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Abstract 

Spatial omics technologies enable a deeper understanding of cellular organizations 
and interactions within a tissue of interest. These assays can identify specific compart-
ments or regions in a tissue with differential transcript or protein abundance, delineate 
their interactions, and complement other methods in defining cellular phenotypes. A 
variety of spatial methodologies are being developed and commercialized; however, 
these techniques differ in spatial resolution, multiplexing capability, scale/throughput, 
and coverage. Here, we review the current and prospective landscape of single cell to 
subcellular resolution spatial omics technologies and analysis tools to provide a com-
prehensive picture for both research and clinical applications.

Spatial omics technologies
Methods for molecular profiling of single cells in  situ, within their native spatial con-
text, are rapidly developing. In recent years, traditional experimental methods, includ-
ing barcoding with reporters [1], immunohistochemistry (IHC) [2, 3], and fluorescent 
in situ hybridization (FISH) [4, 5], have given ways to spatial omics technologies to cover 
a larger number of transcripts or areas (Fig. 1). Broadly, spatial omics technologies vary 
in their spatial resolution (minimum size of molecular units profiled), coverage (breadth 
of tissue covered), scale and throughput (number of samples and profiling speed), and 
multiplexing capacity (breadth of molecular entities profiled simultaneously). Depend-
ing on the research question, the profiling methods can be divided into (1) targeted or 
multiplexed probe- or antibody-based and (2) transcriptome-wide or next-generation 
sequencing (NGS)-based approaches [6].

Most spatial omics technologies with subcellular level resolution are performed on 
slide (in situ) using either microscopy or NGS platforms. Currently, there are over 50 dif-
ferent spatial mapping technologies available. In this review, we focus on the latest tech-
nologies that enable investigation of cells at the cellular and subcellular level (less than 
10 μm, Fig. 2A). The history and technical workflow of lower resolution, non-single-cell, 

*Correspondence:   
chm2042@med.cornell.edu

1 Department of Physiology, 
Biophysics and Systems Biology, 
Weill Cornell Medicine, New York, 
NY, USA
2 Laboratory of Virology 
and Infectious Disease, The 
Rockefeller University, New York, 
NY 10065, USA
3 The HRH Prince Alwaleed 
Bin Talal Bin Abdulaziz Alsaud 
Institute for Computational 
Biomedicine, Weill Cornell 
Medicine, New York, NY, USA
4 Caryl and Israel Englander 
Institute for Precision Medicine, 
Weill Cornell Medicine, New York, 
NY, USA
5 CeMM Research Center 
for Molecular Medicine 
of the Austrian Academy 
of Sciences, Vienna, Austria
6 The Feil Family Brain and Mind 
Research Institute, Weill Cornell 
Medicine, New York, NY, USA
7 The WorldQuant Initiative 
for Quantitative Prediction, Weill 
Cornell Medicine, New York, NY, 
USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-022-02824-6&domain=pdf
http://orcid.org/0000-0002-1850-1642


Page 2 of 19Park et al. Genome Biology          (2022) 23:256 

spatial omics technologies have been covered previously [7]. However, at < 10  μm res-
olution, the cell body and nucleus can be detected for single cell level quantification; 
with technologies that allow < 1 μm resolution, researchers can then detect a few other 
large organelles including cytoplasm-membrane distinction; at 200–300 nm, more well-
resolved characterizations are possible including mitochondria-, ER-, or Golgi- specific 
transcript or protein quantifications. At 50 nm ranges, entirely new cellular phenotypes 
(e.g., movement of organelles and protein trafficking) can be measured. Table  1 high-
lights available technologies that allow subcellular capture of molecular entities in cells, 
as well as their technical specifications.

Targeted spatial omics methods using antibodies and RNA probes

Targeted spatial omics methods are appropriate when there are specific molecular 
entities of interest to identify cellular states, identity, and function. Antibodies and 
RNA probes, such as endogenous transcripts or proteins, are the most ubiquitous 
detection methods (Fig.  1). Traditional immunofluorescence (IF) imaging methods 
can only capture four to five channels at a time, limited by spectral overlap. Using 
probes or antibodies that contain cleavable linkers for sequential imaging and/or bar-
coding scheme to distinguish multiple probes imaged simultaneously or within the 
same wavelength, now researchers can profile more than 50 cellular entities from a 
single slide. The technologies using antibody panels with sequential rounds of stain-
ing, imaging, and bleaching/stripping include: Cyclic ImmunoFluorescence (CyCIF) 

