
Overlooked poor‑quality patient samples 
in sequencing data impair reproducibility 
of published clinically relevant datasets
Maximilian Sprang1  , Jannik Möllmann1, Miguel A. Andrade‑Navarro1* and Jean‑Fred Fontaine1,2   

Abstract 

Background: Reproducibility is a major concern in biomedical studies, and existing 
publication guidelines do not solve the problem. Batch effects and quality imbalances 
between groups of biological samples are major factors hampering reproducibility. Yet, 
the latter is rarely considered in the scientific literature.

Results: Our analysis uses 40 clinically relevant RNA‑seq datasets to quantify 
the impact of quality imbalance between groups of samples on the reproducibility 
of gene expression studies. High‑quality imbalance is frequent (14 datasets; 35%), 
and hundreds of quality markers are present in more than 50% of the datasets. Enrich‑
ment analysis suggests common stress‑driven effects among the low‑quality samples 
and highlights a complementary role of transcription factors and miRNAs to regulate 
stress response. Preliminary ChIP‑seq results show similar trends. Quality imbalance 
has an impact on the number of differential genes derived by comparing control 
to disease samples (the higher the imbalance, the higher the number of genes), 
on the proportion of quality markers in top differential genes (the higher the imbal‑
ance, the higher the proportion; up to 22%) and on the proportion of known disease 
genes in top differential genes (the higher the imbalance, the lower the proportion). 
We show that removing outliers based on their quality score improves the resulting 
downstream analysis.

Conclusions: Thanks to a stringent selection of well‑designed datasets, we dem‑
onstrate that quality imbalance between groups of samples can significantly 
reduce the relevance of differential genes, consequently reducing reproducibility 
between studies. Appropriate experimental design and analysis methods can substan‑
tially reduce the problem.
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Background
Lack of reproducibility is a major concern in biomedical research, for example in clini-
cal studies, neuroscience, or cancer biology [1–3], and also in other scientific fields such 
as artificial intelligence, drug discovery, or computer science [4–6]. There have been 
already many publications and initiatives to address the problem such as community and 
statistically driven guidelines for publication or data deposition in scientific repositories 
[7–12]. In functional genomics, complex sequencing technologies were instrumental in 
producing an unprecedented amount of data covering a great variety of topics relevant 
to life sciences. Community-derived experimental guidelines [13] and the latest compu-
tational and mathematical methods to produce and analyze results from those technolo-
gies did not solve the reproducibility problem. Gene expression studies based on RNA 
sequencing are a prominent example where reproducibility is limited by factors such as 
batch effect or quality differences between groups of biological samples. Although meth-
ods have been proposed to identify and correct batch effects [14–16], the impact of qual-
ity imbalance (QI) between groups of biological samples or patients is largely ignored in 
the biomedical literature. It is therefore critical to characterize the impact of quality dif-
ferences on gene expression to enable studies that can be successfully reproduced.

Gene-expression analysis of clinical datasets is impacted by various factors such as 
sample extraction conditions [17], experimental protocols [18], batch effects, or non-
homogeneous sample quality [19]. Methods correcting batch effect from the data have 
been used successfully to integrate data from different batches or from independ-
ent datasets although they should be used only when necessary, as they could remove 
biological signals from the data, and do not address the problem of factors highly con-
founded with study design (sample groups being compared) [16, 20]. Unfortunately, 
design-quality problems are rarely considered in published studies and are often difficult 
or impossible to derive from open-access datasets commonly used for testing reproduc-
ibility [19]. Very few studies report comprehensive quality control results necessary to 
evaluate the quality of the samples [21]. Quality metrics are also not perfect and their 
usefulness can be highly specific to the experimental conditions including cell and assay 
types [12]. The poor reporting or documentation of methods, data, and analysis results 
is also a problem for reproducibility [22]. Although it is a common practice to filter out 
mitochondrial and ribosomal genes from gene-expression data [23, 24], this is not always 
possible or desired, for example when studying topics related to mitochondria, respira-
tion, or programmed cell death. In addition, there could be other genes equally related to 
sample quality that should be considered. In statistics, the impact of a confounding fac-
tor not considered, such as the sample quality, is known as the omitted variable bias [25]. 
Depending on the correlation of this factor to the dependent or independent variables, 
it can lead to hide, reverse, strengthen, or weaken an effect under study (e.g., the expres-
sion of a gene as a result of a variable condition). Taken together, given the complexity of 
biomedical experiments and the low reporting standard of the literature, the impact of 
variable sample quality on biomedical results and thus on reproducibility still needs to 
be characterized.

In order to increase our understanding about why reproducibility is low in clini-
cally relevant RNA-seq results, we have studied 40 disease-related datasets. The public 
availability of many published datasets together with recent quality-related research in 
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machine learning gives the opportunity to discover factors of reproducibility at the level 
of gene expression [26]. We studied the impact of quality imbalance on the number of 
differential genes associated with groups of disease and control patients in each data-
set. We also searched if some genes could correlate with sample quality in the datasets. 
Finally, we evaluated the reproducibility potential of differential gene lists derived from 
different datasets depending on quality imbalance and showed preliminary results on 
ChIP-seq data.

