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Abstract

Background: As core units of organ tissues, cells of various types play their harmonious
rhythms to maintain the homeostasis of the human body. It is essential to identify the
characteristics of cells in human organs and their regulatory networks for understanding
the biological mechanisms related to health and disease. However, a systematic and
comprehensive single-cell transcriptional profile across multiple organs of a normal
human adult is missing.

Results: We perform single-cell transcriptomes of 84,363 cells derived from 15 tissue
organs of one adult donor and generate an adult human cell atlas. The adult human cell
atlas depicts 252 subtypes of cells, including major cell types such as T, B, myeloid,
epithelial, and stromal cells, as well as novel COCH+ fibroblasts and FibSmo cells, each of
which is distinguished by multiple marker genes and transcriptional profiles. These
collectively contribute to the heterogeneity of major human organs. Moreover, T cell and
B cell receptor repertoire comparisons and trajectory analyses reveal direct clonal sharing
of T and B cells with various developmental states among different tissues. Furthermore,
novel cell markers, transcription factors, and ligand-receptor pairs are identified with
potential functional regulations in maintaining the homeostasis of human cells among
tissues.

Conclusions: The adult human cell atlas reveals the inter- and intra-organ heterogeneity
of cell characteristics and provides a useful resource in uncovering key events during the
development of human diseases in the context of the heterogeneity of cells and organs.
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Introduction
The human body consists of multiple organs, where multiple types of cells are the core

units of structure and function. Like instruments from different families in a symphony

orchestra, cells and organs play their harmonious rhythms to maintain the homeostasis

of the human body. Yet, perturbations in the homeostasis lead to various pathological

conditions. Therefore, it is essential to identify characteristics of the cells in human
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organs and their regulatory networks for understanding the biological mechanisms re-

lated to health and disease.

Recent technological innovations in transcriptional profiling using single-cell RNA se-

quencing (scRNA-seq) have provided a promising strategy to quantify gene expression

at the genome-wide level in thousands of individual cells simultaneously [1–3]. This

has expanded our knowledge regarding cellular heterogeneity and networks, as well as

our understanding in developments in human tissues and organs at the single-cell reso-

lution [4–11]. Previous studies have demonstrated the cell composition for many hu-

man and mice tissues, including the brain [12], kidneys [13], lungs [14], and skin [15].

The strategy also empowers the identification of novel cell types. Cells marked by cystic

fibrosis transmembrane conductance regulator (CFTR) were identified in the lungs of

human and mouse and were able to regulate luminal pH that was implicated in the

pathogenesis of cystic fibrosis [16]. Non-genetic cellular heterogeneity has been re-

vealed in hematopoietic progenitor cells and keratinocytes, which play important roles

in maintaining hematopoiesis [17] and compartmentalizing crucial molecular activities

in human epidermis [15], respectively. For the development of human embryos, tran-

scriptome analyses of about 70,000 single cells from the first trimester’s placenta with

matched maternal blood and decidual cells uncover the cellular organization of decidua

and placenta, as well as distinctive immunomodulatory and chemokine profiles of de-

cidual natural killer (NK) cells [18]. In addition, the single-cell transcriptional profiles

of embryonic and adult organs in mice have been reported, which reveal the landscape

of organogenesis and the cellular heterogeneity in organs [8, 9, 19]. A very recent study

on major human cell types using multiple organs from different donors revealed the

genetic regulation for fetal-to-adult cell-type transitions and genetic conservation in

mammalian cells [20]. However, a systematic and comprehensive single-cell transcrip-

tional profile of multiple organs from a normal human adult has been pending. Previ-

ous studies with scRNA-seq on human samples were mostly restricted to a few specific

organs with disease conditions, and they did not attempt to characterize the heterogen-

eity and connections among multiple organs in a same individual.

Here, we aimed to investigate the transcriptional heterogeneity and interactions of

cells from an adult human’s organs at the single-cell resolution level. Using scRNA-seq,

we profiled the transcriptomes of more than 84,000 cells of 15 organs from one individ-

ual donor. Comprehensive comparisons within and across tissues for distinct cell types

were performed to reveal the intercellular complexity of gene profiles, active transcrip-

tion factors, and potential biological functions, as well as potential inter-cell connec-

tions. The resulting high-resolution adult human cell atlas (AHCA) provides a global

view of various cell populations and connections in the human body and is also a useful

resource to investigate the biology of normal human cells and the development of dis-

eases affecting different organs.

Results
Global view of single-cell RNA sequencing of 15 organ samples

Viable single cells were prepared from the tissue samples of 15 different organs of a

research-consented adult donor (Fig. 1a). mRNA transcripts from each sample were

ligated with barcoded indexes at 5′-end and reverse transcribed into cDNA, using
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GemCode technology (10x Genomics, USA). cDNA libraries including enriched frag-

ments spanning the full-length V(D)J segments of T cell receptors (TCR) or B cell re-

ceptors (BCR), and 5′-end fragments for gene expression were separately constructed,

which were subsequently subjected for high-throughput sequencing. On average, we

obtained more than 400 million sequencing reads for each organ sample, which re-

sulted in a median sequencing saturation (covering the fraction of library complexity)

of 88% (61.6–97%) for each sample (Additional file 1: Figure S1A and Additional file 2:

Table S1). After primary quality control (QC) filters, 91,393 cells were identified (Add-

itional file 1: Figure S1B and Additional file 2: Table S2). Higher number of UMIs and

more transcribed genes were observed in the skin and trachea samples (with median

UMIs of 4022.5 and 4100.5 and genes of 1528 and 1653, respectively) compared with

the other organs (Additional file 1: Figure S1C, D, and Additional file 2: Table S2). We

Fig. 1 Overview of single-cell RNA sequencing of 15 organ tissues from a male adult donor. a An
experiment schematic diagram highlighting the sites of the organs for tissue collection and sample
processing. Live cells were collected using flow cytometry sorting (FACS) and subjected for cell barcoding.
cDNA libraries for TCR, BCR, and 5′-mRNA expression were constructed independently, followed by high-
throughput sequencing and downstream analyses. b t-SNE visualization of all cells (84,363) in organs. Each
dot represents one cell, with colors coded according to the origin of organ. Labeled cell types are the
predominant cell types in each cluster. c Dot plots showing the most highly expressed marker genes (x-
axis) of major cell types (y-axis) in b. The depth of the color from white to blue and the size of the dot
represent the average expression from low to high and the percent of cells expressing the gene
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obtained 66,225 sequencing read pairs for each cell and 6093 cells for each organ on aver-

age (Additional file 2: Table S1, S2), with more than 2.4 and 3.5 times deeper sequencing

of median genes and UMIs than a recent study [20]. The cells in each organ were classi-

fied using unsupervised clustering, and cell types were assigned based on canonical

marker genes (Additional file 2: Table S3). Next, visualization of the cells by t-distributed

stochastic neighbor embedding (t-SNE) revealed multiple subpopulations of cells in each

organ, with the numbers of clusters ranging from 9 in the blood to 25 in the skin (Add-

itional file 1: Figure S2, Figure S2 continued, and Additional file 2: Table S4-S18). Clusters

due to cell doublets were identified and excluded for each organ, which resulted in a total

of 84,363 cells for the downstream analyses (Additional file 2: Table S2).