Fig. 1  Typical workflow of spatial omics experiment. Most technologies offer compatibility with flash frozen 
or formalin-fixed paraffin embedded tissues. If in situ capture-imaging methods are chosen, a customized 
set of antibodies or probes will be hybridized to acquire or reconstruct images of multiple channels. With 
sequencing-based methods, barcoded regions within the slide will be captured for library preparation and 
sequencing. The downstream analyses are similar across technologies; once the signals are normalized, 
quantified, and pooled for each cell defined by the cell segmentation masks. Standard analyses such as 
differential expression, cell proportion, and gene set enrichment can be performed. Using spatial information 
in particular, cell–cell interaction and ligand-receptor analyses can be performed in-depth. Such information 
can also be used to define neighborhood or domains of tissue microenvironment, depending on the 
research question. Figure created with BioRender
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[8], iterative bleaching extends multiplexity (IBEX) [9], multi-epitope-ligand-cartog-
raphy (MELC) [10], iterative indirect immunofluorescence imaging (4i) [11], ChipCy-
tometry [12], Cell DIVE (multiplexed immunofluorescence, MxIF) [8], and MACSima 
Imaging Cyclic Staining (MICS) [13]. These are generally limited to 30–50 targets due 
to constraints in tissue integrity, spectral overlap, and spillover (Table 1). To further 
increase the number of antibodies, technologies such as CO-Detection by indiEXing 
(CODEX) [14] increase the target breath to 100 by staining a cocktail of DNA-bar-
coded antibodies. It then uses complementary oligonucleotide probes and compara-
tively gentle iterative hybridization cycles for detection. Alternative to imaging-based 
readouts are methods which use mass spectrometry, such as imaging mass cytom-
etry (IMC) [15] and multiplexed ion beam imaging (MIBI) [16]. For IMC and MIBI, 
antibodies are tagged with rare metals, and tissue samples are stained with the whole 
antibody cocktail. The tissue sample is then ablated with an ionizing laser in a raster 
fashion, and detection of the rare metals is possible through time-of-flight mass spec-
trometry, which has much less spectral overlap than optical methods.

Fig. 2  Timeline, type, and specifications of spatial omics technologies. A Timeline of all super resolution 
methodologies from 2010. Color intensity corresponds to the number of technologies published each year, 
and blue colored techniques are sequencing-based while red colored techniques are multiplexed IHC/
IF methodologies. Top and bottom of the red boxes represent non-FISH and FISH based, respectively. B 
Proportions of target types and analysis approaches, where Y quantifies methods detecting given analyte 
(DNA, RNA, or protein). C Comparison of imaging-based technologies. Highest resolution that can be done, 
some of the super resolution microscopy-based methods were estimated at 50 nm and maximum number of 
the markers or genes that can be detected in an experiment. Note that depending on the technology, some 
of them were not optimized yet and can be expanded in future years. Excluded seqFISH + and MERFISH 
which claims up to 10,000 markers for detection (probe-based method)
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To avoid nonspecific binding, epitope loss, and tissue degradation, antibody-meth-
ods may require further optimization, such as permeabilization or antibody incuba-
tion protocols. Using pre-optimized, commercially available antibody panels can 
significantly reduce this process, although this option is not available for all tissue 
types. Virtually, all antibody methods capture regions of interest (ROIs) within the 
tissue slide due to constraints of acquisition time (optical methods) or cost (mass 
spectrometry-based methods), while providing data that is only relatively quantitative 
(quantified by relative spectral intensity). A detailed description of these technologies 

Table 1  Summary of single cell or subcellular spatial omics technologies. The table only includes 
single cell or subcellular resolution spatial omics technology, excluding spatial barcoding methods 
as it loses the organization context (e.g., CITE-seq, ZipSeq, ExSeq, XYZeq, and sci-space). MERSCOPE 
employs MERFISH as a platform solution. Slide-SeqV2 and DBiT-seq could be near single-cell. The 
plex numbers are based on the maximum validated or claimed in publications, as of March 2022. 
Ab-based Antibody-based methods (multiplexed spectrometry), mFISH Multiplexed FISH (probe-
based methods), NGS Next-generation sequencing, SR Not specified and stated as subcellular 
resolution; falls within the capacity of resolution microscopy, WT Whole transcriptome

a updated version of seqFISH; bupdated version of Slide-seq
c In preprint or not publicly available yet

Technology Type Target Resolution (nm) Year Company Plex

FISSEQ NGS RNA 600 2014 FISSEQ 8742

MIBI Ab-based RNA, protein 350 2014 IonPath 40

IMC Ab-based RNA, protein 1000 2014 Fluidigm 37

ChipCytometry Ab-based Protein 500 2019 Canopy 120

MERFISH mFISH RNA 100 2015 Vizgen 10,000

CyCIF Ab-based Protein 110 2015 Rarecyte 261

seqFISH+a mFISH RNA 100 2016 Spatial Genomics 10,000

STARmap NGS RNA SR 2018 N/A 1020

Phenocycler (CODEX) Ab-based RNA, protein 260 2018 Akoya 100

osmFISH mFISH RNA SR 2018 N/A 48

Slide-seqV2b NGS RNA 10,000 2020 N/A WT

HDST NGS RNA 2000 2019 N/A WT

Split-FISH mFISH RNA SR 2020 N/A 317

HybISS mFISH RNA SR 2020 N/A 124

DBiT-seq NGS RNA, Protein 10,000 2020 AtlasXomics WT

Stereo-Seq NGS RNA 500 2021 BGI STOmics WT

ExSeq NGS RNA 1000 2021 N/A WT

Molecular Cartography mFISH RNA 200 2021 Resolve Biosciences 100

Cell DIVE Ab-based Protein SR 2021 Cytiva 60

CosMxc mFISH RNA, protein 50 2022 NanoString Technologies 960

Xeniumc mFISH RNA, protein 50 2022 10X Genomics 1000

Visium HD NGS RNA 5000 2021 10X Genomics WT

Esper mFISH RNA 260 2021 Rebus Biosystems 30

Seq-scope NGS RNA 600 2021 N/A WT

PIXEL-seqc NGS RNA 1000 2021 N/A WT

MOSAICA mFISH RNA 100 2022 N/A 60

MICS Ab-based Protein 100 2022 Miltenyi Biotec 100

EEL FISHc mFISH RNA 200 2022 Rebus Biosystems 440

coppaFISHc mFISH RNA SR 2022 N/A 72
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is covered in related manuscripts and reviews specifically focusing on multiplexed 
methods [17–19].