Results
In order to better understand the impact of low-quality samples in RNA-seq datasets 
on reproducibility, we have stringently selected 40 publicly available and clinically rel-
evant human datasets comparing disease to control patient samples (Additional file 2: 
Table S1). The stringency of this selection aimed at minimizing potential confounding 
factors that would prevent us from observing the impact of sample quality over gene 
expression. Accordingly, we chose groups of patients that were as homogeneous as pos-
sible within each dataset based on provided clinical information such as age range, gen-
der ratio, and other clinical features when available. We then derived the quality of each 
sample as a probability of being of low quality from an accurate machine learning algo-
rithm [26]. Important to our study was the definition of a quality imbalance (QI) index 
for each dataset which ranges from 0 to 1, where 0 means that quality is not confounded 
with the groups, and 1 means that quality is fully confounded with the groups (see the 
“Methods” section for details).

Dataset quality

From the 40 datasets, our stringent manual selection included a total of 1164 human 
samples. There was an average number of samples equal to 29.1 per dataset ranging from 
8 to 96. Our selection defined two equally sized groups of samples per dataset as dis-
ease and control. Fourteen (35%) datasets had a high QI index above 0.30 (Fig. 1A). Note 
that various statistical methods or tests provide comparable numbers of high-QI data-
sets, ranging from 9 to 15 (Additional file 1). In total, twenty-six diseases were covered 
(Fig. 1B). Eleven (27.5%) datasets had few significant differential genes (n ≤ 50) (Fig. 1E). 
The QI index moderately correlated positively with pair-ended library layout (r = 0.266), 
moderately correlated negatively with 5-year journal impact factors (r =  − 0.272), but 
did not correlate with paired dataset design (r = 0.03). Figure 1C to F gives an overview 
of the library layout of the datasets, as well as whether datasets had paired control and 
disease samples, the number of differentially expressed genes, and the impact factors of 
the journals in which the data were published. We did a similar analysis for ChIP-seq 
data sets and found that 3 out of 10 datasets had a high QI index, indicating that such 
quality imbalance exists in other assays too (Additional file 3: Table S2, Additional file 1: 
Fig. S1; see the “Methods” section for details).

Impact of quality imbalance on differential gene analysis results

Analysis of data subsets of the same size

Working with three of the largest datasets (GSE105130, GSE174330, and GSE54456) 
and the quality probabilities associated with their samples, we built several data subsets 
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based on different selections of patients in the control and disease groups to represent 
low- and high-QIs. In a differential gene analysis, the larger the patient groups, the more 
powerful the statistical tests, and thus the more significant differential genes can be 
found. Therefore, we set the same number of samples (n = 20) to each data subset to 
focus our observations on the impact of QI on the number of differential genes derived 
by comparing the disease and control groups in each subset. The analysis of the subsets 
of the three selected datasets shows a clear linear relationship between QI and the num-
ber of differential genes (R2 = 0.57, 0.43, and 0.44, respectively): the higher the QI, the 
more the differential genes (Fig. 2). For those 3 datasets, an increase of the QI from 0 to 
1 translates into an increase of 1222 differential genes on average (1160, 1720, and 785, 
respectively). This large variability might be due to a synergistic effect between qual-
ity and other confounding factors in some subsets that could have been created by the 

Fig. 1 Quality imbalance of the 40 datasets. Clinically relevant human datasets were selected for patient 
samples’ homogeneity in the comparison groups (control vs disease groups). A quality imbalance (QI) index 
(x‑axis) of each dataset (y‑axis). The QI index is calculated as the absolute correlation coefficient between 
the samples’ probabilities of being of low quality and their groups. If its QI index is above 0.3, a dataset is 
considered highly imbalanced (red bars). If it is less than 0.18, the QI index is considered low (blue bars). The 
number of significant differential genes is given as annotation to the bars. B stacked barplot for the number 
of samples (y‑axis) in each dataset. C number of datasets designed with sample pairing. D number of datasets 
sequenced with either single‑ or paired‑end reads. E distribution of journal impact factors for the published 
articles related to the datasets
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random selection of a limited number of patients per group, although patient character-
istics are comparable between groups when considering full datasets.

