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Abstract 

Deep mutational scanning (DMS) measures the effects of thousands of genetic variants 
in a protein simultaneously. The small sample size renders classical statistical methods 
ineffective. For example, p‑values cannot be correctly calibrated when treating variants 
independently. We propose Rosace, a Bayesian framework for analyzing growth‑
based DMS data. Rosace leverages amino acid position information to increase 
power and control the false discovery rate by sharing information across parameters 
via shrinkage. We also developed Rosette for simulating the distributional proper‑
ties of DMS. We show that Rosace is robust to the violation of model assumptions 
and is more powerful than existing tools.

Background
Understanding how protein function is encoded at the residue level is a central challenge 
in modern protein science. Mutations can cause diseases and drive evolution through 
perturbing protein function in a myriad of ways, such as by altering its conformational 
ensemble and stability or its interaction with ligands and binding partners. In these con-
texts, mutations may result in a loss of function, gain of function, or a neutral phenotype 
(i.e., no discernable effects). Mutations also often exert effects across multiple pheno-
types, and these perturbations can ultimately propagate to alter complex processes in 
cell biology and physiology. Reverse genetics approaches offer a powerful handle for 
researchers to investigate biology via introducing mutations and observing the resulting 
phenotypic changes.

Deep mutational scanning (DMS) is a technique for systematically determining the 
effect of a large library of mutations individually on a phenotype of interest by perform-
ing pooled assays and measuring the relative effects of each variant (Fig. 1A) [1–3]. It has 
improved clinical variant interpretation [4] and provided insights into the biophysical 
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modeling and mechanistic models of genetic variants [5]. Taking enzymes as an example, 
these phenotypes could include catalytic activity [6] or stability [7, 8]. For a transcrip-
tion factor, the phenotype could be DNA binding specificity or transcriptional activity 
[9]. The relevant phenotype for a membrane transporter might be folding and trafficking 
or substrate transport [10]. These phenotypes are often captured by growth-based [7, 
10–16], binding-based [9, 17, 18], or fluorescence-based assays [8, 10, 19]. Those experi-
ments are inherently differently designed and merit separate analysis frameworks. In 
growth-based assays, the relative growth rates of cells are of interest. In a binding-based 
assay, the selection probabilities are of interest. In fluorescence-based assays, changes to 
the distribution of reporter gene expression are measured. In this paper, we focus solely 
on growth-based screens.

In a growth-based DMS experiment, we grow a pool of cells carrying different vari-
ants under a selective pressure linked to gene function. At set intervals, we sequence 
the cells to identify each variant’s frequency in the pool. The change in the frequency 
over the course of the experiment, from initial frequencies to subsequent measure-
ments, serves as a metric of the variant’s functional effects (Fig. 1B). The functional 
score is often computed for each variant in the DMS screen and compared against 
those of synonymous mutations or wild-type cells to display the relative functional 
change of the protein caused by the mutation. Thus, reliable inference of functional 

Fig. 1 Deep mutational scanning and overview of Rosace framework. A Each amino acid of the selected 
protein sequence is mutated to another mutant in deep mutational scanning. B Cells carrying different 
variants are grown in the same pool under selection pressure. At each time point, cells are sequenced 
to output the count table. Replications can be produced either pre‑transfection or post‑transfection. C 
Rosace is an R package that accepts input from the raw sequencing count table and outputs the posterior 
distribution of functional score
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scores is crucial to understanding both individual mutations and at which residue 
location variants tend to have significant functional effects.

The main challenge of functional score inference is that even under the simplest model, 
there are at least two estimators required for each mutation (mean and variance of func-
tional change), and in practice, it is rare to have more than three replicates. As a result, it 
has been posited that under naïve estimators that have been commonly employed, there 
are likely issues with the false discovery rate and the statistical power of detecting muta-
tions that significantly change the function of the protein [20]. Regardless, incorporating 
domain-specific assumptions is required to make inference tractable with few samples 
and thousands of parameters.

To alleviate the small-sample-size inference problem in DMS, four commonly 
used methods have been developed: dms_tools [21], Enrich2 [18], DiMSum [20], and 
EMPIRIC [22]. dms_tools uses Bayesian inference for reliable inference. However, rather 
than giving a score to each variant, dms_tools generates a score for each amino acid 
at each position, assuming linear addition of multiple mutation effects and ignoring 
epistasis coupling. Thus, dms_tools is not directly comparable to other methods and is 
excluded from our benchmarking analysis. Enrich2 simplifies the variance estimator by 
assuming that counts are Poisson-distributed (the variance being equal to the mean) and 
combines the replicates using a random-effect model. DiMSum, however, argues that 
the assumption in Enrich2 is not enough to control type-I error. As a result, DiMSum 
builds upon Enrich2 and includes additional variance terms to model the over-disper-
sion of sequencing counts. However, as presented in Faure et  al. 2020 [20], this ratio-
based method only applies to the DMS screen with one round of selection, while many 
DMS screens have more than two rounds of selection (i.e., sampling at multiple time 
points) [10, 11, 23]. Alternatively, EMPIRIC fits a Bayesian model that infers each vari-
ant separately with non-informative uniform prior to all parameters and thus does not 
shrink the estimates to robustly correct the variance in estimates due to the small sample 
size. Further, the model does not accommodate multiple replicates. In addition, mutscan 
[24], a recently developed R package for DMS analysis, employed two established sta-
tistical models edgeR and limma-voom. However, these two methods were originally 
designed for RNA-seq data and the data generation process for DMS is very different. 
One of the key differences is consistency among replicates. In RNA-seq, gene expression 
is relatively consistent across replicates under the same condition, while in DMS, counts 
of variants can vary much since the a priori representation in the initial variant library 
can be vastly inconsistent among replicates.

