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Abstract

Background: Genome-wide association studies have reported more than 100 risk
loci for rheumatoid arthritis (RA). These loci are shown to be enriched in immune
cell-specific enhancers, but the analysis so far has excluded stromal cells, such as
synovial fibroblasts (FLS), despite their crucial involvement in the pathogenesis of RA.
Here we integrate DNA architecture, 3D chromatin interactions, DNA accessibility,
and gene expression in FLS, B cells, and T cells with genetic fine mapping of RA loci.

Results: We identify putative causal variants, enhancers, genes, and cell types for 30–
60% of RA loci and demonstrate that FLS account for up to 24% of RA heritability.
TNF stimulation of FLS alters the organization of topologically associating domains,
chromatin state, and the expression of putative causal genes such as TNFAIP3 and
IFNAR1. Several putative causal genes constitute RA-relevant functional networks in
FLS with roles in cellular proliferation and activation. Finally, we demonstrate that risk
variants can have joint-specific effects on target gene expression in RA FLS, which
may contribute to the development of the characteristic pattern of joint involvement
in RA.

Conclusion: Overall, our research provides the first direct evidence for a causal role
of FLS in the genetic susceptibility for RA accounting for up to a quarter of RA
heritability.

Keywords: Functional genomics, Stromal cells, Rheumatoid arthritis, Fibroblast-like
synoviocytes

Background
A major challenge of the post-genome-wide association study (GWAS) era is to de-

cipher the functional consequences of genetic risk variants in individual cell types and

their contribution to the development of polygenic diseases. The identification of the

cell types and conditions in which genetic risk variants are effective is an essential pre-

requisite for achieving this goal. Rheumatoid arthritis (RA) is a symmetric
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inflammatory and destructive autoimmune arthritis with a complex genetic basis. RA

affects 0.5–1% of the world population and leads to disability, high morbidity burden,

and premature mortality [1]. GWAS have identified over 100 loci for RA susceptibility

[2]. Genetic risk variants at the majority of these loci do not map to the exons of pro-

tein coding genes. Potential gene regulatory functions of these noncoding genetic risk

variants have been investigated in immune cells based on genome-wide mapping of epi-

genetic modifications [3], chromatin interactions [4], correlation with variation in gene

expression (eQTLs) [5], or linear proximity to coding genes in DNA sequence [2].

These studies have demonstrated an enrichment of RA genetic risk variants in immune

cell enhancers [3], but omitted the analysis of synovial fibroblasts or fibroblast-like

synoviocytes (FLS), the resident stromal cells of the joints, even though they are re-

sponsible for the production of many immune-related cytokines and chemokines [6, 7].

In addition to immune cells, FLS play a decisive role in the pathogenesis of RA and

are essential for the maintenance of normal joint functions. FLS from different joints

have different epigenomes, transcriptomes, and functions, which may contribute to the

characteristic pattern of joint involvement in different types of arthritis [8, 9]. FLS sub-

stantially contribute to joint inflammation and destruction in RA [10]. RA FLS have an

activated phenotype characterized by resistance to apoptosis, increased proliferation, se-

cretion of matrix-degrading enzymes, and production of cytokines and chemokines that

promote immune cell differentiation and survival. However, the cause of the activation

of FLS in RA is unknown and it is unclear whether this activation leads to or is a con-

sequence of the disease. Defining the contribution of FLS to the heritability of RA will

provide essential insights into this question.

For the first time, we have comprehensively mapped RA genetic risk variants to active

regulatory DNA elements in FLS. We generated multidimensional epigenetic data in

primary FLS, isolated from patients, to create a detailed outline of their chromatin

landscape. We conducted genetic fine mapping of RA loci by computing sets of cred-

ible single-nucleotide polymorphisms (SNPs) driving GWAS signals. We integrated the

credible SNP sets and chromatin datasets to provide evidence that RA risk variants can

be functionally relevant in FLS. We used chromatin conformation data to determine

enhancer–promoter interactions between risk variants in noncoding DNA regulatory

regions of FLS and their target genes. Furthermore, we assessed the influence of the

pro-inflammatory cytokine tumor necrosis factor (TNF) on these interactions, chroma-

tin accessibility, and gene expression in FLS. We combined FLS data with published

data of human tissues and cells [4, 11, 12] to identify putative causal SNPs, enhancers,

genes, and cell types for RA risk loci. Finally, we functionally verified enhancer-

promoter interactions by CRISPR-Cas technology and showed transcriptional effects of

fine-mapped risk variants in FLS samples from RA patients.

Results
Integration of epigenetic datasets to define the chromatin landscape of FLS

As a first step in our analysis, we generated diverse epigenetic and transcriptomic data-

sets from our primary FLS samples (Additional file 1: Table S1): chromatin immuno-

precipitation sequencing (ChIP-seq) for six histone marks (H3K4me3, H3K4me1,

H3K27me3, H3K36me3, H3K27ac, H3K9me3), Assay for Transposase-Accessible
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Chromatin sequencing (ATAC-seq), cap analysis gene expression sequencing (CAGE-

seq), chromatin conformation analysis (HiC, Capture HiC), and RNA sequencing

(RNA-seq) (Additional file 2: Table S2, quality control metrics in additional file 3: Data-

set S1, details in Online methods). For Capture HiC (CHiC), prey fragments containing

previously reported lead SNPs at RA loci were used [2] (details in Online methods).

We integrated these datasets and assigned 18 pre-trained chromatin states to the gen-

ome of FLS using ChromHMM [13]. We identified A/B compartments and Topologic-

ally Associating Domains (TADs) and determined significant chromatin interactions.

Finally, we incorporated RNA-seq data from FLS. These analyses provided a compre-

hensive annotation of the epigenome and transcriptome of FLS (Fig. 1a, b).

We cross-validated the individual datasets to confirm the quality of the generated

FLS data. As expected, open chromatin regions showed high enrichment of promoters

(transcription start sites [TSS]) and active enhancers (Fig. 2a). CHiC interactions were

enriched for promoters (TSS), sites of transcription, and enhancers (Fig. 2b). At TAD

boundaries, transcription and promoter states were enriched (Fig. 2c). Basal gene ex-

pression was highest in active TSS (Fig. 2d). Taken together, these analyses validated

that we accurately captured chromatin states and chromatin interactions in FLS and

that we have generated a comprehensive epigenetic and transcriptomic map of FLS

genomes.

TNF induces changes in chromatin organization that correspond to altered gene

expression in stimulated FLS

To explore the effect of a pro-inflammatory environment on the chromatin landscape

and transcriptional regulation of FLS, we performed HiC, CHiC, ATAC-seq, and RNA-

seq experiments in FLS with and without stimulation with TNF (Additional file 2:

Table S2).

We first computed changes in A/B compartments, which are large, cell-type-specific

organizational units of the genome, associated with chromatin activity (A = open chroma-

tin, B = closed chromatin) [14]. 94.8% of A and 95.7% of B compartments were consistent

between basal and stimulated FLS. One of the genomic regions that changed from inactive

to active after TNF stimulation contained RA-associated variants that interact with the

TNFAIP3 gene. Small changes in A/B compartments after stimulation are expected, as A/

B compartments infer chromatin activity at DNA segments in low resolution.

To increase the resolution, we used TADcompare [15] to explore the influence of

TNF on the organization of TADs in FLS. Genes within the same TAD tend to be co-

regulated and gene promoters and enhancers often interact within the same TAD [16].

Between our conditions, we identified an average of 4116 TAD boundaries in FLS sam-

ples. While 79% of TAD boundaries were unchanged between basal and stimulatory

conditions, 21% of differential TAD boundaries exhibited a change in position or

strength (Fig. 3a).

By analyzing CHiC data (details in Online methods), we observed around 800 quanti-

tatively differentially interacting regions between basal and stimulated FLS. The inten-

sity of the differential interactions between the regions correlated with the fold change

of expression of the interacting genes (Fig. 3b). Notably, interaction strength increased

after stimulation for genes with differential expression, irrespective of whether
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expression increased or decreased after stimulation, thereby suggesting that chromatin

interactions influence activating and repressive TNF transcriptional responses in FLS

(Fig. 3b).

Fig. 1 Epigenomic and 3D chromatin atlas of human FLS. a Schematic representation of the workflow to
comprehensively annotate the transcriptome, epigenome, and chromatin structure of FLS and define their
contribution to RA heritability. This figure was created using BioRender. b The SPRED2 locus as an example
genomic region demonstrating the annotation of epigenetic states and chromatin architecture in
unstimulated FLS. Shown are from top to bottom, one exemplary RNA-seq track, ChIP-seq peaks (H3K4me1,
H3K27ac, H3K4me3, H3K36me3, H3K27me3, H3K9me3), ChromHMM annotation in 7 different FLS lines (1:
OA hand FLS, 2: RA hand FLS, 3: OA shoulder FLS, 4: RA shoulder FLS, 5: healthy knee FLS, 6: OA knee FLS,
7: RA knee FLS), ATAC-seq peaks in 6 different RA FLS lines, A/B compartments (black bar open chromatin,
gray bar closed chromatin), chromatin interactions (Capture HiC)
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To further explore the regulation of gene transcription after TNF stimulation, we fo-

cused on CHiC baits and prey that exhibited increased interaction strength with genes

regulated after stimulation. We overlapped these regions with open chromatin peaks in

stimulated cells. We then used Hypergeometric Optimization of Motif EnRichment

(HOMER) to detect known transcription factor binding sites (TFBS) or DNA motifs

with high similarity to known TFBS (de novo DNA motif discovery), that were overrep-

resented at the sites with open chromatin, increased chromatin interactions, and differ-

ential gene expression (Fig. 3c).