Similar to antibodies, mRNA probes (specific for sequences of targeted transcripts) 
can be used to design a panel for targeted spatial profiling. Such approaches have shorter 
protocols, easier handling, and enable more transcripts (generally few hundreds of tran-
scripts, up to 10,000) to be captured than antibody-based methods [20]. Different mul-
tiplexed RNA FISH methods use slightly different approaches to probe design, imaging, 
and stripping [21]. Specifically, high multiplexing is achieved by using spectral barcoding 
(specific combination of fluorophores each targeting segments of an RNA resolved by 
microscopy) [22] and temporal barcoding (multiple rounds of probe hybridization and 
stripping to create predefined color sequence) [23]. Recently, the combination of two 
barcoding methods and more complicated barcoding strategies can increase the num-
ber of molecular entities that can be profiled. For example, while seqFISH uses spec-
tral barcoding of genes across four or five fluorophores for each given temporal barcode, 
seqFISH + adds mRNA-specific sequences to assign a pseudocolor for each spectral bar-
code (fluorophore). The new seqFISH + technology can now capture 60 pseudocolors 
instead of 5 per cycle, allowing more than 8000 gene profiles [24].

Barcoding approaches can generally capture more transcripts than antibody-based 
methods, but are more sensitive to losses (false-negative signals due to dropout) and tis-
sue degradation between the cycles (Fig. 2B, C) [21]. To overcome potential errors and 
dropouts, most probe-based methods utilize extra hybridization steps added for every 
few cycles to ensure the rest of the transcripts are detected properly. Current technolo-
gies include multiplexed error robust fluorescence in situ hybridization (MERFISH) [25], 
molecular cartography [26], sequential fluorescence in  situ hybridization (seqFISH +) 
[24], sequent ouroboros single-molecule FISH (osmFISH) [27], Split-FISH [28], hybrid-
ization-based in situ sequencing (HybISS) [29], Esper [30, 31], CosMx [32], Multi Omic 
Single-scan Assay with Integrated Combinatorial Analysis (MOSAICA) [33], and com-
binatorial padlock-probe-amplified FISH (coppaFISH) [34]. Each technology utilizes 
slightly different probe length, design methods, and protocols. For example, MERFISH 
probes hybridize with disulfide bond while seqFISH uses DNAse I treatment to cleave 
the probes for the following rounds of detection. Although most technologies would 
give similar results in most cases, factors such as probe length, tissue autofluorescence, 
tissue degradation, and protocol compatibility need to be considered for optimal results. 
For example, tissues can have different stability for signals over multiple rounds (or long 
duration) of enzymatic treatments or temperature variations. Indeed, prior work has 
shown a range of concordance between various spatial imaging technologies, such as 
with the GeoMx and Hyperion systems, which showed high correlation for differences 
in cell types and expression of healthy vs. pneumonia (r = 0.699) and different stages 
of COVID-19 (r = 0.630) but lower correlation of expression metrics of COVID-19 vs. 
healthy patient (r = 0.362) [35].

In general, the probe-based methods are more quantitative than antibody-based 
methods, as absolute numbers of transcripts are counted as individual dots within 
each scanned spot. Some probe-based methods can also utilize oligo-conjugated anti-
bodies to incorporate subcellular protein landmarks (i.e., organelles) as well. However, 
the probe design and library composition are critical and sometimes limiting; some 
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techniques are limited by gene length (transcripts must be > 750  bp), expression lev-
els (highly expressing transcripts can create optical crowding and zero inflation spots 
called), and isoforms (splicing frequencies may be a source of error but can also target 
differentially transcribed exons or introns) [36]. Some of these limitations are an active 
field of research and can be overcome in several ways if properly accounted for, such as 
decreasing the binding range (e.g., 25 nucleotides) or overlapping probes to map iso-
forms. Despite these limitations, there are more published data and analytical software 
tools already optimized for these targeted technologies (vs. transcriptome-wide meth-
ods, described below).

Transcriptome‑wide spatial omics with NGS platforms

In addition to scRNA-seq methods that allow a comprehensive view on the transcrip-
tome of a cell, several methods for spatial profiling of the transcriptome in an unbiased 
manner have been developed. Earlier methods focused on targeted acquisition of sample 
subsets for sequencing and used laser-capture microscopy (LCM) and photocleavable 
marker-based methods, where specific regions marked by surface markers or mRNA 
probes were collected and sequenced. LCM-seq [37], geographical position sequencing 
(Geo-seq) [38], NICHE-seq [39], and NanoString GeoMx DSP [40] are a few additional 
contemporary examples of this technology. These technologies allow user-directed pro-
filing of specific ROIs with as few as 10 cells, allowing researchers to characterize multi-
ple replicates or tissue types/locations for each sample.