While these methods provide reasonable regularization of the score’s variance, addi-
tional information can further improve the prior. One solution is incorporating resi-
due position information. It has been noted that amino acids in particular regions have 
an oversized effect on the protein’s function, and other frameworks have incorporated 
positions for various purposes. In the form of hidden Markov models (HMMs) and 
position-specific scoring matrices (PSSMs), this is the basis for the sensitive detection 
of homology in protein sequences [25]. These results directly imply that variants at the 
same position likely share some similarities in their behavior and thus that incorporat-
ing local information into modeling might produce more robust inferences. However, no 
existing methods have incorporated residue position information into their models yet.
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To overcome these limitations, we present Rosace, the first growth-based DMS 
method that incorporates local positional information to increase inference perfor-
mance. Rosace implements a hierarchical model that parameterizes each variant’s 
effect as a function of the positional effect, thus providing a way to incorporate both 
position-specific information and shrinkage into the model. Additionally, we developed 
Rosette, a simulation framework that attempts to simulate several properties of DMS 
such as bimodality, similarities in behavior across similar substitutions, and the over-
dispersion of counts. Compared to previous simulation frameworks such as the one in 
Enrich2, Rosette uses parameters directly inferred from the specific input experiment 
and generates counts that reflect the true level of noise in the real experiment. We use 
Rosette to simulate several screening modalities and show that our inference method, 
Rosace, exhibits higher power and controls the false discovery rate (FDR) better on 
average than existing methods. Importantly, Rosace and Rosette are not two views 
of the same model—Rosette is based on a set of assumptions that are different from 
or even opposite to those of Rosace. Rosace’s ability to accommodate data generated 
under different assumptions shows its robustness. Finally, we run Rosace on real data-
sets and it shows a much lower FDR than existing methods while maintaining similar 
power on experimentally validated positive controls.

Results
Overview of Rosace framework

Rosace is a Bayesian framework for analyzing growth-based deep mutational scan-
ning data, producing variant-level estimates from sequencing counts. The full (position-
aware) method requires as input the raw sequencing counts and the position labels of 
variants. It outputs the posterior distribution of variants’ functional scores, which can be 
further evaluated to conduct hypothesis testing, plotting, and other downstream analy-
ses (Fig. 1C). If the position label is hard to acquire with heuristics, for example, in the 
case of random multiple-mutation data, position-unaware Rosace model can be run 
without position label input. Rosace is available as an R package. To generate the input 
of Rosace from sequencing reads, we share a Snakemake workflow dubbed Dumpling 
for short-read-based experiments in the GitHub repository described in the “Methods” 
section. Additionally, Rosace supports input count data processed from Enrich2 [18] 
for other protocols such as barcoded sequencing libraries.

Rosace hierarchical model with positional information and score shrinkage

Here, we begin by motivating the use of positional information. Next, we describe the 
intuition of how we use the positional information. Finally, we describe the remaining 
dimensions of shrinkage which assist in robust estimates with few experiment replicates.

A variant is herein defined as the amino acid identity at a position in a protein, where 
that identity may differ from the wild-type sequence. In this context, synonymous, mis-
sense, nonsense, and indel variants are all considered and can be processed by Rosace 
(see the “Methods” section for details). The sequence position of a variant p(v) provides 
information on the functional effects to the protein from the variant. We define the posi-
tion-level functional score φp(v) as the mean functional score of all variants on a given 
position.
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To motivate the use of positional information, we take the posterior distribution of 
the position-level functional score estimated from a real DMS experiment, a cytotox-
icity-based growth screen of a human transporter, OCT1 (Fig. 2A). In this experiment, 
variants with decreased activity are expected to increase in abundance, as they lose the 
ability to import a cytotoxic substrate during selection, and variants with increased 
activity will decrease in abundance similarly. We observe that most position-level score 
estimates φp(v) significantly deviate from the mean, implying that position has mate-
rial idiosyncratic variation and thus carries information about the protein’s functional 
architecture.

To incorporate the positional information into our model, we introduce a position-
specific score φp(v) where p(v) maps variant v to its amino acid position. The variant-spe-
cific score βv is regularized and controlled by the value of φp(v) . To illustrate the point, 
we conceptually categorize position into three types: positively selected ( φp(v) ≫ 0 ), 
(nearly) neutral ( φp(v) ≈ 0 ), and negatively selected ( φp(v) ≪ 0 ) (Fig. 2B). Variants in a 
positively selected position tend to have scores centered around the positive mean esti-
mate of φp(v) , and vice versa for the negatively selected position. Variants in a neutral 
position tend to be statistically non-significant as the region might not be important to 
the measured phenotype.

Regularization of the score’s variance is achieved mainly by sharing information across 
variants within the position and asserting weakly informative priors on the parameters 
(Fig. 2C). Functional scores of the variants within the position are drawn from the same 
set of parameters φp(v) and σp(v) . The error term ǫg(v) in the linear regression on nor-
malized counts is also shared in the mean count group (see the “Methods” section) to 

Fig. 2 Rosace shares information at the same position to inform variant effects. A Smoothed 
position‑specific score (sliding window = 5) across positions from OCT1 cytotoxicity screen. Red dotted lines 
at score = 0 (neutral position). B A conceptual view of the Rosace generative model. Each position has an 
overall effect, from which variant effects are conferred. Note the prior is wide enough to allow effects that 
do not follow the mean. Wild‑type score distribution is assumed to be at 0. C Plate model representation of 
Rosace. See the “Methods” section for the description of parameters
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prevent biased estimation of the error and incorporate mean-variance relationship com-
monly modeled in RNA-seq [26, 27]. Importantly, while we use the position information 
to center the prior, the prior is weak enough to allow variants at a position to deviate 
from the mean. For example, we show that the nonsense variants indeed deviate from 
the positional mean (Additional file 1: Fig. S3). The variant-level intercept bv is given a 
strong prior with a tight distribution centered at 0 to prevent over-fitting.

Rosace performance on various datasets

To test the performance of Rosace, we ran Rosace along with Enrich2, mutscan (both 
limma-voom and edgeR), DiMSum, and simple linear regression (the naïve method) 
on the OCT1 cytotoxicity screen. DiMSum cannot analyze data with three selection 
rounds, so we ran DiMSum with only the first two time points. The data is pre-processed 
with wild-type normalization for all three methods. The analysis is done on all subsets of 
three replicates ( {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}).