With transcriptional profiles of such large number of cells, we identified some rare

and novel cell populations. A group of Langerhans cells were identified in the skin sam-

ple (1% of all skin cells) with specific expression of CD207 and CD1A [21]. An even

smaller group of 26 sweat gland epithelial cells (0.31%) were also identified in the skin

sample, which had specific expression of DCD, SCGB2A2, KRT19, MUCL1, and PIP

genes (Additional file 1: Figure S3A and Additional file 2: Table S14). A novel group of

fibroblasts (0.43%) with exclusive expression of COCH were identified in the skin (Add-

itional file 1: Figure S2 continued, Figure S3A, and Additional file 2: Table S14). Of

note, another novel group of cells were assigned as FibSmo with a co-expression of

MMP2 and ACTA2, which are marker genes for fibroblasts and smooth muscle cells,

and were identified with higher proportions in the rectum (6.66%), bladder (17.59%),

and heart (7.75%) than in the other tissue organs (Additional file 1: Figure S2, Figure

S2 continued, Figure S3B, and Additional file 2: Table S4, S13). Moreover, in contrast

to the broad distribution of FibSmo cells in multiple organs, COCH+ fibroblasts were

identified in limited organs with low abundance, while sweat gland epithelial cells were

found specifically in the skin (Additional file 1: Figure S3B). Furthermore, the presence

of sweat gland epithelial cells, COCH+ fibroblasts, and FibSmo cells was confirmed in

multiple tissue samples from independent donors using existing datasets and multiplex

immunofluorescence staining assays (Additional file 1: Figure S4-S10 and Add-

itional file 3: Supplementary Notes).

We combined all the 84,363 cells in the cluster analysis and identified 43 clusters in

15 organs (Fig. 1b, Additional file 1: Figure S11 and Additional file 2: Table S19). We

observed close clustering of cells from different organs (more than seven organs) for

major cell types, including T, B, plasma, endothelial, and smooth muscle cells, as well

as fibroblasts, macrophages, and monocytes (Fig. 1b, c, Additional file 1: Figure S11,

Additional file 1: Figure S12, and Additional file 2: Table S20). This is consistent with

the understanding that cells derived from the same lineage are widely distributed within

the human body, especially circulating immune cells. Moreover, multiple clusters were

further identified for several major cell types (T cells, B cells, fibroblasts, myeloid cells,

and endothelial cells), reflecting their heterogeneous transcriptional profiles (Fig. 1c,

Additional file 2: Table S19).

The heterogeneity of T cells in developmental state and clonalities around the body

We identified a total of 20,034 T cells prevailing in the immune cells of most organ tis-

sues (Additional file 4: Table S21), which is consistent with a previous finding [22].
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These included 1472 γδ and 18,292 αβ T cells. The latter were divided into CD4+

(7006) and CD8+ (11,286) T cells according to their gene profiles and were further

grouped into 11 and 21 major unsupervised clusters, respectively (Fig. 2a, b), including

naïve/central memory T (TN/CM), effector memory T (TEM), regulatory T (Treg), tissue-

resident memory T (TRM), effector T (Th1 for CD4
+ and TEFF for CD8+ T cell), intrae-

pithelial lymphocyte (IEL) T, and mucosal-associated invariant T (MAIT) cells, based

on known markers [23] (Fig. 2c, d). Some TN/CM cells were further assigned as TN and

TCM clusters based on their gene signatures (Fig. 2c, d, Additional file 1: Figure S13A,

B). Both CD4+ and CD8+ T cell clusters showed a distribution pattern in an organ-

specific manner (Additional file 1: Figure S13C, D), and each of them had differentially

expressed genes (Additional file 1: Figure S13A, B and Additional file 4: Table S22,

S23). An overlapping of clusters was also observed between organs (such as blood and

marrow), suggesting the sharing of common T cell subtypes (Additional file 1: Figure

S13D).

To better understand the developmental state of T cells, we performed trajectory

analyses of CD4+ and CD8+ T cells. We observed that the trajectory trees rooted from

TN cells, sprouting into TCM, Th1, and TRM branches for CD4+ T cells and TN/CM, TEFF,

IEL, and TRM branches for CD8+ T cells (Fig. 2e, Additional file 1: Figure S13E, F).

TRM cells and IEL cells with higher pseudo-time scores were found in CD4+ and CD8+

T cells, respectively, suggesting their terminal developmental state (Fig. 2e, Add-

itional file 1: Figure S13E, F). Moreover, there are several TRM clusters at the end of

other branches with mediated scores for both CD4+ and CD8+ T cells, indicating the

middle developmental state of these clusters. The TRM clusters with different develop-

mental states showed an organ-specific pattern (Additional file 1: Figure S13E, F), while

their origin from the marrow or spleen was unclear due to the limited number of cells.

These observations reveal the heterogeneity in the developmental states of both CD4+

and CD8+ cells in human organs.

Transcription factors (TFs) have been demonstrated as important regulators of gene

expression and with ability to shape different phenotypes of T cells [24]. We therefore

performed single-cell regulatory network inference and clustering (SCENIC) analysis to

assess TFs underlying differential gene expression in T cells. We identified well-defined

and cell subtype-specific TFs for CD4+ (Fig. 2f) and CD8+ T cell (Fig. 2g) clusters (Add-

itional file 4: Table S24, S25), such as higher activity of FOXP3 [24] and BATF [25] in

Treg cells, and upregulation of LEF1, MYC, TCF7 [26], and KLF2 [27] in TN cells and

TBX21, STAT1, and IRF1 in TEFF cells [24, 28, 29] (Fig. 2f, g and Additional file 1: Fig-

ure S13G, H). In addition, many other poorly investigated TFs were also observed in

both CD4+ and CD8+ TRM cell clusters, such as the upregulation of several AP-1

dimerization partners (FOS, JUN, JUND, FOSL2, and ATF3), REL, and RELB (Fig. 2f, g

and Additional file 1: Figure S13G, H). Collectively, these results indicate that the com-

binations of multiple TFs regulate T cell development to maintain the heterogeneous

states of CD4+ and CD8+ T cells.

To better investigate the clonalities and dynamic relationships among T cell subtypes

across tissues, we performed TCR clonal typing accompanied with transcriptome ana-

lysis (Fig. 1a). After stringent QC filters, we identified 5183 TCR clonotypes with

unique heterodimer α and β chains among 8394 T cells (45.89% of the whole 18,292

CD4+ and CD8+ T cells), including 3248 CD4+ T cells and 5146 CD8+ T cells. Among
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Fig. 2 (See legend on next page.)
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them, 4645 cells (2906 CD4+ and 1739 CD8+ T cells) had a unique TCR clonotype for

each, while the remaining 3749 cells (342 CD4+ and 3407 CD8+ T cells) shared two or

more of the 538 TCR clonotypes (Additional file 4: Table S26, S27). We observed simi-

lar numbers of V and J segments for the TCR α chain in both CD4+ and CD8+ T cells,

both of which shared 60% and 40% of the top 10 frequent V and J segments, respect-

ively (Additional file 1: Figure S14A, B). By contrast, the diversity of the V segment was

much higher than that of the J segment for β chain in both CD4+ and CD8+ T cells,

which shared 40% and 80% of the top 10 frequent V and J segments, respectively (Add-

itional file 1: Figure S14A, B). Although more CD8+ T cells were detected than CD4+ T

cells among all tissues, no significant difference in clone sizes (the number of unique

clonotypes) was observed between the two cell populations (Additional file 1: Figure

S14C). Singular cells of unique TCR clonotypes were prevalent for CD4+ T cells among

tissues, except that a higher proportion of multiple cells with identical TCR clonotypes

or clonal expansions were observed in the muscle, common bile duct, and marrow

(Additional file 1: Figure S14D top panel). Clonal expansions were much commonly

found for CD8+ T cells in all tissues (Additional file 1: Figure S14D bottom panel).