Methods that allow single cell or subcellular resolution rely on spatial barcoding and 
in situ sequencing. Technologies such as fluorescent in situ sequencing (FISSEQ) [41], 
spatially resolved transcript amplicon readout mapping (STARmap) [42], Slide-SeqV2 
[43], deterministic barcoding in tissue for spatial omics sequencing (DBiT-seq) [44], 
expansion sequencing (ExSeq) [45], high-definition spatial transcriptomics (HDST) 
[46], Seq-scope [47], polony (or DNA cluster)-indexed library-sequencing (PIXEL-
seq) [48], and SpaTial Enhanced REsolution Omics-Sequencing (Stereo-Seq) [49] (and 
ST, 10X Visium for multi-cell version of the same technology) use grid-like nanob-
alls or sequencing sites on the slide. The resolutions and chemistry of the sequencing 
sites vary by technologies, as well as amplification methods. For example, FISSEQ uses 
rolling cycle amplification (RCA) where a random hexamer reverse transcription (RT) 
primer gets hybridized for cDNA transcription and amplification; STARmap uses pad-
lock probes to avoid RT and use of RNA template; technologies like HDST, Slide-SeqV2, 
and DBiT-seq all use Barcode and UMI structures with varying nucleotide lengths opti-
mized for each technique and preferred sequencing platform. The individual spots on 
these slides are several times smaller than typical mammalian cells, enabling single to 
subcellular characterization of sequencing reads. Although it may be more costly, in situ 
sequencing approaches allow whole-slide detection whereas capture-based sequencing 
methods are more focused on smaller ROIs within the tissue. Because the resolution can 
be limited by the size of the amplicon hybridized on the slide for sequencing, different 
strategies to improve the UMI and quality of the reads are currently being explored in 
these technologies. Also, methodologies to capture total transcriptome (viral, coding, 
and noncoding RNAs) are also developed, such as spatial total RNA-sequencing (STRS) 
[50].
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In addition, there are spatial barcoding methods such as CITE-seq [51], ZipSeq [52], 
ExSeq [45], XYZeq [53], or sci-space [54], where additional cellular information such 
as antibody staining or barcoding is added before pooling for single cell sequencing 
workflow. Additional single cell features such as cell types or tissue location or com-
partmentalization can be deduced; however, a precise picture of cellular organization is 
not yet possible. Inspired by these technologies and to overcome the limitations, multi-
plexed detection methods of transcriptome and proteome have been developed. Exam-
ples include spatial multi-omics (SM-Omics) [55], Spatial PrOtein and Transcriptome 
Sequencing (SPOTS) [56], and spatial co-indexing of transcriptomes and epitopes for 
multi-omics mapping by NGS (spatial-CITE-seq) [57]. These technologies combine 
existing NGS-based methodologies to allow computational reconstruction of spatial full 
transcriptome and 200 + proteome maps. Although these technologies make use of NGS 
technologies to cover the full transcriptome while recording large panels of proteins 
in tissues, the full transcriptome characterizations are still limited by resolution (SM-
Omics uses 10X Visium which allows 55 μm resolution), or location detection (SPOTS 
and spatial-CITE-seq uses CITE-seq, which is an antibody-binding based method, to 
provide cellular context, not precise locations within the tissue).

Other spatial omics technologies for multi‑modal study

Similar to the spatial omics technologies introduced above, which mainly focus on gene 
expression profiles (and surface marker proteins), approaches around spatial genom-
ics, metabolomics, metagenomics, and epigenomics are also emerging. Spatial ATAC 
sequencing can be performed by in  situ Tn5 transposition, and probe ligation using 
microfluidics devices, followed by standard digestion and sequencing for chromatin 
accessibility profiling [58, 59]. Resolution is limited by the microfluidic channel width 
(20 μm); however, single cell resolution is less crucial than transcript quantification as 
the analysis relies on the signals within the nuclear regions. Similarly, specific chro-
matin modifications can be quantified using Spatial-CUT&Tag that applies CUT&Tag 
chemistry with microfluidic devices [60]. Both technologies use deterministic barcod-
ing delivered over the tissue surface through a microfluidic device attached to the slide. 
The barcodes are delivered twice perpendicularly so that the combinations result in 2D 
arrayed pixels containing spatial information. Spatial metabolomics techniques such as 
targeted approaches using antibodies (metaFISH) or untargeted using matrix-assisted 
laser desorption/ionization imaging mass spectrometry (MALDI-IMS) hold promise for 
mapping the spatial context of metabolic species and molecular interactions within the 
native tissue context, but still suffer from trade-offs in spatial resolution or the breadth 
of molecular entities profiled [61].

Such added layers of genomic data allow researchers to ask new biological questions. 
For example, in addition to expression level changes within tissue microenvironment, 
clonal expansion of specific mutations and spatial co-occurrences can be investigated 
using spatial genomics such as slide-DNA-seq [62]. This method is a modified version of 
slide-seq where DNA sequences are captured with small (3 mm) beads that are spatially 
indexed, instead of RNA transcripts. Optimized methodologies for histone removal and 
Tn5 treatments for a variety of tumor tissue types have been shown to prevent poten-
tial bias in DNA capture. More recently, spatial host-microbiome sequencing (SHM-seq) 
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has been reported [63]. SHM-seq is an adapted version from Spatial Transcriptomics, 
where mRNA probes for transcript captures are modified to DNA capture probes so that 
they can obtain both polyadenylated transcripts and 16S rRNA hypervariable regions. 
The recent progress on spatial characterizations allows researchers to locate interactions 
at the genomics, cellular, and organismal level [64].

Overall workflow and experimental design criteria
Sample preparation and experimental design

Overall experimental and analytical workflows span a few consistent features (Fig.  1). 
Generally, mouse or human tissue slides are used for experiments, since the relevant 
probe and target libraries are already commercially available and represent the largest 
market; however, in principle these methods can work on any species with an anno-
tated genome (Fig.  3). It is also possible to use cell cultures or sections from specific 
culture platforms. Most of the techniques offer compatibility with flash frozen (FF) and 
formalin-fixed paraffin embedded (FFPE) formats. FF format often yields better RNA 
quality and simpler extraction processing; however, FFPE format more faithfully con-
serves tissue architecture and is easier to store and ship. Success also varies depending 
on the sample quality (RNA integrity and processing protocols) and technology (probe/
antibody design, permeabilization and chemistry for hybridization, imaging, and library 
preparation). Some technologies generate stacked multiplexed images to capture all the 
transcripts across 5–10 μm thick sections and to differentiate transcripts expressed in 
nuclear and cytoplasmic regions [26].