While we do not have a set of true negative control variants, we assume most syn-
onymous mutations would not change the phenotype, and thus, we use synonymous 
mutation as a proxy for negative controls. We compute the percentage of significant syn-
onymous mutations called by the hypothesis testing as one representation of the false 
discovery rate (FDR). The variants are ranked based on the hypothesis testing statistics 
from the method (p-value for frequentist methods and local false sign rate [28], or lfsr) 
for Bayesian methods). In an ideal scenario with no noise, the line of ranked variants 
by FDR is flat at 0 and slowly rises after all true variants with effect are called. Rosace 
has a very flat segment among the top 25% of the ranked variants compared to DiM-
Sum, Enrich2, and the naïve method and keeps the FDR lower than mutscan(limma) 
and mutscan(edgeR) until the end (Fig. 3A). Importantly, we note that the Rosace curve 
moves only slightly from 1 replicate to 3 replicates, while the other methods shift more, 
implying that the change in the number of synonymous mutations called is minor for 
Rosace, despite having fewer replicates (Fig. 3A).

Fig. 3 False discovery rate and sensitivity on OCT1 cytotoxicity data. A Percent of synonymous mutations 
called (false discovery rate) versus ranked variants by hypothesis testing. The left panel is from taking the 
mean of analysis of the three individual replicates. Ideally, the line would be flat at 0 until all the variants with 
true effects are discovered. B Number of validated variants called (in total 10) versus number of replicates. If 
only 1 or 2 replicates are used, we iterate through all possible combinations. For example, the three points for 
Rosace on 2 replicates use Replicate {1, 2} , {1, 3} , and {2, 3} respectively. (DiMSum can only process two time 
points, and thus is disadvantaged in experiments such as OCT1)
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While lower FDR may result in lower power in the method, we show that Rosace 
is consistently powerful in detecting the OCT1-positive control variants. Yee  et al. 
[10] conducted lower-throughput radioligand uptake experiments in HEK293T cells 
and validated 10 variants that have a loss-of-function or gain-of-function phenotype. 
We use the number of validated variants to approximate the power of the method. As 
shown in Fig.  3B, Rosace has comparable power to Enrich2, mutscan(limma), and 
mutscan(edgeR) regardless of the number of replicates, while the naïve method is unable 
to detect anything in the case of one replicate. Rosace calls significantly fewer synony-
mous mutations than every other method while maintaining high power, showing that 
Rosace is robust in real data.

In OCT1, loss of function leads to enrichment rather than depletion, which is relatively 
uncommon. To complement findings on OCT1, we conducted a similar analysis on the 
kinase MET data [11] (3 replicates, 3 selection rounds), whose loss of function leads to 
depletion. Applied to this dataset, Rosace and its position-unaware version have com-
parable power to Enrich2, mutscan(limma), and mutscan(edgeR) with any number of 
replicates used, and the naïve method remains less powerful than other methods, espe-
cially with one replicate only. Consistent with OCT1, Rosace again calls fewer synony-
mous mutations and better controls the false discovery rate. The results are visualized in 
the Supplementary Figures (Additional file 1: Figs. S12-15).

To test Rosace performance on diverse datasets, we also ran all methods on the 
CARD11 data [14] (5 replicates, 1 selection round), the MSH2 data [12] (3 replicates, 
1 selection round), the BRCA1 data [13] (2 replicates, 2 selection rounds), and the 
BRCA1-RING data [23] (6 replicates, 5 selection rounds) (Table S1). In addition to those 
human protein datasets, we also applied Rosace to a bacterial protein, Cohesin [29] 
(1 replicate, 1 selection round) (Table S1). We use the pathogenic and benign variants 
in ClinVar [30], EVE [31], and AlphaMissense [32] to provide a proxy of positive and 
negative control variants. Rosace consistently shows high sensitivity in detecting the 
positive control variants in all three datasets while controlling the false discovery rate 
(Additional file 1: Figs. S5-S11). Noting that the number of clinically verified variants is 
limited and those identified in the prediction models usually have extreme effects, we do 
not observe a large difference between the methods’ performance.

To alleviate a potential concern that the position-level shrinkage given by Rosace is 
too large, we plot the functional scores calculated by Rosace against those by Enrich2 
across several DMS datasets (Additional file 1: Figs. S2-4). We find that the synonymous 
variants’ functional scores are similar in magnitude to those of other variants, so syn-
onymous variants are not shrunken too strongly to zero. We also find that stop codon 
and indel variants have consistently significant effect scores, implying that position-level 
shrinkage is not so strong that those variants’ effects are neutralized. This result implies 
that the position prior benefits the model mainly through a more stable standard error 
estimate enabling improved prioritization as a function of local false sign rate or other 
posterior ranking criteria that are a function of the variance.

Rosette: DMS data simulation which matches marginal distributions from real DMS data

To further benchmark the performance of Rosace and other related methods, we pro-
pose a new simulation framework called Rosette, which generates DMS data using 
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parameters directly inferred from the real experiment to gain the flexibility of mimicking 
the overall structure of most growth-based DMS screen data (Fig. 4A).

Intuitively, if we construct a simulation that closely follows the assumptions of our 
model, our model should have outstanding performance. To facilitate a fair comparison 
with other methods, the simulation presented here is not aligned with the assumptions 
made in Rosace. In fact, the central assumption that variant position carries informa-
tion is violated by construction to showcase the robustness of Rosace.

To re-clarify the terminology used throughout this paper, “mutant” refers to the substi-
tution, insertion, or deletion of amino acids. A position-mutant pair is considered a vari-
ant. Mutants are categorized into mutant groups with hierarchical clustering schemes or 
predefined criteria (our model uses the former that are expected to align with the bio-
physical properties of amino acids). Variants are grouped in two ways: (1) by their func-
tional change to the protein, namely neutral, loss-of-function (LOF), or gain-of-function 
(GOF), referred to as “variant groups,” and (2) by the mean of the raw sequencing counts 
across replicates, referred to as “variant mean groups.”
Rosette calculates two summary statistics from the raw sequencing counts (disper-

sion of the sequencing count η and dispersion of the variant library η0 ) (Fig.  4D) and 
three others from the score estimates (the proportion of each mutant group p , the 
functional score’s distribution of each variant group θ , and the weight of each variant 
group α ) (Fig. 4E). Since we are only learning the distribution of the scores instead of the 

Fig. 4 Rosette simulation framework preserves the overall structure of growth‑based DMS screens. The 
plots show the result of using OCT1 data as input. A Rosette generates summary statistics from real data 
and simulates the sequencing count. B Generative model for Rosette simulation. C The distribution of real 
and predicted functional scores is similar. D, E Five summary statistics are needed for Rosette 
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functional characteristics of individual variants, the score estimates can be naïve (e.g., 
simple linear regression) or more complicated (e.g., Rosace).