Analysis of 40 full datasets of various sizes

The impact of the QI could also be observed on the 40 full datasets with different 
characteristics including other diseases and various numbers of samples (Fig. 3 and 
Additional file  1: Fig. S2). Based on linear regressions, the number of differential 
genes derived using a false discovery rate cutoff (FDR < 0.05) increased four times 

Fig. 2 QI and differential genes in data subsets. For three large datasets (panels) in our study, we randomly 
sampled several smaller subsets (points) of 20 samples each to compare their number of differential genes 
to their respective QI indices in equally sized and sourced datasets (see the “Methods” section for details). This 
simulation allows us to isolate and observe the effect of a quality imbalance on the number of differential 
genes from the effect of any other confounding factors such as particular patient characteristics (e.g., age, 
gender, or ethnic group) or dataset size (number of samples). For each dataset, we can observe a positive 
correlation between the quality imbalance and the number of differential genes of its subsets. Gray areas 
indicate confidence intervals

Fig. 3 Impact of quality imbalance (QI) on the number of differential genes. On the scatter plots, points 
represent datasets colored by quality imbalance status: low (blue; QI index ≤ 0.3) or high (red; QI index > 0.3). 
The plotted datasets have each a minimum of 50 significant differential genes. X‑axis indicates the number 
of samples and y‑axis the number of differential genes in the datasets. Solid blue and red lines show linear 
regression results (confidence interval in gray). On panel A, the number of differential genes was derived by 
using a false discovery rate (FDR) cutoff in the differential analysis, while on panel B this number was derived 
by using both an FDR cutoff and a fold change cutoff. Panel A shows a faster increase of the number of 
differential genes in relation to the number of samples for high QI datasets, while on panel B this difference 
is reduced
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faster with the dataset size for highly imbalanced datasets compared to more bal-
anced datasets (slope = 114 vs 23.8, respectively; Fig.  3A). When removing datasets 
designed with sample pairing from the analysis, we observed a similar difference 
(slope = 108 vs 23.5, respectively; Additional file 1: Fig. S2A). Analyzed separately, a 
smaller number of paired-sample datasets showed a similar trend (Additional file 1: 
Fig. S2C). We could also observe that deriving differential genes using not only an 
FDR cutoff but also a fold-change cutoff decreased the slope for the high-QI datasets 
and consequently considerably reduced the differences (Fig. 3B and Additional file 1: 
Fig. S2B and D).

Recurrence of quality‑associated genes

In order to identify quality-associated genes occurring in several datasets (quality mark-
ers), we analyzed 13 datasets with the lowest QI indices (index ≤ 0.18; only one dataset 
per disease). We considered a gene to be a low- or a high-quality marker if its expression 
significantly correlated with the low- or high-quality of the samples, respectively.

We found a total of 7708 low-quality markers occurring in at least 2 (15%) out of 13 
datasets (Fig. 4A, Table 1 and Additional file 4: Table S3). There were low-quality mark-
ers occurring in up to 10 (77%) datasets. The list of top low-quality markers was sig-
nificantly enriched in targets of 48 transcription factors which could be themselves 
low- (e.g., snrnp70, thap1, psmb5) or high-quality markers (e.g., setd7, fxr1) (Fig. 5A and 
Additional file 5: Table S4). The list was also enriched in various molecular pathways, 
including the expected mitochondria-related pathways (e.g., cell respiration and oxida-
tive phosphorylation) and ribosomal pathways, but also other pathways such as response 
to starvation, response to ultra-violet radiation, housekeeping genes (largely overlap-
ping mitochondrial and ribosomal pathways) and various diseases such as influenza (not 
included in our dataset selection), neuro-degenerative and cancer diseases (Fig. 5C).

Fig. 4 Top 25 markers of quality. A low‑quality marker genes. B high‑quality marker genes. Genes whose 
expression correlates positively or negatively with low sample quality in multiple datasets were considered 
low‑ or high‑quality markers, respectively. Computations were done on 13 datasets with the lowest QI index 
values (QI index < 0.18) and each representing a different disease. Comprehensive gene lists, including more 
low‑quality markers found in 8 datasets and more high‑quality markers found in 6 datasets are provided as 
supplementary material (Additional file 4: Table S3 and Additional file 6: Table S5)
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We found a total of 5243 high-quality markers occurring in at least 2 (15%) out of 13 
datasets (Fig. 4B, Table 1 and Additional file 6: Table S5). There were high-quality mark-
ers occurring in up to 7 (54%) datasets. The list of top high-quality markers was signifi-
cantly enriched in targets of 306 regulators including 280 (91.5%) miRNAs (Fig. 5B and 
Additional file 7: Table S6). There were also 19 (6.2%) transcription factors but they were 
not represented in the top 100 regulators of the gene set enrichment analysis. Some of 
these transcription factors were observed as low- (e.g., kdm7a or tfeb) or high-quality 
markers (e.g., taf9b or znf184). The list was also enriched in various molecular pathways, 
including some diseases (e.g., skin carcinogenesis, bladder cancer, uveal melanoma, dia-
betic nephropathy) and other pathways (e.g., uv response, serum response) (Fig. 5D).