Enrichment analysis of known TFBS in open chromatin identified TPA response ele-

ments (TREs; TGA(G/C)TCA) as the most enriched motif in the data sets with in-

creased as well as decreased gene expression (Additional file 4: Dataset S2). TPA

response elements serve as canonical binding sites for the subunits of the Activator

Fig. 2 Cross validation of generated datasets defining the chromatin landscape of FLS. a Log fold change
enrichment of chromatin states as defined by ChromHMM in open chromatin regions as identified by
ATAC-seq. b Log fold change enrichment of chromatin states as defined by ChromHMM in prey fragments
of Capture HiC measurements. c Log fold change enrichment of chromatin states as defined by ChomHMM
in consistent TAD boundaries. d Basal average expression of genes (RNA-seq counts) across non-TSS, TSS,
and random ChromHMM annotations. TSS = transcription start site, TSS_F = flanking TSS; TSS_up =
upstream TSS; TSS_down = downstream TSS; Tx = Transcription; Enh_gene = enhancer genic; ZNF = zinc
finger; Het_chrom = heterochromatin
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Protein-1 (AP-1) transcription factor. Open chromatin sites with increased CHiC inter-

actions, but decreased gene expression in stimulated FLS were additionally enriched for

BACH2 (broad-complex-tramtrack-bric-a-brac and Cap'n'collar homology 2) binding

sites (Additional file 4: Dataset S2). De novo DNA motif discovery in the dataset with

Fig. 3 Effect of TNF stimulation on the chromatin landscape in FLS. a Comparison of TADs boundaries
between basal and TNF-stimulated FLS by TADCompare. Number of non-differential (green) and differential
TAD boundaries is shown. Differential TAD boundaries are classified as boundary position changes
(complex, merge, shifted, split) or strength change (differential boundary magnitude). Complex, merged,
and split boundary changes represent the most disruptive changes of the 3D structure of the genome. b
Pearson correlation of the loop intensity as determined by CHiC with change in the expression of nearby
genes (log fold change). Negative numbers in the x-axis indicate downregulation, positive numbers
upregulation of gene expression. c Graphical representation of the RNA-seq, ATAC-seq, and CHiC data
integration to identify transcription factor binding sites in TNF-stimulated FLS. This figure was created using
BioRender. d De novo DNA motif discovery identified two motifs (motif 2 and motif 3) with high similarity
to the binding sites of homeobox (TAATTA) and forkhead box transcription factors (TAAA) in the dataset
with TNF-repressed genes.
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decreased levels of gene expression after TNF stimulation showed enrichment for two

DNA motifs with high similarity to binding sites for several developmental transcrip-

tion factors from homeobox and forkhead box protein families (Fig. 3d).

In summary, by combining CHiC, ATAC-seq, and RNA-seq analyses, we showed that

the FLS genome exhibits changes in 3D structure upon TNF stimulation. We con-

firmed the activating and repressive actions of AP-1 in regulating the TNF response of

FLS and we suggest that developmental transcription factors can serve as potential

novel repressors of transcriptional response to TNF in FLS.

FLS and immune cells are drivers of RA heritability

We used the generated knowledge on regulatory DNA elements in FLS to quantify the

heritability of RA that can be attributed to active regulatory DNA elements in FLS. We

considered RA risk loci attaining genome-wide significance (p < 5 × 10−8) in the Euro-

pean ancestry component of the largest published trans-ethnic RA GWAS meta-

analysis [2] and computed the partitioned heritability [17] in FLS and other cell types

(HLA regions excluded; details in “Methods” section). Epigenetic data for non-FLS cell

types were acquired from published datasets [11]. We defined active regulatory ele-

ments of the genome as the union of H3K4me1, H3K4me3, and H3K27ac peaks, as

these histone modifications are associated with transcriptional activity and enhancer/

promoter elements. With this approach, we estimated that 12–24% of the non-HLA

RA heritability can be attributed to the active DNA regulatory elements in FLS samples

(Fig. 4a). This analysis showed that both immune cells and FLS mediate the effects of

association signals and contribute notably to the heritability of RA.

Epigenetic annotation of fine-mapped SNPs in immune cells and FLS refines the putative

causal credible set SNPs for more than 30% of the RA risk loci

We then aimed to further characterize the RA SNPs in active DNA regulatory regions

in FLS (Additional file 5: Fig S1). We first used approximate conditional analyses imple-

mented in genome-wide complex trait analysis (GCTA) [18] to dissect the previously

identified RA risk loci [2]. Where lead SNPs at genomic loci mapped within 1Mb of

each other, the loci were merged (Additional file 6: Table S3). We identified 73 distinct

signals of association with RA at locus-wide significance (p < 10−5), with each signal be-

ing potentially driven by different underlying causal variants (Additional file 7: Table

S4). For each signal, we performed fine mapping to derive credible SNP sets that to-

gether account for ≥ 99% of the posterior probability of causality for the RA associ-

ation. Across all 73 signals, the RA credible SNP sets included a total of 8787 variants,

of which 2654 variants had posterior probability of causality > 0.01% (Additional file 8:

Table S5; Additional file 5: Fig S1).

We then overlapped the 2654 RA credible SNPs with the FLS epigenome and identi-

fied 274 SNPs within 23 associated signals mapping to active DNA regulatory elements

in FLS (Fig. 4b). We also calculated the total posterior probability across the credible

SNP sets found within active DNA regulatory elements for 111 primary cell types and

tissues, whose epigenomes were published by the Roadmap Epigenomics Mapping Con-

sortium [11] (Fig. 4b, Additional file 5: Fig S2). As expected, several credible SNP sets

exhibited high posterior probability in active DNA regulatory elements from B and T
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Fig. 4 (See legend on next page.)
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cells (n = 35 signals), of which some (n = 14 signals) also overlapped active DNA regu-

latory regions in FLS (Fig. 4b, Additional file 8: Table S5 column R). Intriguingly, we

identified several credible SNP sets that were active in FLS only, but not in B and T

cells (n = 9 signals; Fig. 4b, Additional file 8: Table S5 column R).

Based on our genetic fine-mapping analysis, we assigned the association signals to

three categories (Additional file 8: Table S5 column K, Table 1). First, well character-

ized signals (“category 1,” n = 19), where the credible set included ten or fewer SNPs or

≤ 3 SNPs contributing > 80% of the posterior probability of causality. Second, localized

associated signals (“category 2”, n = 26), where the credible set included ≤ 20 SNPs

with similar low posterior probabilities (10–20%) or the lead credible SNP accounted

for > 20% of the posterior probability. Third, poorly characterized signals (“category 3,”

n = 28), where genetic fine mapping was largely ineffective, resulting in large (> 20)

credible SNP sets with equally negligible posterior probabilities (< 5%) (Additional file

8: Table S5 column K, Table 1).

By mapping the credible SNP sets to the annotated active promoters and enhancers

in T cells, B cells, and FLS, we further refined nine of 19 category 1 loci to ≤ 3 credible

SNPs in active enhancers in either immune cells (n = 5 signals), FLS (n = 1 signal), or

both (n = 3 signals) (Table 1, Additional file 8: Table S5 columns L, M, N). Similarly,

we narrowed down the number of putative causal SNPs to ≤ 3 for 18 of the 26 category

2 signals, after mapping enhancer marks to the credible set SNPs in immune cells (n =

7 signals), FLS (n = 3 signals), or both (n = 8 signals) (Table 1, Additional file 8: Table

S5 columns L, M, N). Thus, by integrating genetic fine mapping with functional chro-

matin annotation in immune cells and FLS, we identified 27 association signals (37%)

that harbor ≤ 3 putative causal RA risk variants having high posterior probabilities and

mapping to cell type-specific active enhancers. Examples of the functional genome

organization at category signals 1–3 in FLS are shown in Additional file 5: Fig S3-S5.

Integrative analysis of genetic, expression, and epigenetic datasets links putative causal

genes and cell types

We then used our genetic fine mapping and epigenetic datasets to determine candidate

effector genes (proximal and interacting in FLS/immune cell types) and their expres-

sion in relevant cell types.

In total, 9 of the 73 signals were assigned exclusively to FLS, with 2 further signals

assigned to FLS and B cells, and 12 to all three analyzed cell types based on SNPs in

cell-type-specific enhancers (Table 2, Additional file 8: Table S5 column based on O, P,

Q, labelled in column R). To assign putative target genes to the association signals in

FLS, we identified significant CHiC interactions between the regions containing a

(See figure on previous page.)
Fig. 4 Heritability and causal SNPs in FLS. a Partitioned heritability (h2) of RA attributed to active regions in
each sample of FLS (n = 7) and 111 available Roadmap cell types/tissues (Epigenomics Mapping Roadmap
Consortium [11]). b The sum of posterior probability overlapping active DNA regulatory elements across
blood and T cell samples (Epigenomics Mapping Roadmap Consortium; green bar), FLS samples (red bar),
human stem cells (HCS), and B cells (Epigenomics Mapping Roadmap Consortium; blue bar) at each of the
73 sites. Active DNA regulatory elements were defined as the union of H3K4me3, H3K4me1, and
H3K27ac marks
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credible SNP set (CHiC baits, see details in “Methods”) and a gene promoter. We de-

fined gene promoters by downloading all transcripts from Ensembl (version 98) and

assigning a 1000-base pair window directly upstream of each transcript as a promoter.

In total, we determined 220,000 promoters for 57,602 genes, including noncoding

RNA. Across the 73 signals of association, gene target assignments yielded a total of

228 and 227 interacting, expressed FLS target genes in basal and TNF-stimulated con-

ditions, respectively, with 188 gene targets shared between the conditions (Additional

file 8: Table S5 columns W and X).

Credible SNPs in category 1 and 2 signals found predominantly in FLS implicated

genes including GRHL2, MYCBP, and RUNX1 (Table 2, Additional file 5: Figure S3).