To investigate the clonotype distribution of T cells across tissues, we evaluated the

ability of sharing TCR for each tissue with others. We observed a more intensive and

broader sharing of TCR clonotype for CD8+ than CD4+ T cells across tissues (Fig. 2h).

A higher migration capacity, reflected in the migration-index score of tissues, was

found in CD8+ T cells than in CD4+ T cells (Fig. 2i left panel). Moreover, higher expan-

sion ability but lower diversity was observed in CD8+ T cells in each tissue compared

with CD4+ T cells (Fig. 2i right panel, Additional file 1: Figure S14E). Cells with clonal

expansion had considerable proportions in TEM, TEFF, TRM, and IEL clusters of CD8+ T

cells (Additional file 1: Figure S14F bottom panel), and Th1 and RGS1_TRM of CD4+ T

cells (Additional file 1: Figure S14F top panel). We further evaluated the clonal expan-

sion and transition (clonotype sharing ability of each subpopulation) of each T cell

cluster, which revealed significantly stronger expansion and transition abilities of CD8+

compared with CD4+ T cells (Additional file 1: Figure S14G, H). This is consistent with

(See figure on previous page.)
Fig. 2 The heterogeneity, development, and clonality of T cells in human organs. a, b t-SNE plots of 7006
CD4+ (a, 11 clusters) and 11,256 CD8+ (b, 21 clusters) T cells from 15 organ tissues. Each dot represents one
cell. Each color-coded region represents one cell cluster, which is indicated on the right. c, d Violin plots
showing the normalized expression of marker genes for each CD4+ (c) and CD8+ (d) T cell cluster as
indicated at the bottom. For each panel, the y-axis shows the normalized expression level for a marker
gene as indicated on the left. Marker genes were also grouped according to functional cell types. e
Pseudo-time trajectory analysis of all CD4+ (left panel) and CD8+ T cells (right panel) with high variable
genes. Each dot represents one cell and is colored according to their cluster above: a for CD4+ and b for
CD8+. The inset t-SNE plot shows each cell with a pseudo-time score from dark blue to yellow, indicating
early and terminal states, respectively. f, g Heat maps of the activation scores of each T cell cluster for
expression regulated by transcription factors (TFs). T cell clusters are indicated on top, and the scores were
estimated using SCENIC analysis. Only shows the top 15 TFs for CD4+ T cells (f) and the top 10 for CD8+ T
cells (g), with the highest difference in expression regulation estimates between each cluster and all other
cells, under a Wilcoxon rank-sum test. h Sharing intensity of TCR clones in CD4+ (top panel) and CD8+

(bottom panel) T cells between different organ samples. Each line represents a sharing of TCR between two
organs at the ends, and the thickness of the line represents a migration-index score between paired organs
calculated by STARTRAC. The sizes of the dots are shown according to the logarithm to the base 2 of the
size of T cell clones in organs with different colors. i Migration- (left panel) and expansion-index (right
panel) scores of CD4+ and CD8+ T cells of each tissue calculated and compared using STARTRAC with a
paired Student’s t test
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the stronger sharing links of clonotypes between subtypes of CD8+ than CD4+ T cells

(Fig. 2h, Additional file 1: Figure S14I, J). Moreover, we observed the clonal expansion

of certain CD8+ T cells (TEFF, TRM, TEM, and IEL T cells) distributed across multiple

tissues with different developmental states (Additional file 1: Figure S15A), suggesting

that most of these cells recognizing the same antigens propagate and migrate more in-

tensively than T cells of other types. In addition, we observed consistent results of TCR

diversity using β chains (Additional file 1: Figure S15B-D). These observations based on

TCR tracing suggest the widespread of diverse T cells across the human body through

clonal expansion and transition.

The heterogeneity of B cells and plasma cells

Cluster analysis revealed 14 distinct cell clusters among 10,100 B and plasma cells from

11 organ samples, including nine B (CD20) and six plasma cell (SDC1) clusters (Fig. 3a).

We observed the predominance of B cells over plasma cells in all tested organs except

for the esophagus and rectum (Fig. 3b). Differential gene expression (DEG) analysis re-

vealed that B cells exhibited distinct gene profiles from plasma cells (Additional file 5:

Table S28 and Additional file 1: Figure S16A). Although CD27 is a canonical marker of

memory B cells [30], we observed a low transcription level of CD27 in memory B cells,

but a higher level in plasma cells (Fig. 3c). TCL1A was significantly expressed in two

naïve B cell clusters with distinct gene expression profiles, TCL1A_ly_naive_B from the

lymph nodes and TCL1A_naive_B from multiple tissues, compared with the other B

and plasma cell clusters (Fig. 3a, Additional file 1: Figure S16A). Moreover, TCL1A was

exclusively expressed in non-CD27-expressing B cell clusters and had a significantly re-

verse correlation with CD27 transcription (Pearson’s R = − 0.84, P = 0; Fig. 3c, Add-

itional file 1: Figure S16B). Given that TCL1A has been reported as an important gene

in B cell lymphomas [31], these findings suggest that TCL1A might be a novel marker

of naïve B cells.

B cells are professional antigen-presenting cells (APCs) with high expression of

CIITA and MHC class II genes, which are silenced during the differentiation to plasma

cells [32]. We examined the antigen-presenting ability of B and plasma cell clusters,

using the antigen-presenting score (APS) based on the expression of signature genes re-

lated to antigen-presenting (see the “Materials and methods” section). Interestingly,

plasma cells had a much lower APS for extracellular antigens compared with B cell

clusters (Additional file 1: Figure S16C), while they had a much higher APS for intercel-

lular antigens than B cells, suggesting the different abilities to present antigens between

the two cell types. We also investigated the potential biological function of different cell

clusters using Gene Ontology enrichment (GO) analysis. Potential biological functions

of B cells were found to be enriched in immune response (for example, “responding to

activation of immune”), and those of plasma cells were associated with protein synthe-

sis (including “signal peptide processing,” “ER to Golgi vesicle-mediated transport,” and

“protein folding”; Fig. 3d). In addition, gene set enrichment analysis (GSEA) showed

that TCL1A_naive_B cells were enriched in “oxidative phosphorylation” and “fatty acid

metabolism” pathways (Additional file 1: Figure S16D). These observations suggest dis-

tinct biological functions of B and plasma cells, although plasma cells were derived

from B cells.
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Fig. 3 (See legend on next page.)
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TFs play a critical role in the differentiation of B cells to plasma cells, engaging

B cells with effector or memory functions [33]. Single-cell regulatory network infer-

ence and clustering (SCENIC) analysis revealed that TFs exhibited similar activities

in B and plasma cells but with distinct patterns between the two populations

(Fig. 3e, Additional file 5: Table S29). TFs with higher activity were found in B

cells, including MYC [34] and REL [35], which have been known to modulate B

cell development, as well as other TFs that have not been characterized in B cells,

such as EGF receptors (EGFR1/2/3) and TGIF1. Likewise, TFs enriched in plasma

cells included PRDM1, XBP1, FOS, and IRF4, which play important roles in the de-

velopment of plasma cells [33]. Moreover, many TFs with unknown roles were

found, including ATF3, ATF4, and ATF5. Consistently, we observed higher activity

of these TFs in an independent human cell landscape (HCL) dataset published re-

cently [20], including MYC, IRF8, and REL in B cell clusters and XBP1, PRDM1,

and CREB3L2 in plasma cell clusters (Additional file 1: Figure S16E, F, and Add-

itional file 4: Table S30, S31). Taken together, these results suggest that various

TFs might regulate the development of B cells into plasma cells.