The dispersion of the sequencing counts η measures how much variability in variant 
representation there is in the entire experimental procedure, during both cell culture 
and sequencing. When η goes to infinity, it means that the sequencing count is almost 
the same as the expected true cell count (no over-dispersion). When η is small, it shows 
an over-dispersion of the sequencing count. In an ideal experiment with no over-disper-
sion, the proportion of synonymous mutations should be invariant to time due to the 
absence of functional changes. However, from the real data, we have observed a large 
variability of proportion changes within the synonymous mutations at different selec-
tion rounds, which is attributed to over-dispersion and cannot be explained by a simple 
multinomial distribution in existing simulation frameworks (Additional file 1: Fig. S1). 
Indeed, all methods, including the naïve method, achieve near-perfect performance in 
the Enrich2 simulations with a correlation score greater than 0.99 (Additional file 1: Fig. 
S27). Therefore, we choose to model the sequencing step with a Dirichlet-Multinomial 
distribution that includes η as the dispersion parameter.

The dispersion of variant library η0 measures how much variability already exists in 
variant representation before the cell selection. Theoretically, each variant would have 
around the same number of cells at the initial time point. However, due to the imbalance 
during the variant library generation process and the cell culture of the initial popula-
tion that might already be under selection, we sometimes see a wide dispersion of counts 
across variants. To estimate this dispersion, we fit a Dirichlet-Multinomial distribution 
under the assumption that the variants in the cell pool at the initial time point should 
have equal proportions.

The distribution and the structure of the underlying true functional score across vari-
ants are controlled by the rest of the summary statistics. We make a few assumptions 
here. First, the functional score distribution of mutants across positions (or a row in the 
heatmap (Fig. 4A)) is different, but within the mutant group, the mutants are independ-
ent and identically distributed (or exchangeable). We estimate the mutant group by hier-
archical clustering with distance defined by empirical Jenson-Shannon Divergence and 
record its proportion p̂ . Second, each variant belongs to the neutral hypothesis (score 
close to 0, similar to synonymous mutations) or the alternative hypothesis (away from 
0, different from synonymous mutations). The number of the variant group can be 1–3 
(neutral, GOF, and LOF) based on the number of modes in the marginal functional 
score distribution, and the variants within a variant group are exchangeable. We esti-
mate the borderline of the variant group by Gaussian mixture clustering and fit the dis-
tribution parameter θ̂ . Finally, we assume that the positions are independent. While this 
is a simplifying assumption, to consider the relationship between positions, we would 
need to incorporate additional assumptions about the functional region of the protein. 
As a result, we treat the positions as exchangeable and model the proportion of vari-
ant group identity (neutral, GOF, LOF) in each mutant group by a Dirichlet distribution 
with parameter α̂.

To simulate the sequencing count from the summary statistics, we use a generative 
model that mimics the experiment process and is completely different from the Rosace 
inference model for fair benchmarking. We first draw the functional score of each 
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variant βv from the structure described in the summary statistics and the ones in the 
neutral group are set to be 0. Then, we map the functional score to its latent functional 
parameters: the cell growth rate in the growth screen. Next, we generate the cell count at 
a particular time point Nv,t,r by the cell count at the previous time point Nv,t−1,r and the 
latent functional parameters. Finally, the sequencing count is generated from a Dirichlet-
Multinomial distribution with the summarized dispersion parameter and the cell count.

The simulation result shows that the simulated functional score distribution is com-
parable to the real experimental data (Fig.  4C). We also demonstrate that the simula-
tion is not particularly favorable to models containing positional information such as 
Rosace. From Fig. 4E, we observe that in the simulation, the positional-level score is 
not as widespread as the real data. In addition, the positions with extreme scores (very 
positive scores in the OCT1 dataset) have reduced standard deviation in the real data, 
but not in the simulation (Additional file 1: Figs. S18d, S19d, S20d). As a result, we would 
expect the performance of Rosace to be better in real data than in the simulation.

Testing Rosace false discovery control with Rosette simulation

To test the performance of Rosace, we generate simulated data using Rosette from 
two distinctive growth-based assays: the transporter OCT1 data where LOF variants 
are positively selected [10] and the kinase MET data where LOF variants are negatively 
selected [11]. We further included the result of a saturation genome editing dataset 
CARD11 [14] in Additional file  1: Figs. S17-23. The OCT1 DMS screen measures the 
impact of variants on cytotoxic drug SM73 uptake mediated by the transporter OCT1. 
If a mutation causes the transporter protein to have decreased activity, the cells in the 
pool will import less substrate and thus die more slowly than wide-type or those with 
synonymous mutations, so the LOF variants would be positively selected. In the MET 
DMS screen, the kinase drives proliferation and cell growth in the BA/F3 mammalian 
cell line in the absence of IL-3 (interleukin-3) withdrawal. If the variant protein fails to 
function, the cells will die faster than the wild-type cells, so the LOF variants will be 
negatively selected. Both data sets have a clear separation of two modes in the functional 
score distribution (neutral and LOF) (Additional file 1: Figs. S18a, S19a). We benchmark 
Rosace with Enrich2, mutscan(edgeR), mutscan(limma), and the naïve method in sce-
narios where we use 1 or all 3 of replicates and 1 or all 3 of selection rounds. DiMSum 
is benchmarked when there is only one round of selection because it is not designed to 
handle multiple rounds. Each scenario is repeated 10 times. The results of all methods 
show similar correlations with the latent growth rates (Additional file 1: Fig. S21), and 
thus, for benchmarking purposes, we focus on hypothesis testing.