FLS-assigned genes that were associated with category 3 association signals, which

showed negligible posterior probability (< 2%) in immune enhancer SNPs, included

SPRED2, RCAN1, CDK6, and RBPJ (Table 2, Additional file 5: Figure S5). Notably, the

24 credible SNPs in the RBPJ association signal and the 41 credible SNPs in the CDK6

association signal were reduced to just six and three SNPs, respectively, mapping to

FLS-specific enhancers. The RBPJ SNPs were localized in FLS-specific enhancers, with

none found in T or B cells (Additional file 8: Table S5, rs11933540). This indicated that

the putative causal SNPs in the RBPJ association signal might specifically affect the

function of FLS in RA.

We then integrated the credible set SNPs with our previously established CHiC dataset

from B cell (GM12878) and T cell (Jurkat) lines [12, 19]. We found that the RA credible

sets assigned to immune cell types associated with genes that are vital in T and B cell-

specific activities (Table 3, Additional file 8: Table S5 columns AA to AD). Genes in cat-

egory 1 and 2 signals, which associated with active immune cells enhancer regions, in-

cluded CTLA4, IL2RA, and GATA3 for T cells and BLK for B cells (Table 3, Additional

file 8: Table S5 columns AA to AD). Of note, the ANKRD55/IL6ST locus (rs7731626 in

Additional file 8: Table S5) had a single SNP in the credible set, an eQTL with both

ANKRD55 and IL6ST [20] confined to an enhancer exclusive to T cells in our analysis.

Immune cell-assigned genes from category 3, where credible SNPs in immune enhancers

accounted for > 30% of the posterior probability, but had negligible posterior probability

(< 5%) in FLS enhancers, included STAT4, CXCR5, CD28, and MYC.

These analyses highlighted a number of SNP-enhancer-gene combinations that could be

assigned to an immune cell or fibroblast-driven risk of developing RA. We were able to as-

sign > 60% of the non-HLA RA association signals with a putative causal cell type (FLS, B

cells, T cells) and putative causal gene (Additional file 8: Table S5 column R not “none”).

Compared to previous gene assignment results [2], our method provides empirical evidence

for an additional 104 RA-associated genes at the 73 European association signals.

TNF-induced alterations in 3D chromatin structure assign additional RA risk genes to FLS

At 17 of the 73 associated signals, we observed a change in chromatin interactions in

stimulated FLS, which were linked to 35 genes (Table 4). RNA-seq showed that the ex-

pression of 17 of the 35 genes was increased upon TNF stimulation in FLS (FDR <

0.05) (e.g., TRAF1, TNFAIP3, IFNAR2) (Table 4, Additional file 5: Fig S6). Nine of the

35 genes were downregulated after TNF in FLS (FDR < 0.05) (e.g., RBPJ and RNF41)

(Table 4).
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Table 3 Genes assigned to T and/or B cells based on posterior probability of SNPs in enhancers

Locus Chr SNP
cate
gory

FLS, T, B,
ALL, NONE
(based on
posteriors
of SNPs in
enhancers)

Top
posterior rs
numbers

Jurkat T
cells
proximal
genes

Jurkat T cells
distal genes

GM12878
B cells
proximal
genes

GM12878 B
cells distal
genes

5 chr1 1 B CELL rs6679677,
rs2476601

RSBN1;
PHTF1;
PTPN22

RSBN1; PHTF1;
PTPN22; AP4B1;
HIPK1-AS1;
HIPK1; OLFML3

RSBN1;
PHTF1;
PTPN22

RSBN1; PTPN22;
PHTF1; AP4B1-
AS1; BCL2L15;
AP4B1; HIPK1-
AS1; HIPK1;
OLFML3; LRIG2

6 chr1 2 B CELL rs1217404,
rs2476604,
rs1217420

RSBN1;
PHTF1;
PTPN22;
AP4B1-AS1

RSBN1; PHTF1;
PTPN22; AP4B1;
HIPK1-AS1;
HIPK1; OLFML3

RSBN1;
PHTF1;
PTPN22;
AP4B1-AS1

PTPN22; RSBN1;
PHTF1; AP4B1-
AS1; BCL2L15;
AP4B1; HIPK1-
AS1; HIPK1;
OLFML3; LRIG2;
FRMD8;
ARL13B; STX19

8 1 3 B CELL rs4657041,
rs1801274,
rs6671847

FCGR2A FCER1G;
NDUFS2; SDHC;
MPZ; CFAP126;
FCGR2A;
FCGR2B; FCRLA;
FCRLB;
RN7SL466P;
DUSP12; ATF6;
PCP4L1;
ADAMTS4

FCGR2A SDHC; MPZ;
FCGR2A;
FCGR2B; FCRLA;
FCRLB;
RN7SL466P;
DUSP12; ATF6;
CFAP126;
RNU6- 481P;
ADAMTS4;
NDUFS2

10 chr2 1 ALL rs10175798,
rs10173253,
rs906868,
rs7579944

LBH LBH LBH LBH; LCLAT1

11 chr2 2 ALL rs34695944,
rs56095903,
rs67574266,
rs13031237,
rs13031721

LINC01185;
REL; RNU4-
51P

LINC01185; REL;
RNU4- 51P;
PUS10;
PAPOLG;
RN7SL632P;
RNA5SP95;
B3GNT2; RNU6-
612P

LINC01185;
REL; RNU4-
51P

LINC01185; REL;
RNU4- 51P;
PUS10;
PAPOLG;
RN7SL632P;
RNA5SP95;
B3GNT2; RNU6-
612P

14 chr2 3 T CELL rs13426947,
rs3024859,
rs7568275,
rs11889341

STAT4 STAT4; RNU6-
959P; MYO1B

STAT4 STAT4; RNU6-
959P

16 chr2 3 T CELL rs1980421,
rs1980422,
rs7588874,
rs7422494

CD28;
RNU6-474P;
CTLA4

CD28; RNU6-
474P; CTLA4;
RAPH1; ABI2

CD28;
RNU6-474P;
CTLA4

CD28; CTLA4;
RNU6-474P;
RAPH1; PRKG1

17 chr2 1 T CELL rs231724,
rs231723,
rs231775

CTLA4 CTLA4; CD28;
RNU6- 474P;
RAPH1

CTLA4 CD28; CTLA4;
RNU6- 474P;
RAPH1

19 2 T CELL, B
CELL

rs9310852,
rs4680838,
rs9880772,
rs1353286

EOMES LINC02084;
EOMES;
LINC01967;
CMC1; AZI2;
ZCWPW2;
NEK10;
LINC01980

EOMES LINC02084;
EOMES; CMC1;
AZI2; ZCWPW2

20 chr3 1 ALL rs73081554,
rs185407974,
rs180977001,
rs35677470,

FLNB;
DNASE1L3;
FLNB- AS1;
ABHD6;

DNASE1L3;
ABHD6; RPP14;
HTD2; PXK;
PDHB; KCTD6;

FLNB;
DNASE1L3;
FLNB- AS1;
ABHD6;

DNASE1L3;
ABHD6; RPP14;
HTD2; PXK;
FLNB; FLNB-
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Table 3 Genes assigned to T and/or B cells based on posterior probability of SNPs in enhancers
(Continued)

Locus Chr SNP
cate
gory

FLS, T, B,
ALL, NONE
(based on
posteriors
of SNPs in
enhancers)

Top
posterior rs
numbers

Jurkat T
cells
proximal
genes

Jurkat T cells
distal genes

GM12878
B cells
proximal
genes

GM12878 B
cells distal
genes

rs114584537 RPP14;
HTD2; PXK

ACOX2;
FAM107A;
FAM3D-AS1;
FAM3D; FLNB

RPP14;
HTD2; PXK

AS1; PDHB;
KCTD6; ACOX2;
FAM107A;
FAM3D-AS1;
FAM3D

24 chr5 1 T CELL rs7731626 ANKRD55 ANKRD55;
RNA5SP184;
IL6ST

ANKRD55 ANKRD55;
RNU6-299P;
RNA5SP184;
IL31RA; IL6ST

28 chr6 3 ALL TMEM151B;
AARS2;
NFKBIE;
TCTE1

TMEM151B;
AARS2; TCTE1;
HSP90AB1;
SLC35B2;
MIR4647;
NFKBIE; SPATS1;
CAPN11;
TMEM63B;
RN7SL811P

TMEM151B;
AARS2;
NFKBIE;
TCTE1

TMEM151B;
AARS2; TCTE1;
NFKBIE;
HSP90AB1;
SLC35B2;
MIR4647;
MRPL14;
TMEM63B;
SPATS1;
TRIM38;
CAPN11; MTX2

31 chr6 2 B CELL rs2451258,
rs2485363,
rs654690 ,
rs1994564,
rs212389

RSPH3; TAGAP;
SYTL3;
C6orf99

RSPH3; TAGAP;
SYTL3; C11orf44

32 chr6 1 T CELL, B
CELL

rs1571878,
rs3093017,
rs10946216

CCR6 CCR6; RPS6KA2 CCR6 CCR6; SFT2D1;
RPS6KA2;
RNASET2;
MIR3939;
FGFR1OP;
GPR31; PPIL4

33 chr7 2 ALL rs186735625,
rs57585717,
rs2158624

JAZF1;
JAZF1-AS1;
RNU6- 979P

JAZF1; RNU6-
979P; JAZF1-
AS1; HOTTIP;
HOXA1;
HOTAIRM1;
HOXA3; HOXA-
AS2; HOXA4;
HOXA5; HOXA6;
HOXA-AS3;
HOXA7; HOXA9;
HOXA10-AS;
MIR196B;
HOXA10;
HOXA11;
HOXA11-AS;
EVX1-AS; EVX1