To explore the clonalities of B and plasma cell clusters across organ tissues, we per-

formed a single-cell BCR sequencing analysis. After stringent QC filters, 6741 out of

10,100 cells were assigned to 6480 clonotypes, among which 6330 clonotypes were pre-

sented by singular cells and 150 by multiple cells (Additional file 4: Table S32). We ob-

served various usage of V and J gene segments for both heavy and light chains of

immunoglobulin genes, with a preferred usage of some particular variable segments

(Additional file 1: Figure S16G-I). Unlike T cells, clonal diversity was common for B

cells among all the organs, while clonal expansion of B cells was limited and restricted

to the spleen, rectum, and stomach (Additional file 1: Figure S16J). Moreover, less shar-

ing of BCR clonotypes between B and plasma cells was observed across organs com-

pared with T cells (Fig. 2h and Fig. 3f). In addition, BCR analysis showed lower

expansion and transition abilities of B cells compared with plasma cells and T cells

(Fig. 3g, Additional file 1: Figure S14G, and Additional file 1: Figure S16K, L), which

might be due to an insufficient representation of the richness of the diverse B cell rep-

ertoire with the limited number of clonal B cells detected.

(See figure on previous page.)
Fig. 3 The heterogeneity and clonality of B cells in human organs. a t-SNE plots showing 14 clusters
(10,100 cells) of B and plasma cells. Each dot represents a cell, colored according to the origin of tissue (top
panel) and cell subtype (bottom panel). b Distribution of B and plasma cells in each organ. Pie charts on
top illustrate the proportions of B and plasma cells in each organ. The stacked bars represent the
percentage of each cluster in the indicated organ. c Violin plots of the normalized expression of marker
genes for B (MS4A1), plasma cells (SDC1), naïve B cell (TCL1A), and memory B cells (CD27). For each panel,
the y-axis shows the normalized expression level for a marker gene as indicated on the title, and the x-axis
indicates cell clusters. d Gene Ontology enrichment analysis results of B and plasma cell clusters. Cell
clusters as indicated at the bottom are colored according to their −log10P values in columns. Only the top
20 significant GO terms (P value < 0.05) are shown in rows. e Heat map of the activation scores of each B
and plasma cell cluster for expression regulated by transcription factors (TFs). Cell clusters are indicated on
top, and the scores were estimated using SCENIC analysis. It shows the top 10 TFs with the highest
difference in expression regulation estimates between each cluster and all other cells, tested with a
Wilcoxon rank-sum test. f Sharing intensity of BCR clones between different organs. Each line represents a
sharing of BCR between two organs at the ends, and the thickness of the line represents a migration-index
score between paired organs calculated using STARTRAC. The size of the dot is shown as the logarithm to
the base 2 of the size of B and plasma cell clones in each organ. g Expansion- (top panel) and transition-
index (bottom panel) scores of each B and plasma cell cluster calculated using STARTRAC
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The heterogeneity of myeloid cells

We obtained 5587 myeloid cells from 15 organ tissues, which were grouped into 18 dis-

tinct clusters (Fig. 4a, b). Based on the differential expressions of marker genes, we fur-

ther identified seven monocyte clusters, eight macrophage clusters, and three dendritic

cell (DC) clusters (Fig. 4a, b, and Additional file 1: Figure S17A). The hierarchical clus-

ter analysis revealed that all classical monocytes were closely related as a branch node,

as were non-classical monocytes and intermediate monocytes (Fig. 4c). All macro-

phages were grouped together and separated from monocytes, except that one subset

of macrophages (C3: SDC3_Mac) was closely related to intermediate and non-classical

monocytes (Fig. 4c). DEG analysis showed that each myeloid cell cluster had a specific

gene signature, suggesting inter-cell heterogeneity among monocytes, macrophages,

and DCs (Fig. 4d, Additional file 6: Table S33). All clusters contained cells from mul-

tiple tissues, except for FN1_Intermediate_Mon (C4) and CCL20_Intermediate_Mon

(C10) in the rectum and Langerhans clusters (C15: Langerhans) in the skin, suggesting

similar transcriptional profiles and origins of these myeloid cells (Fig. 4a, b). Monocytes

showed a predominance in 11 of the 15 tested tissues, except for the esophagus, heart,

lymph nodes, and skin, where macrophages and DCs accounted for more than 50% of

all myeloid cells (Additional file 1: S17A).

Considering two potential origins of macrophages in multiple tissues from circulating

monocytes and embryonic progenitor cells [36–38], we examined the connection be-

tween macrophages and monocytes. First, we observed the coexistence of macrophages

and monocytes in the same organs (Fig. 4a, b, and Additional file 1: Figure S17A). Sec-

ond, trajectory analysis revealed that the classical monocytes had initial state at the root

and sprouted into branches with more developed states of monocytes and then macro-

phages either directly or via two intermediate monocytes (Fig. 4e, Additional file 1: Fig-

ure S17B, C). Notably, high expression of proliferation marker genes including MKI67

and PCNA were exclusively detected in the HISTIH4C_Mac macrophages (C12) in the

bladder, esophagus, heart, and rectum (each with more than five of the cells; Add-

itional file 1: Figure S17D). Gene set variation analysis (GSVA) also revealed that most

of the macrophage clusters had a higher enrichment score of MYC and E2F target

pathways (Additional file 1: Figure S17E). We further performed a trajectory analysis of

intestinal monocytes and macrophages derived from our and published datasets [39].

We observed a terminal state for both the embryonic and adult macrophages according

to pseudo-time scores (Additional file 1: Figure S17F). Moreover, we observed a clear

differentiation trajectory of the macrophages in the adult rectum from the intermediate

monocytes (CCL20_Intermediate_Mon) to the tissue macrophages (HIST1H4C_Mac).

Interestingly, the embryonic macrophages (Embryo_Mac) were found alongside the dif-

ferentiation trajectory from the intermediate monocyte (FN1_Intermediate_Mon) to

the tissue macrophages (HIST1H4C_Mac), suggesting that the embryonic macrophages

may contribute to the tissue macrophages through local expansion. Consistently, a high

expression of the proliferation marker gene PCNA was detected in the terminal macro-

phages (Additional file 1: Figure S17G). Taken together, these observations suggest that

circulating monocytes might give rise to macrophages in organ tissues and that the

local microenvironment may contribute to the expansion and proliferation of different

embryo-derived macrophage populations, especially tissue-resident macrophages, in the

bladder, esophagus, heart, and rectum.
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TFs such as SPI1 are involved in the development of monocytes to macrophages [40,

41]. However, how TFs regulate their development in the normal human body is still un-

clear. TF activity analysis revealed a similar activation of certain TFs among the four clas-

sical monocytes, which is consistent with their close similarity in gene signatures (Fig. 4d,

f and Additional file 6: Table S34). A high activation of SPI1 was determined in classical

monocytes, non-classical monocytes, and SDC3_Mac cells, suggesting its involvement in

the development of these cells. We also identified several TFs with high activity in the four

classical monocyte clusters, including HCFC1, ELF2, ETV6, ELK3, and NFE2 (Fig. 4f, g).

Their roles in maintaining the classical state of monocytes have yet to be investigated.

