B, Rouzé P, Van de Peer Y. SpliceMachine: predicting splice sites from high‑dimensional 
local context representations. Bioinformatics. 2005;21:1332–8.

 18. Sonnenburg S, Schweikert G, Philips P, Behr J, Rätsch G. Accurate splice site prediction using support vector 
machines. In: BMC bioinformatics. BioMed Central. 2007. p. 1–16.

 19. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun 
ACM. 2017;60(6):84–90.

 20. Dai J, Li Y, He K, Sun J. R‑fcn: Object detection via region‑based fully convolutional networks. Proceedings of the 
30th International Conference on Neural Information Processing Systems. 2016. p. 379–87.

 21. Chen L‑C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convo‑
lutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell. 2017;40:834–48.

https://github.com/Kuanhao-Chao/splam
https://pypi.org/project/splam/
https://ccb.jhu.edu/splam/
https://github.com/pybind/pybind11
https://github.com/Kuanhao-Chao/splam-analysis-results
https://doi.org/10.5281/zenodo.12791441
https://doi.org/10.5281/zenodo.10957161


Page 25 of 26Chao et al. Genome Biology          (2024) 25:243  

 22. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: Computer Vision–ECCV 2014: 13th 
European Conference, Zurich, Switzerland, September 6‑12, 2014, Proceedings, Part I 13. Zurich, Switzerland: 
Springer; 2014. p. 818–33.

 23. Jaganathan K, Panagiotopoulou SK, McRae JF, Darbandi SF, Knowles D, Li YI, Kosmicki JA, Arbelaez J, Cui W, Schwartz 
GB. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535‑548 e524.

 24. Wang R, Wang Z, Wang J, Li S. SpliceFinder: ab initio prediction of splice sites using convolutional neural network. 
BMC Bioinformatics. 2019;20:1–13.

 25. Scalzitti N, Kress A, Orhand R, Weber T, Moulinier L, Jeannin‑Girardon A, Collet P, Poch O, Thompson JD. Spliceator: 
Multi‑species splice site prediction using convolutional neural networks. BMC Bioinformatics. 2021;22:1–26.

 26. Zuallaert J, Godin F, Kim M, Soete A, Saeys Y, De Neve W. SpliceRover: interpretable convolutional neural networks 
for improved splice site prediction. Bioinformatics. 2018;34:4180–8.

 27. Zhang Y, Liu X, MacLeod J, Liu J. Discerning novel splice junctions derived from RNA‑seq alignment: a deep learning 
approach. BMC Genomics. 2018;19:1–13.

 28. Ji Y, Zhou Z, Liu H, Davuluri RV. DNABERT: pre‑trained Bidirectional Encoder Representations from Transformers 
model for DNA‑language in genome. Bioinformatics. 2021;37:2112–20.

 29. Dalla‑Torre H, Gonzalez L, Mendoza‑Revilla J, Carranza NL, Grzywaczewski AH, Oteri F, Dallago C, Trop E, Sirelkhatim 
H, Richard G. The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics. 
bioRxiv preprint. 2023. https:// doi. org/ 10. 1101/ 2023. 01. 11. 52367 92023: 2023. 2001.

 30. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. 
Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017. p. 6000–10.

 31. Albaradei S, Magana‑Mora A, Thafar M, Uludag M, Bajic VB, Gojobori T, Essack M, Jankovic BR. Splice2Deep: An 
ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA. Gene. 
2020;763:100035.

 32. Akpokiro V, Martin T, Oluwadare O. EnsembleSplice: ensemble deep learning model for splice site prediction. BMC 
Bioinformatics. 2022;23:413.

 33. Chen K, Zhou Y, Ding M, Wang Y, Ren Z, Yang Y. Self‑supervised learning on millions of pre‑mRNA sequences 
improves sequence‑based RNA splicing prediction. bioRxiv preprint. 2023. https:// doi. org/ 10. 1101/ 2023. 01. 31. 
526427.

 34. Zeng T, Li YI. Predicting RNA splicing from DNA sequence using Pangolin. Genome Biol. 2022;23:103.
 35. Morales J, Pujar S, Loveland JE, Astashyn A, Bennett R, Berry A, Cox E, Davidson C, Ermolaeva O, Farrell CM. A joint 

NCBI and EMBL‑EBI transcript set for clinical genomics and research. Nature. 2022;604:310–5.
 36. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith‑White B, Ako‑Adjei 

D. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. 
Nucleic Acids Res. 2016;44:D733–45.

 37. Varabyou A, Sommer MJ, Erdogdu B, Shinder I, Minkin I, Chao K‑H, Park S, Heinz J, Pockrandt C, Shumate A. CHESS 
3: an improved, comprehensive catalog of human genes and transcripts based on large‑scale expression data, 
phylogenetic analysis, and protein structure. Genome Biol. 2023;24:249.