Recurrence of quality‑associated genes in multiple data types

Adapting the approach above, we derived quality marker genes using protein-DNA 
binding data from 10 human ChIP-seq datasets targeting the H3K27ac histone mark. 
When considering only genes that arise in more than 20% of datasets in each data 
type (RNA-seq or ChIP-seq), we see an overlap of low- and high-quality marker genes 
of 438 and 298, respectively (Additional file 8: Table S7 and Additional file 10: S9). For 
the molecular pathways related to those markers in each data type, we see an overlap of 
pathways for low- and high-quality marker genes of 5 and 11, respectively (Additional 
file 9: Table S8 and Additional file 11: S10).

Since in ChIP-seq analysis, mitochondrial genes are blacklisted [27], they cannot be 
found in these overlaps. However, we still find the related pathway for oxidative phos-
phorylation enriched in the ChIP-seq analysis for low-quality markers, and subsequently 
in the overlap with RNA-seq-derived pathways.

Impact of quality on reproducibility

As seen above, quality markers were identified in a substantial proportion of the data-
sets. Considering the lists of significant differentially expressed genes from those 

Table 1 Recurrence of quality makers in selected datasets. Thirteen datasets with low‑quality 
imbalance were used to derive quality marker genes. Genes whose expression correlated positively 
or negatively with low sample quality in at least 2 datasets were defined as low‑quality or high‑
quality markers, respectively

Recurring datasets Low‑quality markers High‑
quality 
markers

2 (15%) 7708 5243

3 (23%) 3443 2405

4 (31%) 1597 951

5 (38%) 724 287

6 (46%) 320 76

7 (54%) 136 15

8 (62%) 51 0

9 (69%) 7 0

10 (77%) 1 0
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datasets, if the quality markers are also found in the lists, they will reduce the reproduc-
ibility between gene-expression studies.

The proportion of quality markers in the top 500 differential genes had a strong lin-
ear relationship with the QI index of the related datasets: the higher the QI index, the 
higher the proportion of quality markers in the differential genes (Fig. 6A). The propor-
tion increased approximately 2 times faster for unpaired datasets than for paired data-
sets This proportion was equal in average to 13% and could represent up to 22% of the 
differential genes (namely, 110 genes out of the top 500 differential genes).

For the same datasets, we also compared the proportion of the top 50 known disease 
genes in the top 500 differential genes to the QI index (Fig. 6B). There was a negative 
linear relationship: the higher the QI index, the lower the proportion of known disease 
genes in the differential genes. The proportion decreased approximately 2 times faster 
for unpaired datasets than for paired datasets. In 10 selected diseases (with more than 

Fig. 5 Gene set enrichment analysis. Database annotations of the low‑ and high‑quality markers were used 
to find related regulators (top regulators in panels A and B, respectively) and pathways (top pathways in 
panels C and D, respectively). In the regulatory enrichment analysis, we found a regulation of low‑quality 
markers by transcription factors (A; n = 50), while high‑quality markers are mostly regulated by miRNAs (B; 
n = 302; 89% miRNAs and 11% transcription factors). In the pathway enrichment analysis, low‑quality markers 
were notably enriched in mitochondria‑related and ribosomal pathways. The pathway enrichment analysis 
for high‑quality markers found various regulators and diseases



Page 9 of 20Sprang et al. Genome Biology          (2024) 25:222  

300 associated disease genes), potential markers for low- and high-quality constitute up 
to 19% and 9% of the 300 top-associated disease genes, respectively (Additional file 12: 
Table  S11). This proportion was significant or marginally significant for high-quality 
markers in half of the diseases (e.g., Alzheimer’s disease, colorectal neoplasms, amyo-
trophic lateral sclerosis) and significant for the low-quality markers in two datasets: 
Parkinson’s disease and amyotrophic lateral sclerosis. Notably, based on the literature 
analysis, quality markers cannot be easily filtered out from lists of disease genes as they 
could be highly ranked as known disease genes (Additional file 1: Fig. S3).

Quality imbalance mitigation

The low- or high-quality information of the samples provided by machine learning was 
used either as a confounding factor in the differential gene analysis or to remove quality 
outlier samples from the datasets before the analysis, to see if it could impact the results 
of the downstream pathways enrichment analysis (Additional file 13: Table S12).

When using the quality information as a confounding factor in the differential gene 
analysis, we could observe a reduction of low-quality marker pathways in the results 
of the downstream gene set enrichment analysis. However, the results did not change 
for most datasets. When using the quality information to filter out outlier samples, we 
observed a strong decrease in low-quality marker pathways for almost all datasets. A 
combination of both methods did not further impact the outcome of the enrichment 
analysis. 