Non-classical monocytes and macrophages shared several activated TFs, such as TCF7L2,

STAT1, KLF3, NR1H3, and SPIC, which is consistent with their close pattern in the hier-

archical cluster analysis (Fig. 4c, f, g). We observed that multiple poorly characterized TFs

were highly activated in the intermediate, non-classical monocytes and macrophages,

other than classical monocytes, including POLR2A, MAF, MAFB, PRDM1, ETV5, and

ATF3 (Fig. 4c, f, g). We also observed cluster-specific TFs for myeloid cell clusters (Fig. 4f,

Additional file 6: Table S34). For instance, the activation of BHLHE40 and NR3C1 was

higher in APOE_Mac cells (C14). These results suggest that these unique combinations of

TFs help shape the different states of myeloid cells in the normal human body.

It has been demonstrated that myeloid cells could act as professional APCs, with the

strongest antigen-presenting ability for DCs [42]. We observed various antigen-

presenting abilities for extracellular antigens as reflected by APS for different myeloid

clusters (Additional file 1: Figure S17H). Langerhans cells had a stronger antigen-

presenting ability than other macrophages and monocytes (P < 2.2 × 10−16; Additional

file 1: Figure S17H). On average, the classical monocytes had the lowest APS among

myeloid cell clusters (P < 2.2 × 10−16). Interestingly, different myeloid cell clusters had a

similar APS for presenting intracellular antigen (Additional file 1: Figure S17H). These

observations support the varied roles of myeloid cells in antigen presentation.

(See figure on previous page.)
Fig. 4 Heterogeneity and developmental stages of myeloid cells. a t-SNE plots of 5587 myeloid cells. Each
dot represents one cell, colored according to their tissue origins (top panel) or cell clusters (bottom panel)
as indicated on the right. b t-SNE plots of the normalized expression of marker genes for monocytes
(S100A8/9/12 and VCAN) and macrophages (pan-marker: C1QC, C1QB, and VSIG4), cDC1 (CLEC9A), cDC2
(FCER1A), and Langerhans (CD207) as well as subpopulation-specific genes (CD14 and FCGR3A). Each dot
represents one cell, with a color from gray to blue representing the expression level from low to high. c
Dendrogram of 18 clusters based on their normalized mean expression values (correlation distance metric,
complete linkage). Only genes with ln(fold change) above 0.25, p.adjust < 0.05, and pct.1≥ 0.2 in each
cluster were included in the calculations. d Heat map showing the expression profiles of each myeloid cell
cluster as indicated on top. The expression of 640 genes in each cell cluster with FC≥ 2 and p.adjust < 0.05
are shown as lines, colored from blue to red according to the expression from low to high. e Pseudo-time
trajectory analysis of monocytes/macrophages with high variable genes. Each dot represents one cell and is
colored according to their clustering in a. The inset t-SNE plot shows each cell with a pseudo-time score
from dark blue to yellow, indicating early and terminal states, respectively. f Heat map of the activation
scores of each monocyte and macrophage subtype for gene expression regulated by transcription factors
(TFs). Cell clusters are indicated on top, and the scores were estimated using SCENIC analysis. Only the top
10 TFs are shown with the highest difference in expression regulation estimates between each cluster and
all other cells, tested with a Wilcoxon rank-sum test. g Plots showing the normalized expression of
representative TFs in f along the pseudo-time trajectory maps corresponding to e. Each dot in one plot
shows the expression of the indicated gene in the plot, colored from gray to red, indicating low and high
expression, respectively. SPIP1, HCFC1, and ELF2 for classical monocytes; enhanced expression of STAT1 and
TCF7L2 for non-classical monocytes and SDC3_Mac (3); MAF, PRDM1, and EVT5 for most
non-classical monocytes
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The similarity and heterogeneity of epithelial cells from intra- and inter-tissues

We obtained a total of 17,436 epithelial cells from nine tested organ tissues (Fig. 5a).

DEG analysis revealed a clear and distinct pattern of gene expression among the tissue

samples (Additional file 1: Figure S18A and Additional file 7: Table S35). There were

190 genes with tissue-specific expression (FC ≥ 5, pct.1 ≥ 0.2; Additional file 7: Table

S35 and Additional file 1: Figure S18A), indicating the heterogeneity of epithelial cells

among organ tissues, which was further confirmed in the HCL dataset (Additional

file 1: Figure S18B). GO analysis also revealed the various biological functions of

epithelial cells from different tissues, among which “epithelial cell differentiation”

and “regulation of myeloid leukocyte activation” were common pathways enriched

in the majority of epithelial cells. This suggests that the cells share common func-

tions in the development of epithelial cells and the regulation of immune response

(Additional file 1: Figure S18C).

The epithelial cells were further grouped into 34 clusters (Fig. 5a). Grouping of close

clusters was seen in all organ tissues, except for tiny clusters of C25 (rectum and small

intestine), C31 (esophagus and skin), and C32 (skin and small intestine), suggesting the

heterogeneity of epithelial cells at both the intra- and inter-organ contexts (Additional

file 7: Table S36). The 34 clusters showed different expression profiles with 350 signa-

ture genes (FC ≥ 5, pct.1 ≥ 0.2, and pct.2 ≤ 0.2), most of which were expressed exclu-

sively in one cluster (Fig. 5b, Additional file 1: Figure S18D, F left panel, and Additional

file 7: Table S37). Similar results were observed in the previous HCL dataset (Add-

itional file 1: Figure S18B, E, and F right panel, and Additional file 7: Table S38-S40).

Hierarchical cluster analysis revealed closer grouping of cell clusters within tissues than

across tissues in both our and the HCL datasets (Fig. 5c, Additional file 1: Figure S18E,

and Additional file 7: Table S39). Cells from digestive organs including the small intestine,

stomach, rectum, and common bile duct were clustered closely, as were the cells from

non-digestive tissues including the skin, trachea, and bladder (Fig. 5c, Additional file 1:

Figure S19A). Although the esophagus is a digestive organ, the epithelial cells were clus-

tered much closer to the skin cells than the digestive organs’ cells. Similarly, the stomach

was grouped more closely to non-digestive organs in the HCL dataset, although it is clas-

sified as one of the digestive organs together with the ascending colon, colon, sigmoid

colon, transverse colon, small intestine, liver, gallbladder, pancreas, and rectum. This

might be explained by the different anatomical positions of the specimens (Additional

file 1: Figure S19B). A volcano plot showed significantly DEG between the two groups, in-

cluding 514 upregulated genes with a fold change greater than two (298 in the digestion-

related clusters and 216 genes in the non-digestion-related clusters; Fig. 5d).

To explore the potential functions of cells within each cluster, we performed GO ana-

lysis for two groups of cells from the 14 digestion-related clusters and the 20 non-

digestion-related clusters, separately. For cells from the digestive system, biological

functions related to metabolic process, energy synthesis, and digestion pathways were

commonly observed (Fig. 5e). For the non-digestion-related cells, the “regulation of

endopeptidase activity” and “epidermis development” were the strongly enriched path-

ways (Fig. 5f). Interestingly, GSVA in both our AHCA and the HCL datasets revealed

significantly altered pathways between the digestive and non-digestive clusters, includ-

ing multiple metabolic pathways with elevated activity in the digestive clusters, such as

“Fatty acid metabolism,” “Citric acid cycle,” “Protein modification,” and “Pyrimidine
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metabolism,” as well as enrichment of “Epithelial mesenchymal transition” and “TNFA

signal via NFKB” in the non-digestive epithelial cells, suggesting the enhanced meta-

bolic activity of digestive epithelial cells (Additional file 1: Figure S19C, D). As we ob-

served the enrichment of immune-related pathways in most of the cell clusters (Fig. 5e,

f), we examined their antigen-presenting abilities, which revealed a weaker antigen-

presenting ability for epithelial cells from the skin and esophagus to present both intra-

and extracellular antigens in our AHCA dataset but a higher antigen-presenting ability

for epithelial cells from the lungs in the HCL dataset (Additional file 1: Figure S20A).