 38. Pertea M, Pertea GM, Antonescu CM, Chang T‑C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction 
of a transcriptome from RNA‑seq reads. Nat Biotechnol. 2015;33:290–5.

 39. Moore MJ. Intron recognition comes of AGe. Nat Struct Biol. 2000;7:14–6.
 40. Varabyou A, Pertea G, Pockrandt C, Pertea M. TieBrush: an efficient method for aggregating and summarizing 

mapped reads across large datasets. Bioinformatics. 2021;37:3650–1.
 41. Feng Y‑Y, Ramu A, Cotto KC, Skidmore ZL, Kunisaki J, Conrad DF, Lin Y, Chapman WC, Uppaluri R, Govindan R. Reg‑

Tools: Integrated analysis of genomic and transcriptomic data for discovery of splicing variants in cancer. BioRxiv. 
2018;10:436634.

 42. Burset M, Seledtsov IA, Solovyev VV. Analysis of canonical and non‑canonical splice sites in mammalian genomes. 
Nucleic Acids Res. 2000;28:4364–75.

 43. Amaral P, Carbonell‑Sala S, De La Vega FM, Faial T, Frankish A, Gingeras T, Guigo R, Harrow JL, Hatzigeorgiou AG, 
Johnson R. The status of the human gene catalogue. Nature. 2023;622:41–7.

 44. Loughran G, Zhdanov AV, Mikhaylova MS, Rozov FN, Datskevich PN, Kovalchuk SI, Serebryakova MV, Kiniry SJ, Michel 
AM, O’Connor PB. Unusually efficient CUG initiation of an overlapping reading frame in POLG mRNA yields novel 
protein POLGARF. Proc Natl Acad Sci. 2020;117:24936–46.

 45. Pavesi A, Vianelli A, Chirico N, Bao Y, Blinkova O, Belshaw R, Firth A, Karlin D. Overlapping genes and the pro‑
teins they encode differ significantly in their sequence composition from non‑overlapping genes. PLoS ONE. 
2018;13:e0202513.

 46. Sanna CR, Li W‑H, Zhang L. Overlapping genes in the human and mouse genomes. BMC Genomics. 2008;9:169.
 47. Veeramachaneni V, Makalowski W, Galdzicki M, Sood R, Makalowska I. Mammalian overlapping genes: the compara‑

tive perspective. Genome Res. 2004;14:280–6.
 48. Wright BW, Molloy MP, Jaschke PR. Overlapping genes in natural and engineered genomes. Nat Rev Genet. 

2022;23:154–68.
 49. Pertea G, Pertea M. GFF utilities: GffRead and GffCompare. F1000Research. 2020;9:304. https:// doi. org/ 10. 12688/ 

f1000 resea rch. 23297.2.
 50. Kelley DR. Cross‑species regulatory sequence activity prediction. PLoS Comput Biol. 2020;16:e1008050.
 51. Avsec Ž, Agarwal V, Visentin D, Ledsam JR, Grabska‑Barwinska A, Taylor KR, Assael Y, Jumper J, Kohli P, Kelley 

DR. Effective gene expression prediction from sequence by integrating long‑range interactions. Nat Methods. 
2021;18:1196–203.

 52. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Desmaison A, Antiga L, Lerer A. Automatic differentiation 
in pytorch. 2017.

 53. Clevert D‑A, Unterthiner T, Hochreiter S. Fast and accurate deep network learning by exponential linear units (elus). 
arXiv preprint. 2015. https:// doi. org/ 10. 48550/ arXiv. 1511. 07289.

https://doi.org/10.1101/2023.01.11.5236792023:2023.2001
https://doi.org/10.1101/2023.01.31.526427
https://doi.org/10.1101/2023.01.31.526427
https://doi.org/10.12688/f1000research.23297.2
https://doi.org/10.12688/f1000research.23297.2
https://doi.org/10.48550/arXiv.1511.07289


Page 26 of 26Chao et al. Genome Biology          (2024) 25:243 

 54. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2016. p. 770–8.

 55. He K, Sun J. Convolutional neural networks at constrained time cost. In: Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2015. p. 5353–60.

 56. Srivastava RK, Greff K, Schmidhuber J. Highway networks. arXiv preprint. 2015. https:// doi. org/ 10. 48550/ arXiv. 1505. 
00387.

 57. Yu F, Koltun V. Multi‑scale context aggregation by dilated convolutions. 2015. https:// doi. org/ 10. 48550/ arXiv. 1511. 
07122.

 58. Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. In: Proceedings 
of the IEEE conference on computer vision and pattern recognition. 2017. p. 1492–500.