We compare methods from a variant ranking point of view, comparing methods in 
terms of the number of false discoveries for any given number of variants selected to be 
LOF. This is because Rosace is a Bayesian framework that uses lfsr instead of p-values 
as the metric for variant selection and it is hard to translate lfsr to FDR for a hard thresh-
old. Variants are ranked by adjusted p-values or lfsr (ascending). Methods that perform 
well will rank the truly LOF variants in the simulation ahead of non-LOF variants. In an 
ideal scenario with no noise, we would expect the line of ranked variants by FDR to be 
flat at 0 and slowly rise after all LOF variants are called. The results in Fig. 5 show that 
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even though the position assumption is violated in the Rosette simulation, Rosace is 
robust enough to maintain a relatively low FDR in all simulation conditions.

Testing Rosace power with Rosette simulation

Next, we investigate the sensitivity of benchmarking methods at different FDR or lfsr 
cutoff. It is important to keep in mind that Rosace uses raw lfsr from the sampling 
result while all other methods use the Benjamini-Hochberg Procedure to control the 
false discovery rate. As a result, the cutoff for Rosace is on a different scale.
Rosace is the only method that displays high sensitivity in all conditions with a low 

false discovery rate. In the case of one selection round and three replicates ( T = 1 and 
R = 3 ), mutscan(edgeR) and mutscan(limma) do not have the power to detect any sig-
nificant variants with the FDR threshold at 0.1. The same scenario occurs with DiMSum 
at negative selection and the naïve method at T = 3 and R = 1 (Fig. 6). The naïve method 
in general has very low power, while Enrich2 has a very inflated FDR.

We benchmark Rosace on both Rosette simulations, which inherently violate 
the position assumption, and a modified version of Rosette that favors the position-
informed model. We show that model misspecification does increase the false discovery 
rate of Rosace, but Rosace is robust enough to outperform all other methods (except 
for DiMSum with T = 1 and R = 3 and positive selection) even when the position 
assumption is strongly violated (Fig. 6).

Discussion
One of Rosace’s contributions is accounting for positional information in DMS analy-
sis. The model assumes the prior information that variants on the same position have 
similar functional effects, resulting in higher sensitivity and better FDR. Furthermore, 

Fig. 5 Benchmark of false discovery control on Rosette simulation. Variants are ranked by hypothesis 
testing (adjusted p‑values or lfsr). The false discovery rate at each rank is computed as the proportion of 
neutral variants assuming all the variants till the rank cutoff are called significant. R is the number of replicates 
and T is the number of selection rounds. MET data is used for negative selection and OCT1 data for positive 
selection. Ideally, the line would be flat at 0 until the rank where all variants with true effects are discovered. 
(DiMSum can only process two time points and thus is disadvantaged in experiments with more than two 
time points, or one selection round)
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Rosace is also capable of incorporating other types of prior information on the similar-
ity of variants.

Despite the value of positional information in statistical inference as demonstrated in 
this paper, it is unclear how multiple random mutations should be position-labeled. In 
this case, simple position heuristics are often unsatisfying, and one might argue that a 
position scalar should not cluster the variants in random mutagenesis experiments with 
large-scale in-frame insertion and deletion, such as those on viruses. These types of 
experiments are not the focus of this paper, but are still very important and require care-
ful future research.

Another critique of Rosace is the extent of bias we introduce into the score inference 
through position-prior information. While it is certainly possible to introduce a large 
bias, Rosace was developed to be a robust model ensuring near-unbiased inference 
or prediction even when assumptions are not precisely complied with or even violated. 
We demonstrate the robustness of Rosace through our data simulation framework, 
Rosette. The generative procedures of Rosette explicitly violate the prior assump-
tions made by Rosace, but even with Rosette’s data, Rosace can learn important 
information. We also show that the position-level shrinkage is not strong using real data, 
further manifesting the robustness of Rosace.

The development of DMS simulation frameworks such as Rosette can also drive 
experimental design. For example, to select the best number of time points and repli-
cates with regard to the trade-off between statistical robustness and costs of the experi-
ment, an experimentalist can conduct a pilot experiment and use its data to infer 
summary statistics through Rosette. Rosette will then generate simulations close to 
a real experiment. Experimentalists can find the optimal tool for data analysis given an 
experimental design by applying candidate tools to the simulation data. Similarly, given a 
data analysis framework, experimentalists can choose from multiple experiment designs 

Fig. 6 Benchmark of sensitivity versus FDR. The upper row is simulated from a modified version of Rosette 
simulation to favor position‑informed models. The bottom row is the results from standard Rosette. 
Circles, triangles, squares, and crosses represent LOF variant selection at adjusted p‑values or lfsr of 0.001, 
0.01, 0.05, and 0.10, respectively. Variants with the opposite sign of selection are then excluded. Ideally, for all 
methods besides Rosace, each symbol would lie directly above the corresponding symbol on the x‑axis 
indicating true FDR. For Rosace, lfsr has no direct translation to FDR so the cutoff represented by the shape 
is theoretically on a different scale. (DiMSum can only process two time points, and thus is disadvantaged in 
experiments with more than two time points, or one selection round)
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by using Rosace to simulate all those experiments and observe if any designs have 
enough power to detect most of the LOF or GOF variants with a low false discovery rate.

This paper only applies our tool to growth screens, one of several functional phenotyp-
ing methods possible by DMS techniques. Another possibility is the binding experiment, 
where a portion of cells are selected at each time point. In this case, the expectation of 
functional scores computed by Rosace is a log transformation of the variant’s selec-
tion proportion [18], and one could potentially use Rosace for DMS analysis as in 
Enrich2. The third method is fluorescently activated cell sorting (FACS-seq)—a branch 
of literature uses binned FACS-seq screens to sort the variant libraries based on pro-
tein phenotypes. Since the experiment has multiple bins, one can potentially capture 
the distributional change of molecular properties beyond mean shifting [8, 10, 19, 33]. 
Although of different design, FACS-seq-based screens can also be analyzed using a 
framework similar to Rosace. Building such frameworks incorporating prior informa-
tion for experiments beyond growth screens enables the community to exploit a wider 
range of experimental data.