JAZF1;
JAZF1-AS1;
RNU6- 979P

JAZF1; RNU6-
979P; JAZF1-
AS1; HOTTIP;
HOXA11;
HOXA11-AS;
HOXA1;
HOTAIRM1;
HOXA3; HOXA-
AS2; HOXA4;
HOXA5; HOXA-
AS3; HOXA7;
HOXA9;
HOXA10-AS;
MIR196B;
HOXA10; EVX1-
AS; EVX1;
HOXA6; PARP9

34 chr7 3 FLS, B CELL rs4272,
rs8179,
rs42034

CDK6 CDK6; PEX1;
RBM48;
FAM133B;
CDK6-AS1;
SAMD9; VPS50;
HEPACAM2

CDK6 CDK6;
FAM133B;
SAMD9; CDK6-
AS1
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Since TADs have been shown to define probable limits of gene regulation, we

also overlapped TADs with the association signals. We observed that each cred-

ible SNP set is usually found within one or two adjacent TADs. We then

Table 4 List of all loci with significantly changed chromatin interactions after TNF stimulation and
expression of associated genes after TNF stimulation

Locus Interacting
gene

Base mean
expression

log2Fold
Change

lfcSE stat p value padj

12 SPRED2 772.22 − 0.34 0.08 − 4.36 1.29E−05 7.23E−05

19 SLC4A7 3702.62 − 0.23 0.13 − 1.80 0.072 0.145

20 PXK 1012.38 − 0.33 0.11 − 3.05 0.002 0.008

23 RBPJ 5319.00 − 0.56 0.22 −
2.51

0.012 0.032

24 IL6ST 18,850.31 0.72 0.08 8.91 4.91E−19 2.30E−17

30 TNFAIP3 7841.42 4.57 0.19 23.43 2.14E
−121

3.51E
−118

34 CDK6 4906.40 0.92 0.12 7.89 3.05E−15 9.21E−14

35 TNPO3 1671.71 0.05 0.07 0.76 0.449 0.597

41 PHF19 1065.75 0.71 0.14 5.09 3.56E−07 2.74E−06

42 TRAF1 1041.51 2.80 0.22 12.65 1.14E−36 1.98E−34

48 VPS37C 552.68 0.71 0.07 10.56 4.76E−26 3.90E−24

52 CDK2 648.74 0.85 0.13 6.69 2.23E−11 3.72E−10

52 RAB5B 1805.92 − 0.24 0.06 − 4.06 4.88E−05 2.42E−04

52 RNF41 1878.98 − 0.63 0.11 −
5.62

1.93E−08 1.88E−07

52 ANKRD52 1954.38 0.23 0.07 3.09 0.002 0.007

52 CNPY2 1033.14 0.37 0.07 5.30 1.16E−07 9.89E−07

52 PAN2 312.46 − 0.23 0.08 − 2.80 0.005 0.015

52 STAT2 4951.27 0.74 0.20 3.77 1.64E−04 7.21E−04

52 TIMELESS 728.81 1.11 0.14 8.10 5.66E−16 1.87E−14

52 GLS2 18.80 0.34 0.26 1.31 0.191 0.317

53 SLC26A10 10.97 − 0.29 0.39 − 0.75 0.455 0.603

53 OS9 5461.71 − 0.12 0.07 − 1.83 0.068 0.138

53 AGAP2 5.83 0.43 0.31 1.36 0.173 0.294

53 TSPAN31 370.51 − 0.29 0.11 − 2.56 0.010 0.028

53 CDK4 1630.73 0.06 0.07 0.88 0.378 0.529

53 AVIL 64.47 − 0.44 0.15 − 2.93 0.003 0.011

53 CTDSP2 3707.75 − 0.47 0.06 − 7.79 6.45E−15 1.85E−13

54 SH2B3 1493.15 0.52 0.10 5.29 1.25E−07 1.06E−06

54 ATXN2 781.23 − 0.05 0.08 − 0.71 0.478 0.625

64 ORMDL3 800.27 0.40 0.08 4.75 1.99E−06 1.32E−05

64 PSMD3 1842.20 0.18 0.05 3.66 2.53E−04 0.001

65;68 IFNAR2 644.38 2.81 0.11 26.14 1.14E
−150

2.92E
−147

68 IFNAR1 2355.18 0.95 0.08 12.55 3.95E−36 6.53E−34

68 IFNGR2 1248.98 1.10 0.08 12.90 4.71E−38 9.03E−36

68 ITSN1 1138.10 − 0.24 0.11 − 2.10 0.036 0.080

Genes with a log2fold change > ± 0.5 and padj < 0.05 are marked in bold. lfcSE standard error for log2 fold change, stat
statistic value for the null hypothesis, padj p value adjusted for multiple testing using Benjamini-Hochberg
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examined the genes within these TADs in basal and stimulated FLS and found

that alterations in TAD boundaries after stimulation led to different genes being

overlapped by associated TADs. Genes found within stimulation-specific TADs

included TNFAIP3, JAZF1, ZFP36L1, INFGR1, and LBH. Several of these genes,

including TNFAIP3, JAZF1, IFNGR1, and LBH, also showed differential gene ex-

pression between basal and stimulated states (Table 5, Additional file 8: Table S5

columns AH and AI).

Table 5 Alterations in TAD structure after TNF stimulation and genes in stimulation-specific TADs

Locus Chr TAD_diff Type of
difference

Enriched_
in

Expressed in FLS Differential expressed in FLS (p
adj < 0.05)

9 chr1 Differential Strength
Change

Basal RC3H1; RABGAP1L; PRDX6; KLHL20;
GAS5-AS1; GAS5; ZBTB37

GAS5; PRDX6; ZBTB37; RABGAP1L;
RC3H1

10 chr2 Differential Complex Basal LBH; LCLAT1; YPEL5 LBH; LCLAT1

13 chr2 Differential Merge Stim NPAS2 NPAS2

19 chr3 Differential Strength
Change

Basal CMC1; SLC4A7; AZI2 CMC1

20 chr3 Differential Split Basal SLMAP; FLNB; FLNB-AS1; PXK;
PDHB

PXK; FLNB

21 chr3 Differential Strength
Change

Basal PCCB; PPP2R3A; MSL2; STAG1 PCCB

22 chr4 Differential Strength
Change

Basal WDR1; ZNF518B

27 chr6 Differential Strength
Change

Basal SRPK1; MAPK14; PI16; LHFPL5;
BRPF3; KCTD20; STK38; SRSF3;
PANDAR; CDKN1A; C6orf89; MTCH1

SRPK1; C6orf89; STK38; MTCH1;
KCTD20; BRPF3; CDKN1A; SRSF3

28 chr6 Differential Strength
Change

Stim RSPH9; VEGFA; CDC5L; TMEM63B;
HSP90AB1; SLC35B2

TMEM63B; CDC5L

29 chr6 Differential Strength
Change

Stim IFNGR1; WAKMAR2; TNFAIP3 TNFAIP3; IFNGR1

30 chr6 Differential Strength
Change

Stim IFNGR1; WAKMAR2; TNFAIP3 TNFAIP3; IFNGR1

32 chr6 Differential Strength
Change

Basal RPS6KA2; AFDN

33 chr7 Differential Strength
Change

Stim CREB5; TAX1BP1; JAZF1 JAZF1; TAX1BP1

47 chr11 Differential Strength
Change

Basal TRIM44; FJX1; COMMD9 COMMD9

48 chr11 Differential Strength
Change

Basal FADS2; SLC15A3; TKFC; INCENP;
AHNAK; INTS5; CCDC86; PRPF19;
TMEM109; TMEM132A; VPS37C;
DDB1; CYB561A3; TMEM138;
CPSF7; MYRF; FEN1; FADS1; FADS3;
RAB3IL1; BEST1; FTH1; EEF1G; TUT1;
MTA2; EML3; ROM1; GANAB;
LBHD1; CSKMT; UQCC3; UBXN1;
LRRN4CL; HNRNPUL2-BSCL2; HNRN
PUL2; TMEM179B; TMEM223; NXF1;
STX5; RNU2-2P; SLC3A2

TMEM132A; FTH1; SLC15A3; FADS1;
AHNAK; VPS37C; INCENP; RAB3IL1;
LRRN4CL; EEF1G; TMEM138; ROM1;
TUT1; DDB1; FADS2; CCDC86;
MTA2; TMEM109

49 chr11 Differential Strength
Change

Basal ACAT1; ATM; CUL5; NPAT;
POGLUT3

ATM; ACAT1; NPAT; CUL5

57 chr14 Differential Strength
Change

Basal ZFYVE26; ZFP36L1

65 chr18 Differential Split Basal SPIRE1; SEH1L; CEP192; AFG3L2;
CEP76

CEP76; CEP192; SPIRE1; SEH1L

72 chr22 Differential Strength
Change

Basal MAPK1; UBE2L3; PPIL2; YPEL1;
PPM1F

MAPK1; UBE2L3

73 chr22 Differential Strength
Change

Basal JOSD1; GTPBP1; SUN2; CBX6;
APOBEC3C; CBX7; RPL3; MIEF1;
ATF4; RPS19BP1

GTPBP1; RPL3; SUN2; ATF4; CBX6

Ge et al. Genome Biology          (2021) 22:247 Page 20 of 39



The correlated change in chromatin structure, interaction strength of RA implicated

regions, and gene expression upon stimulation demonstrated how these loci are dy-

namic and active in FLS and suggests that RA-associated variants could affect the tran-

scriptional response to TNF in FLS.

TNF stimulation induces major changes in chromatin organization of the TNFAIP3 and

IFNGR2 association signals with concomitant effects in the expression of interacting

genes in FLS

Some of the RA association signals emerged as particularly interesting in FLS, exempli-

fying how stimulation-induced changes in chromatin conformation and gene expres-

sion can affect RA risk in FLS.