Fig. 6 Quality and disease gene proportions in differential genes. To test the presence of quality markers or 
known disease genes in lists of differentially expressed genes (DEGs), we selected datasets with 50 samples 
or less, with at least 500 differential genes, and about a disease with at least 50 known genes. Only the top 
500 DEGs per dataset and the top 50 known disease genes per disease were used in this analysis. For those 
datasets (black points on the plots), the proportion of potential quality markers (A/left) or known disease 
genes (B/right) in the DEGs on the y‑axis is compared to the dataset QI index on the x‑axis. Sample pairing 
design of the datasets is detailed (paired or unpaired design)
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Discussion
While Next Generation Sequencing has revolutionized biomedical science with an 
unprecedented amount of data and novel clinically relevant applications, reproducibility 
between research results is still limited even in well-designed studies. Although reasons 
for low reproducibility in poorly designed studies may be easily identified (e.g., imbal-
anced sex ratio or large age difference between sample groups), they are not obvious for 
well-designed studies. We hypothesized that differences between the quality of the sam-
ples within a study may bias the results and negatively impact reproducibility. There-
fore, we studied 40 well-designed and clinically relevant datasets in order to evaluate and 
quantify the impact of sample quality differences on significant differential genes (dis-
ease vs control samples). We found that the expression profile of many genes correlated 
with quality, we classified those genes as markers of quality, and we were able to relate 
them to molecular regulators. Finally, we quantified the negative impact of QI between 
sample groups on the relevance of top differential genes.

Although the GEO database has only minimal requirements for standardized meta-
data [28], it is still the largest repository for gene expression datasets and contains 
a great variety of clinically relevant datasets. By exploring the GEO database to find 
RNA-seq datasets, we have seen a large majority of poorly designed datasets and only a 
minority of datasets that could meet our inclusion standards. Patient sample metadata 
was often inconsistently distributed across the three data and information sources con-
sidered (scientific journal article, GEO, and SRA databases) and in different locations 
within each source (main text and supplementary files in journals, web pages, and down-
loaded metadata files in GEO and SRA). Notably, the GEO and SRA web pages often 
contained considerably less information than the corresponding downloaded metadata 
files (GEOSeries and SraRunTable files, respectively). Yet, the metadata was, in general, 
not sufficient to identify common confounding factors such as age and gender. Samples 
metadata could also be provided as summary tables, including age and gender balance in 
percentages within each comparison group but with no possibility to trace the informa-
tion back at the sample level [29–31]. As another example, batch effect or sample pairing 
could be recognized in the journal article, but related information could not be found or 
was unclear to identify the corresponding samples [32–37]. Nevertheless, we used the 
available information to include 40 well-designed datasets according to our criteria. The 
latter were also met thanks to a sub-selection of samples in several datasets to ensure 
homogeneity between the comparison groups (controls vs patient samples with similar 
age ranges and gender ratios). Because good experimental designs minimize the effect 
of common confounders (including batch) [38], we could focus our observations on the 
effect of sample quality on gene expression.

Sample quality was rarely mentioned in the dataset articles or databases and spe-
cific sample-level quality information was provided only for a very few datasets using 
the RNA integrity number [39, 40]. Definitively useful to filter out samples of the low-
est quality, the RNA integrity number is not commonly used for a fine classification 
by quality [41]. This lack of reporting may indicate the low importance experimental-
ists place on further quality-related analyses after data generation. Thanks to a finer 
classification of sample quality using machine learning models, we observed that 35% 
of well-designed gene-expression datasets had a high QI between comparison groups 
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(QI index > 0.3). Importantly, this result derived from 40 independent, well-designed 
datasets free from other confounding factors proves that a substantial proportion of 
the published datasets in the biomedical literature is flawed by quality problems. A 
comparable percentage was found in ChIP-seq experiments. It should be noted that 
when running the analysis with more robust and non-parametric tests like Spearman’s 
correlation and the median-based central tendency difference [42], this ratio stayed 
rather stable at around 30%. Unfortunately, we found many more poorly designed or 
poorly described datasets in the repositories for which additional confounding factors 
such as imbalances in age, gender, weight, or active medication should be considered 
and which we could not include, since they were not stratifiable. Interestingly, there 
was only a moderate negative correlation between QI index and journal impact factor.

The impact of those quality differences between sample groups has been mainly 
overlooked in the literature (Fig.  1). The number of significant differential genes is 
expected to increase with the number of samples (definition of statistical tests), and it 
has been shown that this relation could be linear in gene expression studies [43]. Irre-
spective of the number of samples, we found that QI has a direct impact on the num-
ber of differential genes: the higher the QI, the more the differential genes (Figs.  2 
and 3). Between a perfectly balanced dataset and a perfectly imbalanced dataset, the 
number of differential genes could increase by 1222 genes on average. Selecting dif-
ferential genes using both FDR and fold change cutoffs as done by default in our study 
seems to considerably reduce this difference in comparison to using FDR cutoffs only 
(Fig. 3), confirming a common usage in the literature. These results partly explain the 
difficulty of studies based on current sequencing technologies to derive relevant small 
gene-expression changes.