As the function of a protein is rarely one-dimensional, one can measure multiple phe-
notypes of a variant in a set of experiments [10, 16, 34]. For example, the OCT1 data 
mentioned earlier [10] measures both the transporter surface expression from a FACS-
seq screen and drug cytotoxicity with a growth screen. Multi-phenotype DMS experi-
ments also call for analysis frameworks to accommodate multidimensional outcomes by 
modeling the interaction or the correlation of phenotypes of each variant. One successful 
attempt models the causal biophysical mechanism of protein folding and binding [35], 
and there are many more protein properties other than those two. A unifying frame-
work for the multi-phenotype analysis remains unsolved and challenging. One needs 
to account for different experimental designs to directly compare scores between phe-
notypes, and carefully select inferred features most relevant to the scientific questions, 
requiring both efforts from the experimental and computational side. Nevertheless, 
we believe that the multi-phenotype analysis will eventually guide us to develop better 
mechanistic or probabilistic models for how mutations drive proteins in evolution, how 
they lead to malfunction and diseases, and how to better engineer new proteins.

Conclusions
We present Rosace, a Bayesian framework for analyzing growth-based deep mutational 
scanning data. In addition, we develop Rosette, a simulation framework that recapitu-
lates the properties of actual DMS experiments, but relies on an orthogonal data genera-
tion process from Rosace. From both simulation and real data analysis, we show that 
Rosace has better FDR control and higher sensitivity compared to existing methods 
and that it provides reliable estimates for downstream analyses.

Methods
Pipeline: raw read to sequencing count

To facilitate the broader adoption of the Rosace framework for DMS experiments, 
we have developed a sequencing pipeline for short-read-based experiments using 
Snakemake which we dub Dumpling [36]. This pipeline handles directly sequenced 
single-variant libraries containing synonymous, missense, nonsense, and multi-length 
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indel mutations, going from raw reads to final scores and quality control metrics. Raw 
sequencing data in the form of fastq files is first obtained as demultiplexed paired-end 
files. The user then defines the experimental architecture using a csv file defining the 
conditions, replicates, and time points corresponding to each file, which is parsed along 
with a configuration file. The reads are processed for quality and contaminants using 
BBDuk, and then the paired reads are error-corrected using BBMerge. The cleaned reads 
are then mapped onto the reference sequence using BBMap [37]. Variants in the result-
ing SAM file are called and counted using the AnalyzeSaturationMutagenesis tool in 
GATK v4 [38]. This tool provides a direct count of the number of times each distinct 
genotype is detected in an experiment. We generate various QC metrics throughout the 
process and combine them using MultiQC for an easy-to-read final overview [39].

Due to the degeneracy of indel alignments, the genotyping of codon-level deletions 
sometimes does not hew to the reading frame due to leftwise alignment. Additionally, 
due to errors in oligo synthesis, assembly, during in vivo passaging or during sequenc-
ing, some genotypes that were not designed as part of the library may be introduced. A 
fundamental assumption of DMS is the independence of individual variants, and so to 
reduce noise and eliminate error, our pipeline removes those that were not part of our 
planned design before analysis, as well as renames variants to be consistent at the amino 
acid level, before exporting the variant counts in a format for Rosace.

Pre‑processing of sequencing count

In a growth DMS screen with V variants, we define v to be the variant index. A function 
p(v) maps the variant v to its position label. T indicates the number of selection rounds 
and index t is an integer ranging from 0 to T. A total of R replicates are measured, with r 
as the replicate index. We denote cv,t,r the raw sequencing count of cells with variant v at 
time point t in replicate r.

In addition, “mutant” refers to substitution with one of the 20 amino acids, insertion 
of an amino acid, or deletion. Thus, a variant is uniquely identified by its mutant and the 
position where the mutant occurs (p(v)).

The default pre-processing pipeline of Rosace includes four steps: variant filtering, 
count imputation, count normalization, and replicate integration. First, variants with 
more than 50% of missing count data are filtered out in each replicate. Then, variants 
with a few missing data (less than 50%) are imputed using either the K-nearest neighbor 
averaging (K = 10) or filled with 0. Next, imputed raw counts are log-transformed with 
added pseudo-count 1/2 and normalized by the wild-type cells or the sum of sequencing 
counts for synonymous mutations. This step, which is proposed by Enrich2, allows for 
the computed functional score of wild-type cells to be approximately 0. Additionally, the 
counts for each variant before selection are aligned to be 0 for simple prior specification 
of the intercept.

Previous papers suggest the usage of other methods such as total-count normalization 
when the wild-type is incorrectly estimated or subject to high levels of error [18, 20]. We 
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include this in Rosace as an option. Finally, replicates in the same experiment are joined 
together for the input of the hierarchical model. If a variant is dropped out in some but 
not all replicates, Rosace imputes the missing replicate data with the mean of the other 
replicates.

Rosace: hierarchical model and functional score inference

Rosace assumes that the aligned counts are generated by the following time-dependent 
linear function. Let βv be the defined functional score or slope, bv be the intercept, and ǫg(v) 
be the error term. The core of Rosace is a linear regression:

where g(v) maps the variant v to its mean group—the grouping method will be explained 
below.

p(v) is the function that maps a variant v to its amino acid position. If the information 
of variants’ mutation types is given, Rosace will assign synonymous variants to many 
artificial “control” positions. The number of synonymous variants per control position is 
determined by the maximum number of non-synonymous variants per position. Assigning 
synonymous variants to control positions incorporates the extra information while not giv-
ing too strong a shrinkage to synonymous variants (Additional file 1: Figs. S2-S4). In addi-
tion, we regroup positions with fewer than 10 variants together to avoid having too few 
variants in a position. For example, if the DMS screen has fewer than 10 mutants per posi-
tion, adjacent positions will be grouped to form one position label. Also, the position of a 
continuous indel variant is labeled as a mutation of the leftmost amino acid residue (e.g., an 
insertion between positions 99 and 100 is labeled as position 99 and a deletion of positions 
100 through 110 is labeled as position 100).

We assume that the variants at the same position are more likely to share similar func-
tional effects. Thus, we build the layer above βv using position-level parameters φp(v) and 
σp(v).