Next, we investigated the contribution of TFs in regulating the heterogeneous transcrip-

tional profiles of epithelial cells in and between organs. SCENIC analysis revealed that the

regulation of TFs was similar among cell clusters within a same tissue but was very differ-

ent among cell clusters between tissues (Fig. 5g, Additional file 7: Table S41). Interest-

ingly, the digestion-associated epithelial clusters exhibited similar activation of TFs, as did

the cell clusters belonging to the non-digestive tissues including the trachea, skin, and

esophagus (Fig. 5g, Additional file 7: Table S41). We also observed some cluster-specific

TFs in the skin (CEBPA, HES1, GATA3, and ATF3), small intestine epithelial cells

(HNF4G, NR1H3, NR1I2, HNF4A, CDX1, and CDX2), tuff cells (MTA3, POU2F1, and

POU2F3), absorptive cells (HES4), and stem cells (ASCL2; Fig. 5g). Moreover, we identi-

fied 204 TFs in our AHCA dataset, which overlapped with about 60% (201) of all cluster-

specific TFs in the HCL dataset. A similar activation pattern of TFs was observed between

our AHCA and the HCL datasets for digestive-associated tissues (except for the pancreas)

and non-digestive tissues (except for the lungs; Additional file 1: Figure S20B and Add-

itional file 7: Table S42). Together, these observations suggest that TFs may contribute to

the heterogeneity of epithelial cells across tissues and epithelial cells from tissues with

similar functions may share a similar activation pattern of TFs.

The similarity and heterogeneity of stromal cells

Endothelial cells (ECs) line up in a monolayer and form the interior surface of blood

and lymphatic vessels as well as heart chambers. We identified a total of 6932 ECs,

(See figure on previous page.)
Fig. 5 The heterogeneity of epithelial cells inter- and intra-organ tissues. a t-SNE plots of 17,436 epithelial
cells. Each dot represents one cell, colored according to their origins of tissues (top panel) or cell clusters
(bottom panel). b Dot plot visualizing the normalized expression of marker genes for each epithelial cluster.
Cell cluster at y-axis was coded in numbers on the left, corresponding to that in a. Marker genes are shown
at the x-axis. The size of the dot represents the percentage of cells with a cell type, and the color
represents the average expression level. c Dendrogram of 34 clusters based on their normalized mean
expression values (correlation distance metric, complete linkage). Only genes with fold change above 1.5,
p.adjust < 0.05, and pct.1≥ 0.2 in each cluster were included in the analysis. d Volcano plot shows the DEGs
between the 14 digestive and 20 non-digestive related clusters. Labeled genes are markers for each cluster
in b. e, f Gene Ontology enrichment analysis results of each epithelial cell cluster in the digestive organs (e)
and non-digestive organs (f). Cell clusters in columns are coded as numbers at the bottom, correspond to
that in a, and are colored according to their −log10P values, with white to red for low to high enrichment
of a GO term in a row indicated on the right. Only the top 20 significant GO terms (P value < 0.05) are
shown. g Heat map of the activation scores of epithelial cell subtypes for gene expression regulated by
transcription factors (TFs). Cell clusters are indicated on top, and the scores were estimated using SCENIC
analysis. Only the top 10 TFs are shown with the highest difference in expression regulation estimates
between each cluster and all other cells, tested with a Wilcoxon rank-sum test. The cluster numbers are in
reference to those in a. Cell clusters are grouped according to the origin of organ and their digestive or
non-digestive function as indicated on top
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including 6681 blood endothelial cells (BECs, marked with VWF) and 251 lymphatic

endothelial cells (LECs, marked with LYVE1). BECs and LECs could be further grouped

into 11 and two clusters, respectively, with unique gene signatures (Additional file 1:

Figure S21 A-C and Additional file 8: Table S43). Although various cell clusters were

identified in a tissue, hierarchical cluster analysis revealed that the cell clusters from

the same tissue were grouped closer than those between two different tissues (Add-

itional file 1: Figure S21D), such as FABP4_BEC and TNFRSF4_BEC, and APOC1_BEC

from the muscle. Interestingly, a group of LECs (FCN3_LEC) were strictly identified in

the liver and expressed only two of the four genes for LECs (PECAM1 and LYVE1; but

not PDPN and PROX1 [43]; Additional file 1: Figure S21B, E) and other liver-specific

markers (CD4, CD14, FCN2/3, OIT3, and CLEC4G). The other group of LECs

(CCL21_LEC) were from tissues except for the liver, with exclusively high expression of

CCL21, the protein which binds the chemokine receptor 7 (CCR7) and promotes adhe-

sion and migration of various immune cells [44]. This suggests that these LECs have a

higher potential to attract immune cells than the LECs in the liver. GO analysis results

revealed that BECs and LECs from most of the clusters had common endothelial func-

tions including “blood vessel development” and “response to wounding,” as well as

functions regulating immune response (Additional file 1: Figure S21F). Moreover, the

cells from each cluster were shown to have specific biological functions, including

“endocrine processing” for liver BECs (TIMP1_BEC), “cellular extravasation” and

“adaptive immune response” for heart BECs (ACKR1_BEC), and “macrophage migra-

tion” for non-liver LECs (CCL21_LEC). We further examined the APS for each cell

cluster, which revealed a higher ability in presenting extracellular antigens for BECs

from the skin (CTSC_BEC, P < 2.2 × 10−16) and the LECs in the liver (FCN3_LEC; P =

7.232 × 10−15) than the other tissues (Additional file 1: Figure S21G).

We also identified a total of 17,690 fibroblasts and smooth muscle cells from nine tis-

sues. These cells were further grouped into 14 fibroblast clusters (11,697 cells, MMP2),

four smooth muscle cell clusters (3165 cells, ACTA2), and another five novel clusters

assigned as FibSmo (2828 cells; marked with MMP2 and ACTA2; Additional file 1: Fig-

ure S22A, B). We observed organ-specific distribution for fibroblasts of different clus-

ters, but a mixture of multiple organs for smooth muscle cell clusters (Additional file 1:

Figure S22A), which is consistent with previous findings in a mouse model [9]. DEG

analysis revealed that cells from each cluster had a unique signature (Additional file 1:

Figure S22C and Additional file 8: Table S44). Hierarchical cluster analysis showed that

cells from clusters were grouped in an organ-specific manner, namely close distance for

those within a same tissue (Additional file 1: Figure S22D). The presence of the novel

FibSmo cells was further confirmed by double immunostaining of fibroblast marker

MMP2 and smooth muscle cell marker ACTA2 in multiple tissues (Additional file 1:

Figure S10). Fibroblasts, smooth muscle cells, and FibSmo cells had distinct gene signa-

tures (Additional file 1: Figure S23A and Additional file 8: Table S45). GO analysis re-

vealed that the three cell types shared classical functions, including “response to

wounding” and “tissue remodeling” (Additional file 1: Figure S23B). However, each of

them has unique functions. Fibroblasts have specific enrichment of genes that are in-

volved in the “extracellular structure organization,” which is consistent with their

strong expression of extracellular matrix protein genes (DCN and FBLN2) and genes

related to matrix assembly (MFAP5 and SFRP2) and matrix remodeling (MMP2;
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Additional file 1: Figure S23B, C). Smooth muscle cells have specific enrichment of

genes related to muscle system processing, including MYH11, MYLK, CAV1, and

MEF2C (Additional file 1: Figure S23B, C). By contrast, FibSmo cells exhibited a high

and specific expression of PLAT (Additional file 1: Figure S7) and ID1, which were re-

lated to clotting and angiogenesis [45, 46], as well as a higher expression of COL3A1

and COL1A1 (Additional file 1: Figure S23B, C), which have been involved in wound

healing [47], compared with other stromal cells. Moreover, the enrichment of BMP sig-

nal genes BMP4 and BMP5 was also observed in the FibSmo cells (Additional file 1:

Figure S23B, C and Figure S7). Furthermore, GO analysis revealed that FibSmo cells

had enhanced biological functions in “response to wounding” and “growth factor,”

which is consistent with the functions of their highly expressed signature genes detailed

above (Additional file 1: Figure S23B, C).

Complex and broad intercellular communication networks within and between tissues

Since we observed heterogeneity for cells in each organ tissue, we explored their poten-

tial intercellular communication network. CellphoneDB interaction analysis was con-

ducted to explore cell-cell crosstalk of different cell types in various organs based on

the repository of ligands, receptors, and their interactions, which mediates cell-cell

communication critical to coordinating diverse biological processes [48]. We observed

a total of 20,630 significant interactions based on 475 ligand-receptor pairs among cell

types and tissues, which varied from 131 in the lymph nodes to 3229 in the skin (Add-

itional file 1: Figure S24A). Among them, MIF_CD74, HBEGF_CD44, MIF_TNFRSF14,

CD55_ADGRE5, and APP_CD74 were the top five frequent interacting pairs detected

across different cell types (Additional file 1: Figure S24B and Additional file 9: Table

S46), suggesting their important roles in mediating crosstalk between different cell

types. Next, we focused on the interactions between pairs of the major cell types (Add-

itional file 1: Figure S24C and Additional file 9: Table S47). Myeloid cells were the most

active cell type interacting with the other types of cells (6949 inter-cell interactions), es-

pecially with epithelial cells (24.3% of the total inter-cell interactions) in the skin and

trachea (51.8%). Interestingly, common interactions were observed between myeloid

cells and epithelial cells, with the most frequent ligand-receptor pair HBEGF_CD44

(Fig. 6a, Additional file 1: Figure S25), of which dysregulations were involved in tumor

and metastasis initiation [49]. CD8+ T cells were another cell type with intensive interac-

tions with other types of cells (total inter-cell 4290 interactions), especially with myeloid

cells (29.9% of the total inter-cell interactions). The interactions were found mainly in the

liver, trachea, and common bile duct (44.6%). The frequent interaction pairs between

CD8+ T and myeloid cells were RPS19_C5AR1, CD55_ADGRE5, MIF_CD74, HBEGF_

CD44, CD99_PILRA, and ANXA1_FPR1, most of which play important roles in immune

regulation [50–52] (Fig. 6b, Additional file 1: Figure S26). CD8+ T cells also had broad in-

teractions with non-immune cells (Additional file 9: Table S47). For instance, the most

frequent interacting chemokine and receptor pair CXCL12_CXCR4 [53] was observed be-

tween stromal (fibroblasts, FibSmo, and smooth muscle cells) and CD8+ T cells, suggest-

ing the chemoattraction potential of those stromal cells for T cells’ migration into tissues

(Fig. 6c, Additional file 1: Figure S27). We observed broad interactions with different

densities among various organ tissues (Fig. 6d, Additional file 10: Table S48). We noted
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that cells in the trachea had a high density of interaction pairs with multiple tissues in-

cluding the rectum, liver, and spleen, suggesting the potential regulatory communications

between these organs. Interestingly, myeloid, CD8+ T, and epithelial cells were the core

nodes of cell-cell interactions, which had the greatest number of interacting pairs and en-

hanced pairwise communications (Fig. 6e, Additional file 10: Table S48).

Discussion
Here, to the best of our knowledge, we for the first time generated an adult hu-

man cell atlas (AHCA), by profiling the single-cell transcriptome for 84,363 cells

from 15 organs of one adult donor. The AHCA included 252 cell subtypes, each of

which was distinguished by multiple marker genes and transcriptional profiles and

collectively contributed to the heterogeneity of major human organs. The AHCA

empowered us to explore the developmental trajectories of major cell types and

identify regulators and interacting networks in one donor that might play import-

ant roles in maintaining the homeostasis of the human body. We have made the

AHCA publicly available (http://research.gzsums.net:8888), as a resource to uncover

key events during the development of human disease in the context of heterogen-

eity of cells and organs.

It has been demonstrated that TN cells are generated in the thymus and populate

lymphoid tissues where they differentiate to TEFF cells upon antigen stimulus, and sub-

sequently develop into long-lived memory T cells [54]. However, how T cells develop

into different states throughout human organs and the links across T cells of different

states as well as the underlying regulatory networks are largely unknown, especially in

the context of one individual body. In our study, trajectory analysis revealed a clear de-

velopment route from TN cells into TEFF cells and then CD4+ and CD8+ TRM cells in

non-lymphoid organs with terminal developmental states, which is consistent with

(See figure on previous page.)
Fig. 6 Intercellular communication networks among tissues. a-c The top 10 significant ligand-receptor
interactions between cells among different organs for epithelial and myeloid cell subtypes (a), myeloid and
CD8+ T cell subtypes (b), and CD8+ T and stromal cell subtypes (c; fibroblast, smooth muscle cell, and FibSmo
cell). An interaction is indicated as color-filled circle at the cross of interacting cell types in a tissue (x-axis) and a
ligand-receptor pair (y-axis), with circle size representing the significance of −log10P values in a permutation test
and colors representing the means of the average expression level of the interacting pair. The naming system is
as follows: taking an example of “EGFR_TGFB1” in “cholang_FXYD2.Mac.Commonbileduct,” the ligand-receptor
pair is EGFR (red) and TGFB1 (black), and the circle is colored based on the expression levels of EGFR in
cholang_FXYD2 cluster and TFGB1 in Mac cluster in the tissue Commonbileduct. Mon, monocyte; Mac,
macrophage; DC, dendritic cell; TRM, tissue-resident memory T cell; TEFF, effector T cell; TGD, γδ T cell; MAIT,
mucosal-associated invariant T cell; TEM, effector memory T cell; TIEL, intraepithelial T lymphocyte; TN, naïve T
cell; Fib, fibroblast; Smo, smooth muscle cell; FibSmo, novel cell type named FibSmo cell; Commonbileduct,
common bile duct; Lymphnode, lymph node; Smallintestine, small intestine. For epithelial cells, the full names
of each cluster refer to Table S47. d Connection graph showing the intensity of interactions between one
organ to another in colored circles. Interactions were evaluated between major cell types including CD4+ T cell,
CD8+ T cell, γδ T cell, B cell, plasma cell, myeloid cell, NK cell, epithelial cell, fibroblast, smooth muscle cell,
FibSmo cell, and endothelial cell. Numbers in red show the total counts of ligand-receptor pairs between the
indicated organ and all others, which include only the unique significant interacting pairs between them
(average expression > 0 and P value < 0.05). e Connection graph showing the intensity of interactions within a
major cell type or between two major cell types in colored circles. Numbers in red show the total counts of
ligand-receptor pairs within or between cell types, which only included the unique significant interacting pairs
between them (average expression > 0 and P value < 0.05). CD4, CD4+ T cell; CD8, CD8+ T cell; γδ, γδ T cell; B, B
cell; Plasma, plasma cell; Myeloid, myeloid cell; NK, NK cell; Epi, epithelial cell; Fib, fibroblast; Smo, smooth
muscle cell; FibSmo, FibSmo cell; Endo, endothelial cell
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previous findings [54]. Indeed, TRM cells share many properties with recently activated

effector T cells, supporting the fact that they may constitute a terminally differentiated

population [55–57]. However, for CD4+ T cells, we noted a clear TCM cell cluster

(STMN1_TCM) at the end of the trajectory, likely differentiated from TRM cells (TNF_