Thanks to the comparison of gene expression profiles to sample quality across a 
sub-selection of the less quality-imbalanced datasets, we found many markers for low 
or high sample quality that can neither be associated with those diseases nor with 
other common confounding factors (Fig. 4). A number of markers could be identified 
in a large proportion of the studied datasets (up to 77%). We found enrichment of 
(i) targets of transcription factors (e.g., psmb5, gtf2a2) (Fig.  5A) and (ii) mitochon-
dria-related and ribosomal pathways [23, 44] among low-quality markers (Fig.  5C). 
This is consistent with the activation of additional regions of the gene regulatory net-
work in response to stress in low-quality samples [45, 46] and confirms that those 
marker genes are intrinsically linked to quality. Interestingly, the enrichment among 
high-quality markers (genes with lower expression in low-quality samples) indicates 
enrichment of miRNA targets (e.g., mir659, mir142) and targets of various regula-
tors (Fig. 5B and D, respectively). This result could reflect the regulatory role of miR-
NAs activated in the low-quality samples in regulating stress response, cell repair, or 
cell proliferation mechanisms [47–51], resulting in decreased gene expression of par-
ticular genes including various transcription factors in the low-quality samples. Our 
results across datasets and diseases identify molecular regulators (transcription fac-
tors and miRNAs) that are the most sensitive to quality changes. Research fields such 
as System Biology could use this information to calibrate regulatory network models 
which are often sensitive to small changes in their parameters [52].
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Given the high proportion of datasets in the literature that are highly quality 
imbalanced, it is likely that many differential genes are associated with quality rather 
than disease. Indeed, on the one hand, we found that the proportion of quality mark-
ers in the differential gene lists (up to 22%) positively correlated with the QI index 
of the dataset. Many of those recurring genes could also be found to be related to 
QI in ChIP-seq. For example, the ChIP-seq low-quality markers were still enriched 
for the oxidative phosphorylation pathway, despite mitochondrial genes being 
removed from the analysis through blacklists. This suggests, in this context, that 
genes that are related to the mitochondrial environment or mitochondrial pathways 
hold similar information about quality status as the mitochondrial RNA transcripts 
themselves. On the other hand, the proportion of known disease genes negatively 
correlated with the QI index (Fig.  6). Interestingly, those correlations were lower 
for paired-sample datasets. Provided that pairs of samples are not confounded with 
quality differences or batch processing, designing large datasets with sample pairing 
and applying appropriate statistics (paired statistical tests) would be the optimal way 
to maximize the relevance and reproducibility of RNA-seq results. We also found 
that known disease genes derived from the literature could be significantly enriched 
in quality markers (up to 19%). Although it questions the validity of the literature, 
we must note that RNA integrity could be impacted by a disease state, such as in 
some types of cancer [53]. Therefore, some genes could logically be both quality and 
disease markers. However, our analyses highlight the possibility that, even if recur-
rently observed in different experiments in the literature, some genes deemed as dis-
ease markers may actually indicate quality bias. Further investigations paired with 
wet-lab experiments would be required to identify those genes more precisely.

Taken together, we have demonstrated that QI between sample groups impairs 
the reproducibility of clinically relevant RNA-seq results. In the future, it would 
be interesting to reproduce our analyses with many more datasets to test statistical 
associations with additional clinical parameters. We already mentioned an associa-
tion with tumor stage [53] but other parameters may be relevant for other diseases. 
The collection of studied datasets could also contain a more comprehensive selec-
tion of diseases or also non-disease datasets. It included many cancer-like diseases 
that could have influenced some of our results. We tried to minimize such an impact 
by carefully selecting the datasets involved based on the analysis. For example, qual-
ity markers were derived on a subset of the datasets with the lowest QI indices and 
each representing a different disease. It would be also interesting to study other 
sequencing data types such as ATAC-seq or ChIP-seq in more detail. Our prelimi-
nary results show the same proportion of high QI in clinically relevant human ChIP-
seq datasets. Those preliminary results should be further investigated and compared 
to the literature about non-biologically relevant binding sites [27, 54–56]. We could 
also show that removing quality outliers will decrease the number of pathways of 
low-quality marker genes in almost all cases. We suggest using the seqQscorer tool 
as not only a quality control tool, but an additional possibility to search for outliers 
in the data, as these will not always coincide with outliers in PCA-projection [57].
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Conclusions
In conclusion, a difference of quality between sample groups of clinically relevant gene-
expression datasets impairs reproducibility across studies thanks to a compendium of 
genes masking the relevance of true disease genes in statistical results. A large propor-
tion of the published datasets present a substantial imbalance between the quality of the 
sample groups, their results are thus put into question. From individual studies showing 
sample quality as a major confounder in a limited number of experimental conditions 
[57–59], the field of genome-wide data analysis would benefit from studies accurately 
comparing many possible confounders and their impact on gene expression and repro-
ducibility, although the latter is expected to be low for some diseases [59] and some qual-
ity markers would likely be specific to experimental conditions [12]. In this way, we will 
be able to optimize study design, moving away from generic blacklists to more rational 
filters of gene-based results, specific to data type and study.