Fig. 3  Example subcellular spatial omics data and analysis. A Subcellular spatial omics analysis starts with 
calling transcripts (or other molecular entities of interest) at their 3D locations from z-stacked images. B Using 
boundaries drawn by cell segmentation algorithms, the counts are aggregated into single-cell expression 
profiles, from which cell labels and neighborhood traits are inferred. C Both information can then be used 
for analyses commonly used for single cell and bulk image and sequencing methods, such as differential 
expression, clustering, cellular interaction analyses. The tissue sample images in all panels were provided by 
NanoString Technologies (CosMx platform) [65]
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A key question to consider in choosing the methodology and the experimental design 
is whether specific transcripts, pathways, or cell types need prioritizing. If specific loci 
are already known, then choosing an in situ capture based methodology and obtaining 
absolute quantification of the transcripts is often the better approach. Alternatively, if 
the research hypothesis is more discovery-based, especially for unknown cellular sub-
populations, or if a project is aiming for a global comparison across conditions or sam-
ples, NGS-based methods may be more appropriate.

Available reference databases for integration and validation

Even though the field is relatively new, there are some reference data sources available to 
explore different methodologies and to use as healthy references (Table 2). For example, 
the GeoMx spatial organ atlas offers human tissue spatial data from five organ systems: 
kidney, brain, intestine, lymph node, and pancreas (https://​nanos​tring.​com/​produ​cts/​
geomx-​digit​al-​spati​al-​profi​ler/​spati​al-​organ-​atlas/). Vizgen also released a mouse liver 
spatial atlas for people to explore and understand the extent of the technologies, and 
Akoya biosciences has shared its data from a range of tissues online, including brain, 
placenta, breast, lung, head and neck, and tonsil online (https://​www.​akoya​bio.​com/​
fusion/​data-​galle​ry/). Since many of these investigations focus on cancer samples and 
normal controls, some datasets can be accessed through human tumor atlas (https://​
data.​human​tumor​atlas.​org/) or the Human Biomolecular Atlas Program (HuBMAP, 
https://​portal.​hubma​pcons​ortium.​org/).

Depending on the publications and technologies, some researchers have made data 
explorer websites or share semi-processed count data on public repositories [66–68]. 
Currently, systematization of data standards is lacking, except for the convergence of 
imaging data into the metadata-rich OME-TIFF file format. Public sharing of datasets 
and in-depth, online guides will further aid the community by ensuring standardization 
and reproducibility of data [69].

Alternatively, single cell and single nuclei RNA sequencing can be used to cross vali-
date and overcome limitations of spatial omics technologies (i.e., limited detection of 
rare transcripts, interpolation of missing transcripts through cell type label transfer). 
Commonly used reference databases are summarized in Table 2. When choosing the ref-
erence, it is crucial to understand tissue type and technology of interest. Sample types, 
tissue dissociation methods, cellular heterogeneity, and type of sequencing chemistry 
can carry considerable impact, particularly when interested in rare cell types or transient 
cell expression states (e.g., fetal hemoglobin). For more rigorous data integration and 
validation, common coordinate framework (CCF) based mapping has been discussed 
and developed [70, 71].

Computational methodologies to analyze spatial omics data
The information captured from spatial omics data at subcellular resolution is predomi-
nantly converted into single cell format (quantification of counts/cell) or csv files, which 
are then suitable for downstream analysis. In the following section, we introduce meth-
odologies and published software packages for general spatial analysis and available 
multiplexed image viewers for visualization of the highly multiplexed images. We also 
review key methods involving traditional analysis similar to scRNA-seq analyses, newer 

https://nanostring.com/products/geomx-digital-spatial-profiler/spatial-organ-atlas/
https://nanostring.com/products/geomx-digital-spatial-profiler/spatial-organ-atlas/
https://www.akoyabio.com/fusion/data-gallery/
https://www.akoyabio.com/fusion/data-gallery/
https://data.humantumoratlas.org/
https://data.humantumoratlas.org/
https://portal.hubmapconsortium.org/
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methods that make use of spatial information, and auxiliary methods applied directly to 
the raw image level.

Available general‑purpose software and pipelines

As most recent spatial omics technologies support more markers than traditional image 
formats support, visualizing results of spatial omics data is a non-trivial task. Several 
specialized image software such as ImageJ or napari can be used to visualize subsets 

Table 2  List of reference atlas available for spatial omics applications (as of March 2022). HPA 
Human Protein Atlas (https://​www.​prote​inatl​as.​org/), HCA Human Cell Atlas (https://​www.​human​
cella​tlas.​org/), Tabula Sapiens (https://​tabula-​sapie​ns-​portal.​ds.​czbio​hub.​org/)

GeoMx HPA HCA HCA Tabula sapiens
Coverage Project counts Est. cell counts Cell counts