 59. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: Convolutional architec‑
ture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on Multimedia. 2014. p. 
675–8.

 60. gffutils [https:// github. com/ keras‑ team/ keras].
 61. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M. Tensorflow: Large‑

scale machine learning on heterogeneous distributed systems. arXiv preprint. 2016. https:// doi. org/ 10. 48550/ arXiv. 
1603. 04467.

 62. Gibson P, Cano J, Turner J, Crowley EJ, O’Boyle M, Storkey A. Optimizing grouped convolutions on edge devices. In: 
2020 IEEE 31st International Conference on Application‑specific Systems, Architectures and Processors (ASAP). IEEE. 
2020. p. 189–96.

 63. Loshchilov I, Hutter F. Fixing weight decay regularization in adam. 2018.
 64. Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski L, Kyrola A, Tulloch A, Jia Y, He K. Accurate, large minibatch sgd: 

Training imagenet in 1 hour. arXiv preprint. 2017. https:// doi. org/ 10. 48550/ arXiv. 1706. 02677.
 65. Loshchilov I, Hutter F. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint. 2016. https:// doi. org/ 10. 

48550/ arXiv. 1608. 03983.
 66. Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object detection. In: Proceedings of the IEEE interna‑

tional conference on computer vision. 2017. p. 2980–8.
 67. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: A fast and versatile genome align‑

ment system. PLoS Comput Biol. 2018;14:e1005944.
 68. Chao, Kuan‑Hao, Mao, Alan, Salzberg, Steven L., and Pertea, Mihaela. Splam: v1.0.10. Github. 2024. github.com/

Kuanhao‑Chao/splam.
 69. Bonfield JK, Marshall J, Danecek P, Li H, Ohan V, Whitwham A, Keane T, Davies RM. HTSlib: C library for reading/writ‑

ing high‑throughput sequencing data. Gigascience. 2021;10:giab007.
 70. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM. 

Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008.
 71. pybind11 [https:// github. com/ keras‑ team/ keras]
 72. Chao, Kuan‑Hao, Mao, Alan, Salzberg, Steven L., and Pertea, Mihaela. Splam training and testing datasets. 

Github. 2024. github.com/Kuanhao‑Chao/splam‑analysis‑results.
 73. Chao, Kuan‑Hao, Mao, Alan, Salzberg, Steven L., and Pertea, Mihaela. Splam: v1.0.10 Zenodo. 2024. https:// doi. org/ 

10. 5281/ zenodo. 12791 441.
 74. Chao, Kuan‑Hao, Mao, Alan, Salzberg, Steven L., and Pertea, Mihaela. Splam training and testing data‑

sets. 2024. https:// doi. org/ 10. 5281/ zenodo. 10957 161.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.48550/arXiv.1505.00387
https://doi.org/10.48550/arXiv.1505.00387
https://doi.org/10.48550/arXiv.1511.07122
https://doi.org/10.48550/arXiv.1511.07122
https://github.com/keras-team/keras
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.1706.02677
https://doi.org/10.48550/arXiv.1608.03983
https://doi.org/10.48550/arXiv.1608.03983
https://github.com/keras-team/keras
https://doi.org/10.5281/zenodo.12791441
https://doi.org/10.5281/zenodo.12791441
https://doi.org/10.5281/zenodo.10957161

	Splam: a deep-learning-based splice site predictor that improves spliced alignments
	Abstract 
	Background
	Results
	Splam: an accurate splice junction recognition model
	Generalization to other species
	Effect of filtering low-scoring spliced alignments on transcriptome assembly

	Discussion
	Conclusions
	Methods
	Generating high-quality datasets for splice junctions
	Positive dataset creation
	Negative dataset creation
	RNA-seq novel junction dataset creation
	Evaluating the donor and acceptor sites in positive and negative datasets
	Splam input and output data encoding
	Splam model architecture design
	Model training and testing
	Splitting splice junctions into training and testing datasets
	Four test datasets for evaluating Splam
	Splam training hyperparameters
	Paralogs removal in testing dataset
	Testing SpliceAI
	Running Splam on closely related and distant non-human species
	Extracting splice junctions from GFF files as the positive testing dataset
	Creating the negative testing dataset
	Processing splice junctions for Splam and SpliceAI
	Applying Splam to remove spurious spliced alignments
	Sample information of RNA-seq data
	Splam removal procedure workflow overview
	Metrics for intron matching
	Metrics for transcript assembly
	Applying Splam to score introns in annotation files and assembled transcripts
	SpliceAI benchmarking
	Formatting SpliceAI input and output data
	Testing the SpliceAI model
	Executing and speeding up SpliceAI predictions

	Acknowledgements
	References