Methods
All the statistical methods, scripts and software used in this study are described in this 
section.

RNA‑seq datasets

Dataset metadata was derived by gathering information of the following three sources: 
the metadata from the GEO database (Web pages and GEO Series file), the metadata 
from the SRA database which hosts the raw data files (SraRunTable.csv files), and the 
corresponding published article (PubMed Central or publisher’s web site: main arti-
cle and supplementary files if available). Starting from the GEO database, we searched 
those metadata sources to get 40 well-designed, publicly available, and clinically relevant 
RNA-seq datasets with the following criteria:

1. Assay: either single-ended or pair-ended Illumina sequencing technology.
2. Samples: human primary cells or tissues from a disease and its control group. Dupli-

cate samples were not used.
3. Design: At least four samples per group. All samples from a same batch if docu-

mented. Paired or unpaired samples.
4. Sample groups: Samples were selected to balance the age range and gender ratio per 

group. If possible, only samples of the same gender were selected (either male or 
female). If documented, other clinical factors were used to balance the sample groups 
such as the BMI index, ethnicity, or disease-relevant mutations (no mutations if pos-
sible).

If samples were paired and if pairing identifiers were available at the sample level, we 
used the information to run appropriate analysis methods.

Quality imbalance (QI) index and quality marker genes

For RNA-seq or ChIP-seq data, sample quality was evaluated by the seqQscorer machine 
learning tool [26], which returns a probability of low quality per sample: Plow. For each 
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dataset, we first derived a Plow value for each sample. Additional file 14: Table S13 con-
tains the list of all samples and their quality features and low-quality probabilities Plow as 
used and returned by seqQscorer, respectively. Additional file 1: Fig. S7A shows a heat-
map of FastQC’s ordinal output (0 = fail, 1 = warn, 2 = pass) and the mapping metrics of 
Bowtie2 in percent. Additional file 1: Fig. S7B and S7C show the distribution of uniquely 
mapped reads and the sequence duplication levels over bins of  Plow, two of the most rel-
evant features for the classification of the samples by quality. Using these low-quality 
probabilities  Plow, we derived a quality imbalance (QI) index for each dataset to quantify 
how much the sample quality is confounded with the sample group (control or disease). 
The QI index is equal to the absolute value of Pearson’s correlation coefficient between 
Plow values and the sample group numerical codes (0 for control and 1 for disease, or 
the other way around); this is equivalent to a point-biserial correlation usually used for 
correlations of numerical and dichotomous variables [60]. The QI index will be equal 
to 0 if the quality is not confounded with the group, and it will be equal to 1 if the qual-
ity is fully confounded with the group (e.g., all disease samples have lower quality than 
control samples, or vice versa). Additional file 1: Fig. S8 shows exemplary datasets and 
their distribution of samples over Plow. After visual inspection of the sample low-quality 
probabilities within the datasets, a QI index greater than 0.30 was considered high, and a 
QI index less than 0.18 was considered low. Those cutoffs were also defined to create two 
groups of RNA-seq datasets not too small for analytical purposes: there were 18 low-QI 
datasets and 14 high-QI datasets.

With RNA-seq data, quality marker genes are genes whose expression strongly corre-
lates with Plow values independently in multiple datasets. For quality markers, a Pearson’s 
correlation coefficient with an absolute value greater than 0.4 was considered strongly 
correlated. A gene will be a low-quality marker if its expression significantly and posi-
tively correlates with Plow in multiple datasets. A gene will be a high-quality marker if its 
expression significantly and negatively correlates with Plow in multiple datasets.

With ChIP-seq data, quality marker bins are bins whose enrichment values (see defini-
tion below) correlate with Plow values across samples independently in multiple datasets 
(within each dataset, only bins with peaks in at least 3 samples were considered for cor-
relations). For quality marker bins, a Pearson’s correlation coefficient with an absolute 
value greater than 0.3 was considered significant. We used a less stringent cutoff as the 
binning and subsequent annotation of bins to the nearest gene introduces uncertainty in 
the gene-to-quality correlation. A bin will be a low-quality marker bin if its peak enrich-
ment values significantly and positively correlate with Plow in multiple datasets. A bin 
will be a high-quality marker bin if its peak enrichment values significantly and nega-
tively correlate with Plow in multiple datasets.

Alternative metrics to define the QI index

As a first alternative, the QI index of a dataset was defined by the absolute value of 
Spearman’s correlation coefficient between Plow values of the samples and the sample 
group numerical codes (0 for control and 1 for disease, or the other way around). This 
method had the advantage of producing a QI index also ranging from 0 to 1, thus we 
used the same cutoff values to define the low- and high-QI groups of datasets (0.18 
and 0.3, respectively). As a second alternative, the QI index of a dataset was defined by 
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the central tendency difference, CTDiff, as defined by Lötsch and Ultsch [42]. Shortly, 
the CTDiff of a dataset is equal to the absolute difference of the median Plow values of 
the control and the disease groups of samples divided by the expected value of abso-
lute inner differences in the dataset. This metric provides results from 0 but it has no 
upper limit. After manual review, we set the cutoff values to define the low- and high-QI 
groups of datasets to 0.5 and 1, respectively, setting a much more stringent cut-off than 
with the two correlation metrics we used.