The intergenic region on chromosome 6q23 between OLIG3 and TNFAIP3,

which contains eight credible SNPs (rs17264332 in Additional file 8: Table S5),

was dynamically linked to the TNFAIP3 gene through DNA accessibility, chroma-

tin interactions, and gene expression. The organization of this genomic region

changed from a closed, inactive (compartment B) to an open, active chromatin

conformation (compartment A) upon TNF stimulation of FLS (Fig. 5a), and TAD

boundary strength increased in TNF-stimulated FLS (Table 5). These substantial

alterations to the chromatin organization coincided with a strong increase in the

expression of the interacting TNFAIP3 gene in FLS (Fig. 5a, Table 4, Additional

file 5: Fig S6).

Similarly, we demonstrated stimulation-induced changes in chromatin activity

in the IFNGR2 region (rs73194058, Additional file 8: Table S5) in FLS. Our CHiC

analysis showed that the credible set SNPs in this region interacted with several

genes relevant to the interferon (IFN) pathway, such as IFNAR2, IL10RB, IFNA

R1, and IFNGR2 (Additional file 8: Table S5 columns W to Z and Fig. 5b). TNF

stimulation of FLS induced dynamic changes in chromatin interactions at this

locus and increased the expression of IFNAR2, IFNAR1, and IFNGR2 (Additional

file 5: Fig S1, Table 4, Fig. 5b). Additionally, chromatin accessibility in the region

of IFNAR2 changed from an inactive B to an active A compartment in stimulated

FLS (Fig. 5b).

The TNFAIP3/IFNGR1 region on chromosome 6 and the IFNAR1/IFNGR2 region on

chromosome 21 interacted with genes encoding five subunits of the IFN I/III receptors

in FLS (Fig. 5a,b), suggesting a close genetic link between FLS function and IFN

response in RA.

Genes linked to RA risk SNPs in FLS are functionally interlinked and regulate FLS-relevant

RA functions

To predict biological processes influenced by potential transcriptional effects of risk

variants active in FLS, we conducted analyses to predict protein-protein interaction,

pathway enrichment, and functional annotation clustering. For these analyses, we in-

cluded all target genes of the RA association signals that were assigned to FLS as a

causal cell type (“All” and/or “FLS” in column R of Additional file 8: Table S5).

We found significantly enriched protein-protein interactions for the genes in the loci

active in FLS by using STRING protein-protein interaction networks (PPI enrichment
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Fig. 5 TNFAIP3 and IFNAR1 genetic risk loci—exemplary regions linked to TNF stimulation. Two exemplary
risk regions where TNF stimulation had profound effects on chromatin structure and influenced the genetic
regions containing RA SNPs. a The TNFAIP3 region on chromosome 6q23 (red arrow) containing RA
credible SNPs (red lines, rs17264332 in Additional file 8: Table S5) changed from closed chromatin (light red
bar) to open chromatin state (blue bar) after TNF stimulation and exhibited increased interactions with the
promoter of TNFAIP3 in stimulated FLS (see also Table 4). b The genomic IFNGR2 region of the credible SNP
set on chromosome 21 (rs73194058 in Additional file 8: Table S5, red arrow) interacted with several nearby
genes. These interactions were further enhanced by TNF stimulation (see also Table 4). Chromatin at the
IFNAR2 gene locus changed from a closed (light red bar) to open (blue bar) state in stimulated FLS. RNA-
seq tracks show one randomly chosen RA hand, RA knee, and RA shoulder sample with (black) or without
(gray) TNF stimulation
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p value < 1.0e−016; Fig. 6a) and identified additional functional connections between

the assigned genes by literature search. For instance, ZFP36L, CDK6, and RUNX1 were

all assigned to signals active in RA (Additional file 8: Table S5 column R), are function-

ally connected, and regulate cell proliferation. CD40 (rs4239702 in Additional file 8:

Table S5), RBPJ (rs11933540 in Additional file 8: Table S5), and TRAF1 (rs10985070 in

Additional file 8: Table S5) may constitute another genetically influenced interlinked

functional network in FLS.

Gene Ontology (GO) molecular function analysis (Fig. 6b) and functional annotation

clustering of enriched pathways with the genes associated with credible set SNPs in

Fig. 6 Predicted functional networks of genes that were associated with SNPs active in FLS. a A protein-
protein interaction network was established using STRING with default settings (medium confidence). The
obtained network had more interactions than expected by chance with a protein-protein-interaction
enrichment p value of 1.28e−08. The thickness of the lines indicates the strength of data support. Colors,
distances, and location on the map were assigned randomly. b Functional enrichment of genes interacting
with SNPs active in FLS was detected using ToppFun in default settings. Significant terms for GO molecular
function are shown. FDR = false discovery rate; B&H = Benjamini-Hochberg ; B&Y = Benjamini-Yekutieli
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FLS (Additional file 8: Table S5 column R and columns U-Z) revealed several clusters

highly relevant to RA pathogenesis. These clusters included enrichment of genes in-

volved in IFN response and viral defence (IFNAR1, IFNAR2, CD40, IFNGR, C5, IL-

10RB) (Database for Annotation, Visualization and Integrated Discovery DAVID [21,

22] enrichment score 1.22), as well as lipid metabolism and fatty acid synthesis

(FADS1-3, ACOX2, LCLAT1, JAZF1, DAGLA) (DAVID enrichment score 1.91). In

addition, “cilium morphogenesis” emerged as an enriched term (DAVID enrichment

score 0.87) and several genes associated with RA risk SNPs in FLS were connected to

the formation of the primary cilium (C5orf30, GSN, TMEM138, TMEM216, CNTRL,

INCENP, ACTR2).

Overall, by integrating epigenetic and transcriptional data in FLS, we identified sev-

eral functional relationships among RA risk variants and their target genes active in

FLS. The multi-level effects of RA risk variants on key signalling pathways may contrib-

ute to the accumulated genetic risk in driving FLS activation and proliferation in RA.

RA risk SNPs in the RBPJ enhancer region confer joint-specific genetic effects in FLS

Our epigenetic and functional analyses of the RBPJ association signal identified RBPJ as

a candidate causal and functional gene in FLS (rs11933540 in Additional file 8: Table

S5). Mapping of the 24 credible SNPs to FLS enhancers in the RBPJ association signal

reduced the number of likely causal SNPs to six, which lie in active chromatin in FLS

(Additional file 8: Table S5 rs11933540). To confirm enhancer activity of these regions,

we selected three SNPs in three different regions within the RBPJ association signal

(rs7441808, rs35944082, rs874040, Fig. 7a). We cloned oligonucleotides (31 bp) with

the respective risk and non-risk variants in the middle into luciferase promoter vectors

and transfected them into a human fibroblast cell line (HT1080). All three regions

showed enhancer activity; however, luciferase activity was similar for both alleles (Fig.

7b). For rs874040, chromatin conformation analysis showed direct interactions with the

RBPJ gene (Fig. 7a). To functionally establish that the rs874040-containing enhancer re-

gion can regulate the expression of RBPJ, we transduced FLS with lentiviral particles

containing dCas9-VPR and two guide RNAs (g9 or g12) targeting the rs874040-

containing enhancer region (Additional file 5: Fig S7). FLS transduced with the activat-

ing dCas9-VPR and guide RNAs increased the expression of RBPJ compared to FLS

transduced with the respective guide RNAs without dCas9-VPR (Fig. 7c). Even though

the upregulation of RBPJ expression was modest (30%), which could be due to enhan-

cer redundancy in this region and is consistent with previous data showing the limited

efficiency of enhancer activation with the dCas9-VPR system [23], this experiment veri-

fied the regulation of RBPJ expression by the rs874040-containing enhancer region.

FLS homozygous for the risk allele of rs874040 exhibited lower expression of RBPJ

mRNA compared to FLS with the wild-type variant. This effect was, however, present

only in FLS from upper extremity joints, and not from lower extremity joints (Fig. 7d).

It is known that RBPJ binds to the promoter of HES1 and represses its transcription

[24]. Accordingly, the expression of HES1 was increased in FLS from patients homozy-

gous for rs874040 in upper extremity joints (Fig. 7e). TNF stimulation significantly

downregulated RBPJ mRNA expression in FLS (Table 4), and FLS from RA patients

expressed less RBPJ than FLS from patients with arthralgia (Fig. 7f). These data indicate
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Fig. 7 RBPJ expression in FLS is affected by genotype and disease. a Fine mapping, epigenetic and
chromatin conformation analyses at the RBPJ locus. Black arrows indicate rs7441808, rs35944082, and
rs874040, which were selected for further analysis. b Luciferase reporter assays showing relative enhancer
activity of oligonucleotides containing risk (gray) and wild-type variants (black) of rs7441808, rs35944082,
and rs874040 compared to empty vectors (set to 1). One sample t test. c RBPJ expression in FLS transduced
with VP64-p65-Rta dCas9 (VPR) and two different guide RNAs (g9 and g12) targeting the genomic region
around chr4:26106575 (rs87040). RBPJ expression was normalized to FLS that were transduced with
respective guide RNAs but not VPR-dCas9 (set to 1). –deltaCt = cycle of threshold of RBPJ expression—cycle
of threshold RPLP0. One sample t test. d RBPJ expression in FLS isolated from individuals homozygous for
rs874040 in the locus near the RBPJ gene (0), heterozygous (1), or homozygous for the wild-type variant (2).
Upper extremity joints included joints of the hand, elbows, and shoulders; lower extremity joints included
hips, knees, and joints of the feet. One-way ANOVA. e Expression of HES1 in the same FLS cohort. One-way
ANOVA. f RBPJ expression in individuals with joint pain, but no histological signs of arthritis (arthralgia), OA
and RA. One-way ANOVA with Bonferroni correction
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that genetic predisposition and a pro-inflammatory environment can affect RBPJ ex-

pression in FLS, which might lead to increased activation of the Notch signalling path-

way via HES1.