Lung N Y 18 6,200,000 35,682

Kidney Y Y 9 4,900,000 9641

Liver N Y 10 5,400,000 5007

Brain Y Y 14 9,700,000 N/A

Skin N Y 12 1,500,000 9424

Colon (large intestine) Y Y 4 1,100,000 N/A

Rectum (large intestine) N Y 2 372,300 N/A

Small intestine N Y 3 986,700 12,467

Stomach N Y 3 4,600,000 N/A

Lymph node Y Y 3 536,700 53,275

Prostate N Y 3 798,900 16,375

Ovary N Y 3 525,100 N/A

Uterus N Y 3 1,000,000 7124

Heart N Y 8 6,200,000 11,505

Esophagus N Y 4 914,600 N/A

Bone marrow N Y 3 571,700 12,297

Bone (skeletal muscle) N Y 2 212,600 N/A

Adipose (fat) N Y 4 1,000,000 20,263

Bladder N Y 2 486,700 21,517

Eye N Y 7 4,900,000 10,650

Testis N Y 2 30,200 N/A

Spleen N N 5 4,800,000 34,004

Appendix (large intestine) N Y N/A N/A N/A

Bile duct N N 1 84,375 N/A

Pancreas Y Y 16 5,100,000 13,497

Smooth muscle N Y N/A N/A 30,746

Nasal cavity N N 3 114,800 N/A

Peritoneum N N N/A N/A N/A

Blood N N 28 3,000,000 50,115

Breast N Y 2 709,100 N/A

Large intestine N Y 2 482,300 13,680

Mammary gland N N 1 N/A 11,375

Salivary gland N Y 1 N/A 27,199

Thymus N Y 3 4,800,000 33,664

Tongue N N 1 N/A 15,020

Trachea N N 3 564,700 9522

Vasculature N N 1 N/A 17,071

https://www.proteinatlas.org/
https://www.humancellatlas.org/
https://www.humancellatlas.org/
https://tabula-sapiens-portal.ds.czbiohub.org/
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of markers. As some spatial platforms gather information on a per spot basis, several 
denoising software tools such as content-aware image restoration (CARE) [72], resid-
ual channel attention networks (RCAN) [73], and Noise2Void [74] can be applied to 
raw images to improve the quality especially in fluorescence based platforms. For mass 
cytometry based spatial platforms, data quality can be improved by spillover correc-
tion software [75]. For example, if the ground truth of spillover is known or empirically 
adjusted from the data, Reinforcement Dynamic Spillover EliminAtion (REDSEA) [76] 
leverages the spatial proximity of cells with signal that comes from generally mutually 
exclusive markers.

There are also user-friendly end-to-end software packages for spatial omics. Graphi-
cal user interface supporting software pipelines like ImageJ [77], QuPath [78], CellPro-
filer [79] and many other command line tools take raw input data and transform them 
into single cell format with coordinate information. Other software like squidpy [80] and 
scimap (https://​github.​com/​labsy​spharm/​scimap) provide user-friendly Python APIs for 
spatial analysis, visualization, and a collection of preprocessed datasets from multiple 
diverse spatial platforms in AnnData format. Depending on the platform, some technol-
ogies offer end-to-end packages for sample processing to data visualization and analysis. 
For example, TITAN [81] offers open-source software options for IMC image visualiza-
tion, cell segmentation, analysis, and export. Other commercial technologies also offer 
end-to-end solutions optimized for each technology, such as AtoMx for GeoMx and 
CosMx (NanoString), PhenoCycler Software Analysis Suite for CODEX and PhenoCy-
cler (Akoya), and MERSCOPE Visualizer for MERFISH platform (Vizgen).

Traditional spatial omics methods for single cell analysis

Typically, the outputs of most spatial omics analyses involve images or barcodes with 
spatial coordinate information. Such spatial information can be treated as an additional 
layer of metadata and help inform downstream analysis. Successful downstream analyses 
on spatial omics data, which either are high dimensional images or spatial barcodes with 
coordinates, heavily rely upon accurate cell segmentation, which is a process to infer cell 
boundaries based on intensity values from captured coordinates. Cell segmentation is 
done on generalizable cellular features, such as DNA staining for nuclei and membrane 
staining or (cell-type specific) cytoplasmic markers for cell boundaries. Some of imag-
ing-based methods use serialized, z-stack images to better distinguish cellular features 
each round of imaging; however, this is not so common in sequencing-based methodol-
ogies because imaging for segmentation is typically done right before the library prepa-
ration or on consecutive tissue slices.

There are two broad categories of cell segmentation algorithms both based on super-
vised learning: (1) a combination of computer vision-based feature extraction and 
machine learning models like random forests and (2) convolutional neural network 
(CNN)-based deep learning models. The first group, including Ilastik [82], extracts 
intensity, edge, and texture features from images using Gaussian filters and their deriva-
tives. Then, the user labels pixels in images typically representing nuclei, cytoplasm, and 
background areas, which are used as labels for pixel classification using random forests 
based on the extracted features. The software can then either produce probability maps 

https://github.com/labsyspharm/scimap


Page 12 of 19Park et al. Genome Biology          (2022) 23:256 

for the specified classes which can be segmented with CellProfiler [79] or a segmenta-
tion map directly.