The mean and precision parameters are given a weakly informative normal prior and var-
iance parameters are given weakly informative inverse-gamma distribution.

We further cluster the variant into mean groups of 25 based on its value of mean count 
across time points and replicates. The mapping between the variant and its mean group 
is denoted as g(v). Thus, we model the mean-variance relationship by assuming variants 
with a lower mean are expected to have higher error terms in the linear regression and vice 
versa.

(2)mv,t,r |βv , bv , ǫ
2
g(v) ∼ Normal
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(5)ǫ2g(v) ∼ InvGamma(1, 1)
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Stan [40] is used in Rosace for Bayesian inference over our model. We use the default 
inference method, the No-U-Turn sampler (NUTS), a variant of the Hamiltonian Monte 
Carlo (HMC) algorithm. Compared to other widely used Monte Carlo samplers, for 
example, the Metropolis-Hastings algorithm, HMC has reduced correlation between 
successive samples, resulting in fewer samples reaching a similar level of accuracy [41]. 
NUTS further improves HMC by automatically determining the number of steps in each 
iteration of HMC sampling to more efficiently sample from the posterior [42].

The lower bound of the number of mutants per position index |{v|p(v) = i}| (10) and 
the size of the variant’s mean group gp (25) can be changed.

Rosette: the OCT1 and MET datasets

We use the following datasets as input of the Rosette simulation: the OCT1 dataset 
by Yee et al. [10] as an example of positive selection and the MET dataset by Estevam 
et al. [11] as an example of negative selection. Specifically, we use replicate 2 of the cyto-
toxicity selection screen in the OCT1 dataset for both score distribution and raw count 
dispersion. For the MET dataset, we select the experiment with IL-3 withdrawal under 
wild-type genetic background (without exon 14 skipping). Raw counts are extracted 
from replicate 1 but the scores are calculated from all three replicates because of the fre-
quent dropouts at the initial time point.

The sequencing reads and the resulting sequencing counts are processed in the default 
pipeline described in the previous method sections. Scores are then computed using 
simple linear regression (the naïve method). The naïve method is used as the Rosette 
input because we are trying to learn the global distribution of the scores instead of iden-
tifying individual variants and, while uncalibrated, naïve estimates are unbiased.

Rosette: summary statistics from real data

Summary statistics inferred by Rosette can be categorized into two types: one for the 
dispersion of sequencing counts and the other for the dispersion of score distribution.

First, we estimate dispersion η in the sequencing count. We assume the sequencing 
count at time point 0 reflects the true variant library before selection. Since the func-
tional scores of synonymous variants are approximately 0, the proportion of synony-
mous mutations in the population should approximately be the same after selection. Let 
the set of indices of synonymous mutations be vs = {vs1, vs2, . . . } . The count of each syn-
onymous mutation at time point t is cvs ,t = (cvs1,t , cvs2,t , . . . ) . The model we use to fit η is 
thus

from which we find the maximum likelihood estimation η̂.
Dispersion of the initial variant library η0 is estimated similarly by fitting a Dirichlet-

Multinomial distribution on the sequencing counts of the initial time point assuming 
that in an ideal experiment, the proportion of each variant in the library should be the 
same. Similar to above, the indices of all mutations are v = {1, 2, . . . ,V } , and the count 
of each mutation at time point 0 is cv,0 = (c1,0, c2,0, . . . , cV ,0) . From the following model

(6)cvs ,t ∼ DirMultinomial
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we can again find the maximum likelihood of the variant library dispersion η̂0 . Notice 
that η̂0 is usually much smaller than η̂ (i.e. more overdispersed) because η̂0 contains both 
the dispersion of the variant library as well as the sequencing step.

To characterize the distribution of functional scores, we first cluster mutants into 
groups, as mutants often have different properties and exert different influences on 
protein function. We calculate the empirical Jensen-Shannon divergence (JSD) to 
measure the distance between two mutants, using bins of 0.1 to find the empirical 
probability density function. Ideally, a clustering scheme should produce a grouping 
that reflects the inherent properties of an amino acid that are independent of posi-
tion. Thus, we are more concerned with the general shape of the distribution than 
the similarity between paired observations. It leads to our preference for JSD over 
Euclidean distance as the clustering metric. To cluster mutants into four mutant 
groups gm = {1, 2, 3, 4} , we use hierarchical clustering (“hclust” function with com-
plete linkage method in R), and we record the proportions p̂ to simulate any number 
of mutants in the simulation (the number of mutant groups can also be changed). The 
underlying assumption is that mutants in each mutant group are very similar and can 
be treated as interchangeable. We define f1(v) as the function that maps a variant to 
its corresponding mutant group gm.

Then, we cluster the variants into different variant groups. In the case of our examples, 
the shape is not unimodal but bimodal. The OCT1 screen has a LOF mode on the right 
(positive selection) and the MET screen has a LOF mode on the left (negative selection). 
While it is possible to observe both GOF and LOF variants, we observed in our datasets 
that GOF variants are so rare that they do not constitute a mode on the mixed distribu-
tion, resulting in a bimodal distribution. To cluster the non-synonymous variants into 
groups gv , we use the Gaussian Mixture model with two mixtures for our examples to 
decide the cutoff of the groups, and we fit the Gaussian distribution for each variant 
group again to learn the parameters of the distribution. The synonymous variants have 
their own group labeled as control. Let f2(v) denote the function that maps a variant to 
its corresponding variant group gv . The result of the simulation shows that even the syn-
onymous mutations with scores close to 0 can have large negative effects due to random 
dropout. Thus, we later set the effect of the control and the neutral group to be constant 
0 and still observe a similar distribution as seen in the real data. For each variant, we 
have one of the models below, depending on whether the variant results in LOF or has 
no effects:

We use θ̂  to denote the collection of estimated distributional parameters for all variant 
groups.

Finally, we define the number of variants in each variant group at each position
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For each position p, we can thus find the count of variants belonging to any mutant-var-
iant group op ∈ N

�gm��gv� . Treating each position as an observation, we fit a Dirichlet dis-
tribution to characterize the distribution of variant group identities among mutants at any 
position:

The final summary statistics are η̂ , η̂0 , p̂ , θ̂ , and α̂ . We also need T, the number of selection 
rounds, to map βv into the latent functional parameter µv in growth screens.