To explain the joint-specific effect of rs874040, we explored the enhancer landscape

and the chromatin interactions in different upper and lower extremity joints. CAGE-

seq data showed that the enhancer activity within the RBPJ locus is higher in knee FLS

compared to shoulder and hand FLS (Fig. 8a). ATAC-seq peaks largely overlapped with

CAGE-seq enhancer signals, being more abundant in knee FLS than in shoulder or

hand FLS (Fig. 8b). Shoulder FLS appeared to mainly use an upstream enhancer that

interacted with the RBPJ risk locus (green boxes, Fig. 8a–c). Overlap of ATAC-seq and

Fig. 8 Joint-specific enhancers and chromatin interactions in the RBPJ locus might influence the joint-
specific expression of RBPJ. a CAGE measurements of active enhancers (pink bars) and active promoters
(light blue bars) in FLS from knees (n = 2), metacarpophalangeal (MCP) joints (n = 3), and shoulders (n = 2).
Red box highlights enhancer used in MCP joints overlapping risk SNPs. Green box highlights main enhancer
in shoulders. b Representative depiction of open chromatin as measured by ATAC-seq (black bars) in FLS
from knees (n = 3), MCP joints (n = 2), and shoulders (n = 2) and representative depiction of ChromHMM
regulatory regions in FLS from knees (n = 3), MCP joints (n = 2), and shoulders (n = 2). Green box highlights
main enhancer in shoulders. c Chromatin interactions in FLS from knees (n = 2), MCP joints (n = 2), and
shoulders (n = 2) as measured by CHiC. Green box highlights interaction of the shoulder enhancer with the
risk locus
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CAGE-seq analyses was weaker in hand FLS, but CAGE-seq data indicated that hand

FLS used an enhancer within the risk locus (red box, Fig. 8a). Additionally, chromatin

interactions within the locus were generally weaker in hand FLS (Fig. 8c). Knee FLS ac-

tivated several enhancers (Figs. 8a,b) and exhibited strong chromatin interactions across

the locus (Fig. 8c). We analyzed DNA-binding motifs in the enhancer overlapping the

RA risk locus spanning chr4:26090045-26090465 (hg19) (red box in Fig. 8a) by using

the JASPAR2020 database [25]. This enhancer contained TFBS for different HOX tran-

scription factors (HOXA6, HOXA7, HOXA10, HOXB2, HOXB6, HOXB7, HOXB13,

HOXD3, HOXD9, HOXD13), similar to the DNA motifs identified in open chromatin

at repressed genes after TNF stimulation in FLS (Fig. 3d), which are expressed in a

joint-specific manner in FLS [26].

Together, these data suggest that joint-specific differences in chromatin interactions

and enhancer usage could underlie the joint-specific effects of rs874040 on RBPJ ex-

pression in upper extremity joints. This illustrates that RA genetic risk can be different

between the joints, thereby shaping a specific pattern of joint involvement in RA.

Discussion
Deciphering the role of causal genetic variants underlying GWAS loci in RA, albeit

challenging, provides an unbiased strategy to understand the core disease pathways and

guide drug discovery [2, 27]. Here we demonstrate that a significant proportion of the

73 European ancestry non-HLA RA association signals contain disease-associated vari-

ants that are located within active regulatory DNA elements in FLS. Linking these

DNA regions with target genes indicates genes and biological pathways that trigger RA

susceptibility by stromal cell activation in the joint. Thus, we provide for the first time

substantial evidence for an independent, causal role of FLS in RA genetic susceptibility

and pathogenesis.

As a first step in our analysis, we created a comprehensive map of the epigenetic

landscape of FLS with and without TNF stimulation and assessed key regulators of the

transcriptional response of FLS to TNF. By increasing the resolution of our measure-

ments from A/B compartments to TADs and chromatin interactions, we found sub-

stantial changes in 3D structure of the FLS genome upon TNF stimulation. We

confirmed AP-1, which is intimately linked to the pathogenesis of RA [28], as major

transcription factor regulating changes in gene expression of FLS after TNF. AP-1 bind-

ing sites were enriched at enhancer sites of genes with increasing as well as repressed

gene expression in TNF-stimulated FLS. This is in line with findings that different sub-

units of the AP-1 family form homo- and heterodimeric transcription factor complexes

with distinct activating and repressing functions [29]. Additionally, our data suggest

that BACH2 may play a notable role in regulating the TNF response of FLS in RA. Like

AP-1, BACH2 belongs to the basic region leucine zipper (bZIP) family, but has a

slightly different DNA sequence binding site (TGCTGAGTCA) and has a bric-a-brac-

tramtrack-broad-complex (BTB) domain, which specifically interacts with co-repressors

to repress transcription [30]. BACH2 is a highly conserved repressor with a central

function in terminal differentiation, maturation, and activity of B and T cells [31]. In-

tronic SNPs within the BACH2 gene have been associated with the risk of different

immune-mediated diseases, including RA [32, 33]. Furthermore, de novo motif discov-

ery indicated a potential role for developmental transcription factors of the homeobox
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and forkhead box protein families in transcriptional repression of genes in TNF-

stimulated FLS. Since some of these transcription factors are exclusively expressed in

FLS at distal joint locations (HOXA13, HOXD13) [8], this suggests that TNF responses

of FLS may be different at specific joint locations. However, de novo DNA motif dis-

covery algorithms have some pitfalls. Due to the non-random nature of the genomic se-

quence, the rate of false positives is high and partial overlap of enriched motifs with

known transcription factor binding motifs may be coincidental. Thus, these results

should be considered with caution.

With our approach, we were able to assign RA association signals to immune and/or

stromal cells. Genes implicated in T cells, but not in FLS, showed a pattern of involve-

ment in “canonical” T cell immunity, including CTLA4, CD28, IL2RA, and GATA3.

Similarly, genes enriched in B cell-specific enhancers were involved in B cell biology,

including IRF8, BLK, and TAB1. The stromal activation observed in RA joints was

clearly reflected in the predicted function of the identified FLS-specific regulatory vari-

ants, many of which were previously associated with RA pathogenesis and are con-

nected by functional networks. For example, several genes linked to RA credible SNPs

in FLS were implicated in cell proliferation and tumor development (e.g., SPRED2 [34],

GRHL2 [35], CDK6 [36], RUNX1 [37], and ZFP36L [38]). The transcription factor

ZFP36L negatively regulates the expression of CDK6 [39] by binding to the 3′UTR re-

gion of the CDK6 gene, which contains the credible set SNPs at this locus. CDK6 in

turn interferes with DNA binding of Runx1 [40]. Furthermore, CD40 activation in FLS

increased the expression of several cytokines relevant in RA, including VEGF and

RANKL [41, 42]. RBPJ, a regulatory transcription factor of the Notch signalling path-

way, has been shown to repress the activation of CD40 [43]. Similarly, TRAF1 can

negatively regulate CD40 activity [44].

Most notably, the association signals on chromosome 6 (TNFAIP3/IFNGR1) and

chromosome 2 (IFNAR/IFNGR2) could critically impact the contribution of FLS to the

development of RA. Chromatin interactions in these regions connected RA risk variants

with several genes encoding the subunits of type I (IFNAR1, IFNAR2), type II (IFNGR1,

IFNGR2), and type III (IL-10RB) interferon receptors in FLS. Furthermore, they tightly

linked the IFN response to TNF stimulation by interconnection with the TNFAIP3

gene, encoding the TNF signalling repressor A20, and by their reaction to TNF stimu-

lation. All three types of interferons signal via the JAK-STAT signalling pathway,

which, along with TNF, is one of the central therapeutic targets in RA. IFN pathways

are strongly associated with the pathogenesis of RA and IFN-responsive genes are in-

duced in FLS upon stimulation with TNF [45]. A type I interferon gene signature is de-

tectable in up to two thirds of patients with RA [46], and it associates with an

increased risk of developing RA as well as with therapeutic response to biological

DMARDs like TNF inhibitors [47, 48]. In FLS, TNF induces an extensive interferon

gene response via secondary autocrine production of IFNβ and the activation of the

IRF1-IFNβ-IFNAR-JAK-STAT1 axis [49, 50]. Down syndrome (trisomy 21) leads to in-

creased dosage of the IFN receptors encoded on chromosome 21, which results in a

type I interferon gene signature with constant activation of interferon pathways in fi-

broblasts [51]. Notably, people with Down syndrome are at increased risk of developing

erosive, inflammatory seronegative arthritis of their hands and wrists [52]. Together,
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this strongly suggests a causal role for stromal activation of IFN pathways in the devel-

opment of RA.

We showed that RA risk allele rs874040 is associated with reduced expression of

RBPJ in FLS in a location-specific manner. RBPJ, also called CBF1 or CSL, is a key tran-

scriptional regulator of the Notch signalling pathway [53]. In the absence of Notch sig-

nalling, RBPJ represses Notch target genes (e.g., HES1). Upon activation of Notch

signalling, RBPJ binds to the intracellular domain of the Notch receptor and enhances

Notch-dependent gene expression. Loss of RBPJ leads to activation of dermal fibro-

blasts and promotes their transformation into cancer-associated fibroblasts (CAFs),

which play a crucial role in tumor development and growth [54, 55]. Activation of

Notch signalling was shown in RA FLS and induced FLS proliferation [56]. Further-

more, Notch signalling is critical for shaping the synovial environment by guiding the

development of THY1+ sublining FLS, a subset of FLS that is expanded in RA synovial

tissues [57]. Constitutive lower levels of RBPJ in FLS from individuals carrying the RBPJ

risk variant could favor synovial enrichment of THY1+ sublining FLS, which are con-

sidered critical for the development of RA. Joint-specific differences in the chromatin

landscape in this locus exemplify how genetic risk could result in the specific patterns

of joint involvement that typically occur in chronic inflammatory joint diseases. Add-

itionally, joint-specific expression of HOX transcription factors [8], for which we sug-

gest a role in gene repression after TNF stimulation in FLS, could contribute to joint-

specific differences in the susceptibility to RA.