The other group uses deep learning for segmentation. DeepCell [83], Stardist [84], 
Splinedist [85], Cellpose [86], and Omnipose [87] are all convolutional neural network 
(CNN)-based models capable of feature extraction, probability map prediction, and cell 
segmentation. Deepcell incorporates multiple segmentation subtasks including cell seg-
mentation, nuclei segmentation, and cell tracking for sequence of moving cell images 
via deep watershed methods. DeepCell also offers Panoptic net-based models that use 
a combination of semantic and instance segmentation. Related tools like Stardist and 
Splinedist focus on nuclear segmentation using the geometric properties of nuclei; 
Stardist models nuclear morphology as star convex polygons and assigns probabilities 
based on center-to-border distances to detect and separate objects, and splinedist gener-
alizes a similar model to capture more smooth-shaped cell masks and recognize eccen-
tric cells using spline interpolation. Cellpose is a general-purpose model for both nuclear 
and whole-cell segmentation, while the more recent Omnipose specializes in segmenta-
tion of bacterial cells that often are elongated or eccentric. Regardless of the segmenta-
tion method, the various analytical approaches converge on the creation of a single-cell 
matrix analogous to scRNA-seq data, by aggregating RNA/protein signal intensity val-
ues by sum or mean based on the segmentation masks.

The aggregated single-cell matrix can then be transformed and normalized through 
a combination of scaling functions such as logarithm (base2 or base10), minmax, or 
z-score, and they can be batch corrected using algorithms such as Combat [88], MNN 
Correct [89], batch-balanced k-nearest neighbors [90], and harmony [91]. One can apply 
conventional scRNA-seq analysis such as dimensionality reduction using PCA [92], 
T-SNE [93], or UMAP [94] and clustering with Leiden [95] or Phenotyping by Acceler-
ated Refined Community-partitioning (PARC) [96] algorithms. The neighborhood of the 
cells can also be defined from the intensity features, using modern graph based cell clus-
tering methods such as Louvain [97], Leiden, or PARC clustering.

From the expression profiles, phenotyping is possible by manually assigning cell labels 
based on the expression of markers. While this procedure may be laborious, it enables 
the detection of novel cell types and states. Nonetheless, methods for automated predic-
tion of cell type identities such as Astir and Stellar also exist [98, 99]. Single-cells and 
their phenotypes can be visualized either by projecting feature intensity as colors on 
scatter plots of reduced dimensionality projections, or by visualizing features on heat-
maps at the single-cell or cell type level. Common downstream analysis often involves 
the comparison of cell type abundance between samples of contrasting biological groups 
and detection of differential expression of markers within cell types between sample 
groups. Several of these methods were reviewed previously [100].

For quantitative technologies, expression levels can be also compared using standard 
differential gene expression analysis for bulk and single cell RNA-seq. In addition to dif-
ferentially expressed genes, spatially variable genes can be obtained by published pack-
ages such as Trendsceek [101], SpatialDE [102], Spatial PAttern Recognition via Kernels 
(SPARK) [103], and SpaGCN [104]. These packages use different algorithms to compute 
spatial variations and are implemented for specific technologies. For example, SpatialDE 
uses Gaussian process regression in which it can detect genes across regions or multiple 
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conditions but is computationally intensive and cannot identify domains. SpaGCN uses 
a graph convolutional network (GCN) and provides both gene and domain level spa-
tial analyses, but tissue structures identified by cell types are not included in the anal-
ysis unlike the methodologies covered in the next section. Also of note, the methods 
for normalization, batch correction, and data cleaning are just as paramount in spatial 
expression mapping as they are in bulk analysis, and a range of methods (e.g., COMBAT, 
EDAseq, RUV2, SEER, etc.) can be used [105].

Novel spatial omics methods using spatial information

Highly resolved spatial omics data allows discovery of new cell types, cell interactions, 
and tissue structures compared to traditional, single cell sequencing methods because 
the data comes with paired spatial information in the native tissue conformation. Cur-
rently, most methods in this area construct cell graphs, with cells as nodes and edges 
based on threshold spatial distance between cells to leverage spatial information. The 
two large branches in this field are (1) spatial microenvironment analysis, which groups 
and analyzes cells based on their spatial context and (2) inference of intercellular inter-
actions, which investigates how frequently a pair of cell types interact in native tissue 
conformation.

One major lineage of computational spatial omics uses cell context to perform vari-
ous downstream tasks. Stellar (https://​github.​com/​snap-​stanf​ord/​stell​ar) is a cell type 
annotation tool using both marker expression profiles and spatial context information. 
By learning cellular phenotypes not only from the intensity of markers but also from the 
spatial arrangement of cell types, Stellar enables the prediction of cell types in an unla-
beled dataset and discovery of cell types specific to a new tissue. SpatialLDA [106] is a 
tumor microenvironment detection method that identifies associated topic or context 
of each cell based on cell type distribution of immediate spatial neighbors, which for 
tumor cells could be thought of as tumor microenvironments. UTAG [107] is a struc-
tural microanatomy annotation and analysis method that categorizes cells into anatomi-
cal structures across organs and diseases including cancers. Both SpatialLDA and UTAG 
infer larger-scale patterns or organization in tissue, which can be further interrogated to 
understand how cellular composition and interaction give rise to tissue structure capa-
ble of contributing to organ-specific physiology, overall organ architecture, or micro-
environments in the tumor micro-environment which may condition clinically relevant 
outcomes.