Simulated RNA‑seq subsets

To study the impact of quality imbalance in similar experimental conditions, we cre-
ated different subsets of 20 samples from 3 of the largest datasets in our selection 
(GSE105130, GSE174330, and GSE54456). The 3 datasets were selected to have at least 
50 samples each and a broad distribution of Plow values associated with their samples. 
Each subset created was composed of 10 samples in the control group and 10 samples 
in the disease group from the same dataset. The 10 samples of a given group (control or 
disease group) were all randomly selected either from the 15 top-quality samples (low-
est Plow values) or from the 15 bottom-quality samples (highest Plow values) of the same 
group in the source dataset. In a first iteration, for each dataset, we sampled 2 control 
and 2 disease groups of 10 samples each and combined them by pairs to build 4 data 
subsets as follows: bottom-quality control vs bottom-quality disease samples, bottom-
quality control vs top-quality disease samples, top-quality control vs bottom-quality 
disease samples, and top-quality control vs top-quality disease samples. We performed 
then a total of 3 iterations to produce 12 subsets of different QI indices for each source 
dataset. It was not possible to always cover the theoretical range of Plow values from 0 to 
1, as the groups sometimes had an intrinsic QI bias.

Processing and analysis of RNA‑seq data

The RNA-seq data was downloaded from the SRA database (single-ended reads: 10 M 
reads downloaded and 1  M randomly selected for analysis; pair-ended reads: 10  M 
read pairs downloaded and 1  M randomly selected for analysis). Sequencing reads 
were mapped to the transcriptome using Salmon v1.6.0 (index with decoy; quantifi-
cation parameters: –seqBias –gcBias –posBias –reduceGCMemory; transcriptome 
GRCh38.101). Sample quality control was performed using Picard v2.23.6 and Mul-
tiQC v1.9 [61, 62]. Data manipulation was done using Samtools v1.9, seqtk v1.3, bed-
tools v2.29.2 [63–65]. Differential genes were derived using deseq2 v1.22.1 [66]. Except 
if explicitly written, significance was defined at an adjusted p-value < 0.05 and the abso-
lute value of log2 fold change > 1 (p-values adjustment using the Benjamini–Hochberg 
method). Gene set enrichment analysis was done using the function fora from the fgsea 
package v1.20.0 [67] and gene annotations from MsigDB v7.4 [68, 69] and GS2D [70].

Processing and analysis of ChIP‑seq data

We selected 10 human ChIP-seq datasets from the GEO database that were targeting 
the H3K27ac histone mark and had a design containing a healthy group and a disease 
group. The ChIP-seq data was aligned to the genome using bowtie2 v2.3.5 and Samtools 
v1.9 and significant peaks were called using MACS2 v2.2.7 (narrow peak mode; adjusted 
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p-value < 0.05) [71]. Peaks were assigned to genomic bins of length 500 bp with bedtools 
v2.29.2 (function makewindows). Bedtools functions intersect, groupby, and coverage 
were used to count the number of peaks per bin and generate min, max, and mean peak 
enrichment values for each bin.

For the gene set enrichment analysis of the ChIP-seq data, the KEGG subset of canon-
ical pathways included in the MsigDB database version 7.4 was used along with the 
human reference genome hg38 (fgsea function from R package fgsea with parameters 
minSize = 15, maxSize = 500 and scoreType = “pos”).

Mitigating impact of quality imbalances

When using the quality information as confounding factor in the differential gene analy-
sis, we used 1-Plow as a continuous covariate in DESeq2 to give the samples with a higher 
quality the higher covariate value. This should reflect that the low-quality marker genes 
we found were expressed higher in the high Plow samples and the model should weight 
those samples lower.

When using the quality information to filter out outlier samples of a given dataset, 
outlier samples were defined as samples with Plow values beyond 1.5 times the interquar-
tile range above the third quartile or below the first quartile of Plow values within the 
dataset (function is_outlier() from the rstatix package [72]). The impact of those 2 miti-
gation methods was evaluated for each dataset on the lists of pathways from the gene set 
enrichment analysis for the differential genes (differential pathways) and the low-quality 
markers (low-quality pathways). We first calculated the percentage of low-quality path-
ways in the differential pathways when using a mitigation method or not. We compared 
then the mitigation methods only for datasets for which the pathways overlap was at 
least equal to 1 pathway. A mitigation method was deemed to have a positive or a nega-
tive impact if the overlap decreased or increased by at least 15%, respectively.
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