Further pathways that we found enriched in genes targeted by RA credible SNPs were

connected to lipid metabolism and the primary cilium. FADS1 and 2 have been impli-

cated in the production of anti-inflammatory unsaturated fatty acids in LPS-treated

macrophages, contributing to the resolution phase of LPS-driven inflammatory re-

sponse in macrophages [58]. Changes in the lipid metabolism have been suggested in

RA FLS [59], but specific functional data does not exist so far. The primary cilium

serves as a hub for several cell signalling pathways, e.g., Notch [60] and wnt signalling

[61]. In FLS, it was shown that TNFR1 and TNFR2 localize to the cilium pit [62]. The

cilium connected proteins C5orf30 and GSN that we found interacting with RA risk

variants in FLS were previously shown to be negative regulators of arthritis in mice [63,

64]. Another ciliary protein, SPAG16, was found to be a genetic risk factor for joint

damage progression in RA patients, increasing the production of matrix-

metalloproteinases in FLS [65]. Future studies are required to demonstrate how

changes in lipid metabolism and primary cilium affect the function of FLS and influ-

ence RA pathogenesis.

With our approach, we could connect several RA association signals with potential

pathogenic genes and pathways in RA FLS. However, our data does not allow any con-

clusion on differences in the chromatin landscape that might exist between healthy FLS

and RA FLS as previously shown [66]. Therefore, we cannot exclude the possibility that

there are differences in chromatin interactions and open chromatin between healthy

and RA FLS that we cannot detect in our study and that would affect our results. How-

ever, the epigenetic landscape in RA FLS might already be changed before the onset of

the disease, as shown for changes in DNA methylation [67] and this might be one rea-

son why these genetic risk factors trigger the disease in some people but not in others.

To address this, longitudinal studies analyzing the epigenetic landscape at different
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stages of disease development are needed. Another limitation of our study is the low

samples size used in most experiments, which again is due to the more difficult accessi-

bility of synovial tissues compared to, e.g., blood. The statistical analysis must therefore

be interpreted with caution.

Conclusions
Overall, our research significantly advances the knowledge about putative causal SNPs,

enhancers, genes, and cell types affected by genetic risk loci in RA. Our analysis can

direct future studies to investigate pathways that are genetically affected in a cell-type-

specific way. This will ultimately enable the connection of an individual’s genetic risk

with the causal pathways and cell types that drive disease, paving the way to stratified

treatment decisions and precision medicine.

Methods
Patients and cell culture

Synovial tissues were obtained from OA and RA patients undergoing joint replacement

surgery at the Schulthess Clinic Zurich, Switzerland. Patient’s characteristics are de-

scribed in Additional file 1: Table S1. RA patients fulfilled the 2010 ACR/EULAR

(American College of Rheumatology/European League Against Rheumatism) criteria

for the classification of RA [68]. Samples from patients with joint pain without inflam-

mation or cartilage destruction (healthy, 3 male/3 female, mean age 39, range 23–49)

were obtained from the Queen Elizabeth Hospital in Birmingham, UK. Synovial tissues

were digested with dispase (37 °C, 1 h) and FLS were cultured in Dulbecco’s modified

Eagle’s medium (DMEM; Life Technologies) supplemented with 10% fetal calf serum

(FCS), 50 Uml−1 penicillin/streptomycin, 2 mM L-glutamine, 10 mM HEPES, and 0.2%

amphotericin B (all from Life Technologies). Purity of FLS cultures was confirmed by

flow cytometry showing the presence of the fibroblast surface marker CD90 (Thy-1)

and the absence of leukocytes (CD45), macrophages (CD14; CD68), T lymphocytes

(CD3), B lymphocytes (CD19), and endothelial cells (CD31). Cell cultures were negative

for mycoplasma contamination as assessed by MycoAlert mycoplasma detection kit

(Lonza). FLS were used between passages 4–8. Information on the assays performed on

each sample is given in Additional file 2: Table S2.

RNA sequencing

RNA sequencing data from unstimulated samples (Additional file 2: Table S2) was

retrieved from the European Nucleotide Archive (ENA) with the primary accession

code PRJEB14422. A detailed description of sample preparation and sequencing

procedures is given in Frank-Bertoncelj et al. [8]. For RNA sequencing of TNF-

stimulated FLS, cultured FLS were treated with 10 ng/ml human recombinant TNF

(Roche) for 24 h or were left untreated. Total RNA was isolated using the RNeasy

Mini kit (Qiagen) including on-column DNAase I digestion. Part of the libraries (n

= 12) were prepared using the NEB Next Ultra Directional RNA-seq protocol with

ribosomal depletion and were sequenced using Illumina HiSeq4000 with 75 bp

paired end reads. The additional libraries (n = 20) were generated using the Illu-

mina TruSeq Stranded total RNA protocol with the TruSeq Stranded total RNA
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Sample Preparation Kit and were sequenced using Illumina Novaseq 6000. All

Fastq-files were mapped to hg19 and sequence reads assigned to genomic features

using STAR [69] and featureCounts [70], respectively. We used svaseq R [71] pack-

age (version 3.36.0) to find and remove hidden batch effects. Differential gene ex-

pression analysis was performed with DESeq2 [72] R package (version 1.28.1)

according to standard protocol. The normalization was performed as part of the

standardized DESeq2 workflow (applying the concept of variance stabilizing trans-

formations (VST) [73, 74].

ChIP sequencing

ChIP DNAseq was performed on the Illumina HiSeq 2500 (50 bp, single end) as de-

scribed in Frank-Bertoncelj et al. [8]. Briefly, ChIP assays were performed using 1 mil-

lion FLS (Additional file 2: Table S2) per IP and the following antibodies (all

Diagenode): H3K4me3 (0.5 μg, C15411003), H3K27me3 (1 μg, C15410195), H3K27ac

(1 μg, C15410196), H3K4me1 (1 μg, C15410194), H3K36me3 (1 μg, C15410192), and

H3K9me3 (1 μg, C15410193). The reads were mapped to the GRCh38 human genome

reference using Bowtie2 [75] with default settings. The mapped alignment files were

further QC’ed with Picard Tools (Broad Institute, available at: http://broadinstitute.

github.io/picard/) to check for duplication rates, unique mapping reads, and library

complexity. The duplicated reads and non-unique mapping reads were then removed

prior to analysis with Picard Tools.

ChromHMM chromatin state inference

The de-duplicated, uniquely mapping reads of the ChIP sequencing were binarized with

the BinarizeBam script provided by the chromHMM software [13]. This script splits

the genome into 200 bp bins and compares the coverage of the alignment file at each

bin with the input sequence file to determine if any histone modification is present in

the bin (1 = yes, 0 = no). The pre-trained 18 state chromHMM model based on the six

histone marks was applied to the binarized bed files, using the MakeSegmentation

script provided and the model parameters downloaded from the Roadmap Epigenomics

web portal. The methods employed by Ernst et al. [13] were replicated where possible

from the data processing stages to the chromatin state inference.

ATAC sequencing

Cultured RA FLS were stimulated with 10 ng/ml TNF for 24 h or were left untreated

(Additional file 2: Table S2). From each patient cell line, 50'000 cells were prepared ac-

cording to the protocol by Buenrostro et al [76]. ATAC-seq libraries were sequenced

on Illumina HiSeq 4000 with 75 bp paired end reads. The reads were QC’d with

FastQC for read quality, and the Nextera-transposase adaptors were trimmed with

cutadapt [77]. The reads were aligned with Bowtie 2 to the GRCh38 human reference.

PCR duplicates were identified and removed by Picard Tools prior to peak calling using

MACS2 [78]. Both broad and narrow peaks were called as ATAC-seq can have proper-

ties of both.
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HiC and capture HiC

Cultured human FLS from RA patients were treated with 10 ng/ml TNF for 24 h or

were left untreated (Additional file 2: Table S2). Cells (1–3 × 107 per condition), were

scratched in 10 ml DMEM, spun down, suspended in 35ml DMEM, and fixed (2% for-

maldehyde in DMEM, 10 min, RT, with mixing on a rocker). The reaction was

quenched with cold 0.125M glycine. Cells were incubated at RT for 5 min, followed by

15min incubation on ice and centrifugation (1500 rpm, 10 min, 4 °C). Pellets were sus-

pended and washed in cold PBS (1500 rpm, 10min, 4 °C). Washed pellets were snap

frozen and stored at − 80 °C. HiC libraries from RA FLS samples were generated as

previously described [14]. They were sequenced on Illumina HiSeq 4000 with 75 bp

paired end reads. The reads were processed using the HiC Pro pipeline [79], and the

correlation between samples were calculated with HiCrep [80].

TADs were called with TADCompare [15]. The regions targeted by the capture HiC

(CHiC) were generated based on the LD regions of the lead disease-associated SNPs for

RA, juvenile idiopathic arthritis (JIA), psoriatic arthritis (PsA), and psoriasis (Ps). This

resulted in a total of 242 distinct risk variants. Then, 120 bp capture baits were de-

signed for all HindIII digestion fragments overlapping these regions as previously de-

scribed in Martin et al. [4]. Significant CHiC interactions were identified through the

CHiCAGO pipeline [81], where the suggested threshold of CHiCAGO score > 5 was

used. Differential interactions were identified with DESeq2, where the read counts of

each interaction were treated similar to the gene count of RNA-seq.