Rosette: data generative model

We simulate as the real experiment the same number of mutants M, the number of posi-
tions P, and the number of variants V ( M × P ). The important hyperparameters that need 
to be specified are the average number of reads per variant D (100, also referred to as the 
sequencing depth), initial cell population count P0 (200V), and wild-type doubling rate δ 
between time points ( −2 or 2). One also needs to specify the number of replicates R and 
selection rounds T.

The simulation largely consists of two major steps: (1) generating latent growth rates µv 
and (2) generating cell counts Nv,t,r and sequencing counts cv,t,r.

In step 1, the mutant group and variant group labeling of each variant is first generated. 
Specifically, we assign a mutant to the mutant group gm by the proportion p̂ and then assign 
a variant to the variant group gv by drawing op from Dirichlet distribution with parameter 
α̂ (Eq. 10). Using θ̂ , we randomly generate βv for each variant based on its gv (Eq. 8). The 
mapping between βv and µv requires an understanding of the generative model, so it will be 
defined after we present the cell growth model.

In step 2, the starting cell population Nv,r,0 is drawn from a Dirichlet-Multinomial distri-
bution using η̂0 and we assume that replicates are biological replicates:

where P0 is the total cell population. The cells are growing exponentially and we deter-
mine the cell count by a Poisson distribution

where �t is the pseudo-passing time. It differs from index t and will be defined in the 
next paragraph. Similar to how we define cv,t,r , we define the true cell count of each vari-
ant at time point t and replicate r to be Nv,t,r = (N1,t,r , . . . ,NV ,t,r) . The sequencing count 
for each variant is
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where D is the sequencing depth per variant. Empirically, we can set input η̂ and η̂0 
slightly higher than the estimated summary statistics. This is because the estimated val-
ues encompass all the noises in the experiment, while the true values only represent the 
noise from the sequencing step.

To find the mapping between βv and µv , we define δ to be the wild-type doubling rate 
and naturally compute �t :=

δ log 2
µwt

 , the pseudo-passing time in each round. Then we can 
compute the expectation of βv with the linear regression model. For simplicity, we omit 
the replicate index r and assume r is fixed in the next set of equations.

The final mapping between simulated βv and µv is then described in the following

with µwt set to be sgn(δ).

Modified Rosette that favors position‑informed models

In the original, position-agnostic version of Rosette, a ‖gm‖‖gv‖-dimensional vector is 
drawn from the same Dirichlet distribution for each position. The vector can be regarded 
as a quota for each mutant-variant group. Variants at each position are assigned their 
mutant-variant group according to the quota. As a result, at one position, variants from 
all variant groups (neutral, LOF, and GOF) would exist, and this violates the assump-
tion in Rosace that variants at one position would have similar functional effects 
(strong LOF and GOF variants are very unlikely to be at the same position). To show 
that Rosace could indeed take advantage of the position information when it exists in 
the data, we create a modified version of Rosette where variants at one position could 
only belong to one variant group. Specifically, a position can have either neutral, LOF, or 
GOF variants, but not a mixture among any variant groups.

Benchmarking

The naïve method (simple linear regression) is conducted by the “lm” function in R on 
processed data. For each variant, normalized counts are regressed against time. Raw 
two-sided p-values are computed from t-statistics given by the “lm” function. It is then 
corrected using the Benjamini-Hochberg Procedure to adjust the p-values.

For Enrich2, we use the built-in variant filtering and wild-type (“wt”) normaliza-
tion. All analyses use a random-effect model as presented in the paper. When there is 
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more than one selection round, we use weighted linear regression. Otherwise, a sim-
ple ratio test is performed. The resulting p-values are adjusted using the Benjamini-
Hochberg Procedure.

DiMSum requires the variant labeling to be DNA sequences. As a result, we have to 
generate dummy sequences. It is applied to all simulations with one selection round 
with the default settings. The z-statistics are computed using the variant’s mean esti-
mate over the estimated standard deviation and the adjusted p-value is computed 
from the z-score with Benjamini-Hochberg procedure. DiMSum only processes data 
with one selection round (two time points) and thus may be disadvantaged when ana-
lyzing datasets with multiple selection rounds.

mutscan is an end-to-end pipeline that requires the input to be sequencing reads. 
Conversely, Rosette only generates sequencing counts, which can be calculated 
from sequencing reads but cannot be used to recover sequencing reads. To facilitate 
benchmarking, we use a SummarizedExperiment object to feed the Rosette output 
to their function “calculateRelativeFC,” which does take sequencing counts as input. 
We benchmark both mutscan(edgeR) and mutscan(limma) with default normalization 
and hyperparameters as provided in the function. We use the “logFC_shrunk” and 
“FDR” columns in mutscan(edgeR) output and the “logFC” and “adj.P.Val” columns in 
mutscan(limma) output.

We run Rosace with position information of variants and labeling of synonymous 
mutations. However, Rosace is a Bayesian framework so it does not compute FDR 
like the frequentist methods above. All Rosace power/FDR calculations are done 
under the Bayesian local false sign rate (lfsr) setting [28]. As a result, in the simula-
tion, we present the rank-FDR curve and the FDR-Sensitivity curve as the metrics 
instead of setting an identical or different hard threshold on FDR and lfsr. In the real 
data benchmarking, both the FDR and lfsr thresholds are set to be 0.05.
Rosace without position label is denoted as Rosace (nopos) in the Additional 

file  1: Figs. S5–S15, S19–S23, and S25. It removes the position layer in Fig.  2C and 
keeps only the variant and replicate layer. The test statistics and model evaluation are 
presented identically as the full Rosace model.
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MSH2 is available on Gene Expression Omnibus with accession code GSE162130. BRCA1‑RING is available on MaveDB 
with accession code mavedb:00000003-a-1.
 The benchmarking datasets are EVE [31] (evemodel.org), ClinVar [30] (gnomad.broadinstitute.org), and 
AlphaMissense [32] (alphamissense.hegelab.org).
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