Another branch of interest specifically focuses on learning intercellular interaction. 
Boisset et al. introduced a computational foundation to quantify cell-to-cell communi-
cation by graph permutation test [108]. They proposed assessment of intercellular com-
munication frequency by randomly mixing cell type identities and assigning a statistical 
likelihood to empirically observed interaction between cell types. A similar approach, 
using permutation analysis, has been used to detect increased interaction between mac-
rophages and fibroblasts in alveolar walls, which potentially explains fibrosis and the 
thickening of the alveolar wall in COVID-19 patients [35, 67, 68]. The increased mac-
rophage interactions with fibroblast and other immune cells were consistently observed 
when cellular interaction clusters were defined by co-occurrence of the cell type pro-
portion changes (https://​github.​com/​jpark-​lab/​Spati​alAna​lysis). Other methods try to 

https://github.com/snap-stanford/stellar
https://github.com/jpark-lab/SpatialAnalysis
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explain cellular communication through machine learning methods. For example, node-
centric expression modeling (NCEM) [109] models cell-to-cell communication events 
by gradient analysis of variational graph autoencoders. The idea here is to investigate 
which change in cell-to-cell communication results in a change in observed gene expres-
sion through a non-linear graph neural network. Multiview Intercellular SpaTial mod-
eling framework (MISTy) [110] is a graph-based method that investigates marker (gene) 
networks at multiple spatial resolutions to investigate intra- and inter- cellular interac-
tion at multiple lengths.

With the ability to capture molecules at a subcellular resolution, co-localization and 
compartmentalization of molecular entities can be analyzed at a deeper level. For exam-
ple, RNA species in different subcellular compartments (i.e. endoplasmic reticulum and 
nuclear vs. cytoplasmic) and their spatial patterning within the cell can be extracted as 
an independent feature from expression level [20]. Transcripts that are dependent on 
cellular states such as infection, cell cycles, circadian rhythm can be profiled more accu-
rately and provide new insights. In addition, distribution of cellular features (i.e., protein 
or viral RNA transcript patterns within a cell) can be studied for biological significance. 
These features are limited by our understanding of cellular processes and by methodolo-
gies to analyze such changes and generate hypotheses in an unbiased manner.

Multi‑modal analysis and ML‑aided spatial data analysis methods

Integration of spatial omics data with other data modalities, such as single-cell RNA 
or assay for transposase-accessible chromatin (ATAC) sequencing, can enable an even 
more comprehensive view of cellular systems, by complementing the spatial assays in 
terms of the number of molecular entities under study and cells profiled. A popular 
approach to integrate different datasets consists of identifying a subset of variable or 
“notable” features to serve as anchors across two data modalities. Several methodolo-
gies were developed around the integration between different single cell or single nuclei 
sequencing modalities such as RNA and ATAC. Multi-Omics Factor Analysis (MOFA) 
introduces a statistical framework for the integration of data modalities, specifically 
within a common sample space derived from the same sets of cells [111].

One of the most used software packages for scRNA-seq analysis, Seurat, also has 
developed methodologies to integrate such modalities as well as antibody-derived 
tags from cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) 
and spatial omics technologies such as Visium, by using weighted nearest neighbors 
(WNN) analysis. Multimodal omics analysis framework (MUON), which introduces the 
MuData format compatible across Python, R, and Julia programming languages, pro-
vides a shared interface for commonly used methodologies such as MOFA, WNN, and 
similarity network fusion (SNF) [112]. Similar framework packages include MultiMAP 
[113], linked inference of genomic experimental relationships (LIGER) [114], inteGrative 
anaLysis of mUlti-omics at single-cEll Resolution (GLUER) [115], clustering on network 
of samples (Conos) [116], and integrative non-negative matrix factorization (iNMF) 
[117], but some of the packages are more focused on specific spatial omics technologies 
or analysis of single-cell sequencing modalities. Recently, more packages and method-
ologies, such as Cell2location [118], CellTrek [119], multi-modal structured embedding 
(MUSE) [120], and Tangram [121], are being developed specifically to map single cell 
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information to spatial omics analyses. For example, Tangram aligns expression pro-
files from sc/snRNA-seq to spatial datasets from the same region including MERFISH, 
STARmap, general smFISH, Visium, and histological images [121]. Such methods to 
map other data modalities are also used within spatial omics dataset when gene imputa-
tion, an approach used to fill in the missing datapoints due to low detection level, limited 
number of targets, potential errors or dropouts, or genetic variation are needed [122]. 
On the contrary, multi-omics image integration and tissue state mapping (MIAAIM) 
focuses on integration of different spatial omics modalities that have diverse densities 
and spatial resolutions [123]. As most of these software packages only offer methodolo-
gies for proper integration of multiple data modalities without losing single cell resolu-
tion, more work is needed for multimodal data exploration and visualization.

Conclusion
As spatial omics technologies mature and provide a deeper understanding of the cel-
lular states and functions, spatial epigenomics, metagenomics, and metabolomics will 
also reveal a great number of biological insights that complement the transcript-level 
findings. Integration strategies across different molecular classes (for example, integrat-
ing metabolomics data with proteomic, transcriptomic, or genomic data) would also be 
needed. Development of appropriate analysis packages that offers end-to-end solutions 
for each technology, as well as compatibility with orthogonal platforms is also crucial to 
increase the usage and application of these technologies.

In summary, the spatial omics field has blossomed and radically increased the breadth 
and resolution of in situ experiments in the past few years. These technologies can now 
boast detection of more than 10,000 unique gene targets with 50–100 nm spatial reso-
lution. Developments in probe chemistry, image acquisition, and commercialization 
are driving down costs, transforming spatial omics technologies into a commonplace 
technique available to all labs, similar to NGS in the 2010s and microarrays in the early 
2000s. This unparalleled depth and richness of data leading to spatially intact single cell 
profiles promises to fuel new discoveries for infectious disease, tumor oncology, and 
basic science applications like cell signaling, migration, and spatiotemporal-delineated 
functions. Efforts to introduce three-dimensional, deep-slide scanning, and time series 
data collection will also continue to propel the field even further in the coming years, 
revealing novel cellular architectures and entirely new domains of biology.
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