Transcription factor binding site prediction

We extracted differentially interacting regions from our CHiC data, where the strength

in chromatin interaction (log-fold change of read counts between basal and stimulated)

correlated with nearby genes. We overlapped these interaction regions (bait and prey

fragments) with our ATAC-seq peaks. These ATAC-seq peaks were standardized and

re-centered to 200 bp each. We then used the findMotifsGenome.pl software from the

HOMER suite [82] to identify significantly enriched motifs in these ATAC-peaks com-

pared to random background sequences chosen by HOMER.

Partitioned heritability

We defined active chromatin regions of the genome for each FLS sample and publicly

available Roadmap samples, based on the union of H3K27ac, H3K4me1, and H3K4me3

histone peaks. We used the partitioned heritability software from the LDSC [17] pack-

age to quantify the non-HLA RA heritability attributed to these active regions in each

sample, based on the summary statistics from the Okada et al. trans-ethnic meta-

analysis [2].

Derivation of RA credible set SNPs

For each locus, we dissected distinct RA association signals using approximate condi-

tioning implemented in GCTA [18], based on (i) European ancestry summary statistics

from the Okada et al. trans-ethnic meta-analysis [2]; and (ii) a reference panel of Euro-

pean ancestry haplotypes from the 1000 Genomes Project to approximate linkage dis-

equilibrium between SNPs. We identified index SNPs for each distinct signal, at a
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locus-wide significance threshold of p < 10−5, using the --cojo-slct option. For each

locus with multiple distinct signals, we derived the conditional association summary

statistics for each distinct signal by conditioning out the effects of all other index SNPs

at the locus using the --cojo-cond option.

For each distinct signal, we first calculated the posterior probability, πj, that the jth

variant is driving the association, given by

π j ¼ Λ jP
kΛk

;

where the summation is over all variants at the locus. In this expression, Λj is the ap-

proximate Bayes’ factor [83] for the jth variant, given by

Λ j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V j

V j þ ω

s

exp
ωβ2j

2V j V j þ ω
� �

" #

;

where βj and Vj denote the estimated allelic effect and corresponding variance from

the European ancestry component of Okada et al. [2]. In loci with multiple distinct sig-

nals of association, summary statistics were obtained from the approximate conditional

analysis. In loci with a single association signal, summary statistics were obtained from

unconditional analysis. The parameter ω denotes the prior variance in allelic effects,

taken here to be 0.04. The 99% credible set for each signal was then constructed by (i)

ranking all variants according to their Bayes’ factor, Λj; and (ii) including ranked vari-

ants until their cumulative posterior probability of driving the association attained or

exceeded 0.99.

Pathway analysis and protein-protein interaction network

The genes assigned to FLS (Additional file 8: Table S5, column R) and listed in Add-

itional file 8: Table S5, columns U-Z were analyzed by STRINGv11 (interactions set-

tings to medium confidence levels) [84], ToppFun on ToppGene Suite [85], and

DAVID v6.8 [21, 22] with default settings.

Luciferase reporter assay

Single-stranded oligonucleotides corresponding to 31 nucleotide fragments of the hu-

man genome with the variant in the middle including a BamHI and SalI restriction site

were purchased (Microsynth). Double-stranded oligonucleotides were generated by

mixing equal amounts of complementary oligonucleotides and incubated in a thermo-

cycler for 5 min at 95 °C and then slowly cooled to room temperature (− 1 °C/min).

Double-stranded oligonucleotides were cloned downstream from the luciferase gene in

the pGL3-promoter vector (Promega). 8 × 104 HT1080 cells were transfected with 1 μg

of the pGL3-promoter vector together with 0.1 ng of the pRL-SV40 vector (Promega)

using 1.5 μl of Lipofectamine 2000 (Invitrogen). After 18 h, firefly and renilla luciferase

activity was measured using the Dual-Glo Luciferase Assay System (Promega). Firefly

luciferase activity was corrected for renilla luciferase activity and the data were normal-

ized to cells transfected with the empty pGL3-promoter vector.
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Guide RNA design and cloning

Guide (g)RNAs, targeting the putative upstream RBPJ enhancer (locus 23, Additional

file 8: Table S5), were designed using the CRISPOR tool [86] in the DNA region chr4:

26106475-26106675 (hg38) comprising 100 bp upstream and 100 bp downstream of the

RA risk SNP rs874040 (gRNA_9: 5′ GCCTTATCATGGCATATCACC 3′; PAM TGG;

gRNA_12: 5′ GCTAGAGCACGCAGCTTTTGC 3′; PAM AGG). Complementary

gRNA oligo pairs with 5′ CACC (fwd) and 5′CAAA (rev) overhangs (Microsynth, 100

mM) were phosphorylated and annealed in a thermocycler (37 °C, 30 min; 95 °C 5min,

ramp down to 25 °C at 5 °C/min using T4PNK (NEB) and 10× T4 ligation buffer

(NEB). LentiGuide-puro plasmid, a gift from Feng Zhang (Addgene μplasmid # 52963;

http://n2t.net/addgene:52963; RRID:Addgene_52963 )[87], was digested with FastDigest

BBsI, Fast AP, 10× Fast Digest Buffer at 37 °C, 30 min (Fermentas) followed by the

ligation of the annealed gRNA duplex o/n using Quick Ligase (NEB) and 2× Quick

Ligation buffer (NEB). One Shot™ Stbl3™ Chemically Competent E. coli (Thermo Fisher,

C7373-03) were transformed with gRNA-containing lentiGuide-Puro plasmids by heat-

shocking (45 s, 42 °C) according to the manufacturer’s instructions. Plasmid DNA from

selected colonies was isolated using QIAprep Spin Miniprep Kit (Qiagen) and Sanger

sequenced to confirm the insertion and sequences of cloned gRNAs. To prepare

gRNA-containing lentiviral particles, HEK293T cells were transfected with psPAX2,

pMD2.G gRNA-containing plasmids (total 10 μg plasmid DNA, mass ratio 2:1:4, re-

spectively). psPAX2 (Addgene plasmid # 12260; http://n2t.net/addgene:12260; RRID:

Addgene_12260) and pMD2.G (Addgene plasmid # 12259; http://n2t.net/addgene:1225

9; RRID: Addgene_12259) were a gift from Didier Trono. Viral particles were precipi-

tated from the supernatants of transfected HEK293T (24 h and 48 h) using PEG-itTM

Virus Precipitation Solution (5×) according to the manufacturer’s protocol (System Bio-

sciences), resuspended in PBS, and stored at − 70 °C.

Activation of enhancer regions with dCas9-VPR

FLS were transduced with Edit-R Lentiviral dCas9-VPR lentiviral particles (hEF1α pro-

moter, Dharmacon). Edit-R Lentiviral dCas9-VPR is a CRISPR activation system, in

which a nuclease-deactivated S. pyogenes Cas9 (dCas9) is fused to VP64, p65, and Rta

transcriptional activators. Stable populations of dCas9-VPR FLS were blasticidin se-

lected (7.5 μg/ml, Horizon) and subsequently transduced with gRNA-containing lenti-

viral particles. Stable gRNA dCas9-VPR FLS were puromycin selected (5 μg/ml Sigma)

and lysed and RNA was isolated, followed by reverse transcription and SYBR Green

real-time PCR as described above. Gene expression was normalized to the average ex-

pression of B2M (Primer sequence Fwd 5′ AAGCAGCATCATGGAGGTTTG 3′, Rev

5′ AAGCAAGCAAGCAGAATTTGGA 3′) and RPLP0 housekeeper genes. Transduc-

tion of dCas9-VPR without guide RNA had no effect on RBPJ expression.

Pyrosequencing

DNA from FLS was isolated using the QIAamp DNA Blood kit (Qiagen). DNA regions

containing rs874040 (RBPJ) were amplified by PCR (Primers: Fwd 5' AGTGTGGATTG-

TAGCAGATATGTC 3'; Rev biotin- 5' ACCAAGGCAGCCACAGAATC 3';

5' GCTCGGATGGGGTATTTC TAG 3'). SNPs were genotyped by pyrosequencing
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using PyroMark Q48 Advanced Reagents and the PyroMark Q48 Autoprep (both Qia-

gen) according to the manufacturer’s instructions.

Quantitative real-time PCR

Total RNA was isolated using the RNeasy Mini Kit (Qiagen) and the Quick RNA

MicroPrep Kit (Zymo Research) including on-column DNaseI digest and was reverse

transcribed. SYBRgreen real-time PCR was performed (primers: RBPJ Fwd 5' GGCT

GCAGTCTCCACGTACGTC 3', Rev 5' CTCACCAAATTTCCCAGGCGATGG 3';

HES1 Fwd 5' ATGGAGAAAAGACGAAGAGCAAG 3'; Rev 5' TGCCGCGAGCTATC

TTTCTT 3'), including controls (samples containing the untranscribed RNA, dissoci-

ation curves). Data were analyzed with the comparative CT methods and presented as

ΔCT or 2−ΔΔCT as described elsewhere [88] using RPLP0 as a housekeeping gene for

sample normalization (Fwd 5' GCGTCCTCGTGGAAGTGACATCG 3', Rev 5'

TCAGGGATTGCCACGCAGGG 3').

Cap Analysis Gene Expression (CAGE)

Cultured human FLS from RA patients were treated with 10 ng/ml TNF, 24 h, or were

left untreated (Additional file 2: Table S2). RNA was isolated using the Quick RNA

MicroPrep Kit (Zymo Research). CAGE libraries were prepared and sequenced as pre-

viously described in detail [89]. Mapping and identification of CAGE transcription start

sites (CTSSs) were performed by DNAFORM (Yokohama, Kanagawa, Japan). In brief,

the sequenced CAGE tags were mapped to hg19 using BWA software and HISAT2

after discarding ribosomal RNAs. Identification of CTSSs was performed with the Bio-

conductor package CAGEr (version 1.16.0) [90]. TSS and enhancer candidate identifi-

cation and quantification were performed with the Bioconductor package CAGEfightR

(version 1.6.0) [91] with default settings.
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