TRM). Together with STMN1_TCM cells collected from lymph nodes, this observation

provides a clue to solving the puzzle as to whether TRM cells can further differentiate

or migrate back to the lymphoid compartment [58]. In support of such, a very recent

mice model study demonstrated that TRM cells in the skin could differentiate into TCM

and TEM cells upon local reactivation, which then rejoined the circulation. Moreover,

trajectory analysis with TNF_TRM and STMN_TCM clusters revealed that TNF_TRM

cells from two branches in an early state gradually progressed towards STMN1_TCM

cells in a terminal state (Additional file 1: Figure S28A). TRM cells at the beginning of

the trajectory expressed high levels of TRM markers, such as RUNX3, NR4A1, chemo-

kines (CCL5) [59], and other TRM associated genes, including ID2 [60]. By contrast,

TCM cells at the end of the trajectory were marked with expression of well-known TCM

molecules, such as SELL and CCR7 (Additional file 1: Figure S28B). Taken together,

these observations suggest that TRM cells have developmental plasticity rather than

representing a terminal stage of differentiation [61]. We also noted that TRM cells ex-

hibit development states at organ-specific patterns and consistently these cells were

regulated by different types of TFs, suggesting that tissue microenvironments might

regulate gene expression by affecting TF’s activity, which in turn shapes specific T cell

phenotypes. TCR analysis tracking cell of a same lineage revealed widespread links

among subpopulations of TRM cells; however, these are considered as non-recirculating

[62]. Moreover, intensive sharing of TCR was observed among TRM, TEM, and TEFF

cells (Additional file 1: Figure S14I, J). Together with their development states, these re-

sults suggest that TEM cells and TEFF cells might enter the tissues and develop into

TRM cells and IEL T cells. In addition, we observed the branching out of CTLA4_Treg

cells next to KLF2_TCM cells along the development trajectory from TN cells to TRM

cells (Fig. 2e). Given that previous in vitro studies have demonstrated a potential devel-

opment from central memory T cells to Treg cells upon stimulation [63, 64], this obser-

vation suggested that differentiation of Treg cells from central memory T cells is

possible. However, whether it holds true in vivo remains to be established with precise

lineage tracing methods.

Infiltrating macrophages come from classical monocytes in pathological settings, such

as cancers [65], while various origins of adult macrophages among tissues in a steady

state have been reported [66]. As such, it has been debated how macrophages are

renewed in the maintenance of hemostasis in tissues, whether through local prolifera-

tion or recruitment of monocytes from peripheral blood [67, 68]. In our study, multiple

observations suggest that macrophages in organs are derived from either circulating

monocytes or in situ expansion and proliferation of macrophage populations coping

with the local microenvironments. Consistently, entry of monocytes to steady-state

non-lymphoid organs and self-maintenance of tissue macrophages have been reported

in mice models [36, 69]. Although our observations suggest a potential developmental

relationship between circulating monocytes and tissue-resident macrophages, we ac-

knowledge that further investigations are needed to address whether self-expansion

alone, or slightly together with circulating monocytes contributes to the development
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of tissue-resident macrophages, considering that most tissue-resident macrophages

have been demonstrated to be originated from embryonic progenitor cells [36].

We observed a more isolated clustering of epithelial and stromal cells compared with

immune cells, which have circulating capability. Because epithelial and stromal cells are

fundamental components that form protective barriers and supporting matrix for many

organs, disruptions in their homeostasis have been implicated in various diseases [70–

73]. Accumulating studies have demonstrated the remarkable functional heterogeneity

of epithelial cells among tissues [74–76]. Consistently, our GO enrichment analyses re-

vealed very diverse functions of epithelial cells among different tissues, as well as stro-

mal cells. Taken together, a higher degree of heterogeneity might reflect a higher

degree of terminal differentiation states and distinct specific functions of these cells

among different organs. Nevertheless, we note that epithelial cells derived from digest-

ive organs had similar biological functions and activation of TFs, which were consist-

ently observed in both our AHCA and the HCL datasets [20]. Given that most of the

digestion-related organs develop from the endoderm, this might explain their similarity

in genetic profiles and functions [77]. In addition, we suspected that the epithelial cells

with the same digestive functions might also share similar responses to pathogens or

stimuli [78].

The AHCA not only brings more detailed understanding of cell development and

heterogeneity, but also reveals novel cell types and genes as well as regulatory factors

that might be important for cell development. We identified subsets of novel cells, in-

cluding COCH+ fibroblasts and FibSmo cells with a broad distribution among organ tis-

sues. TFs are known as the “master regulators” for gene expression [79, 80]. We

identified numerous novel TFs in regulating the development of different cell states of

major cell types, such as CEBPD, EGR1 in CD4+ TRM, ELF1 in CD8+ TRM, MAFF in

both CD4+ and CD8+ TRM, POLR2A in B cells, and KLF13 in plasma cells, as well as

EGR1, MYC, YY1, and BCL11A in the non-digestive tissues. These findings not only ex-

tend our understanding in how the TFs regulate gene expression and shape different

phenotypes, but also provide potential gene combinations in reprogramming applica-

tions. The AHCA also provides useful data to explore the cellular networks at a single-

cell resolution. We discovered a large number of interactions between immune cells

and other cells in all tissues, reflecting essential and broad communications between

immune cells and other cell types in the human body. Epithelial cells had the most fre-

quent inter-cell interactions compared with other cell types, suggesting that they could

interact with each other intensively to regulate their biological functions (Additional

file 1: Figure S29). Moreover, the AHCA is based on a large scale of single-cell tran-

scriptomes from multiple organs, which might provide common biological understand-

ing at a higher resolution. First, the heterogeneous nature of human cells in organs is

consistent with the findings in mice [8] and a recent study with human tissues [20].

Second, we identified well-known markers for different cell types and well-characterized

TFs responsible for cell development, such as TCF7, SELL, MYC, and KLF2 for TN cells

and TBX21, STAT1, and IRF1 for TEFF cells. Third, similar transcription profiles of well-

differentiated epithelial cells were observed between the AHCA and the recent published

HCL datasets [20] (Fig. 5a, Additional file 1: Figure S18B), as were important TFs regulat-

ing plasma cell development (Fig. 3e, Additional file 1: Figure S16F) and digestion-related

cells (Fig. 5g, Additional file 1: Figure S20B). Lastly, our discovery of novel and rare cell
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types was validated in existing datasets and replicated in independent human samples

(Additional file 1: Figure S4-S10).

Cellular dissociation is a prerequisite of technical manipulation in single-cell studies.

One previous study reported dissociation procedures induced stress and caused tran-

scriptional disturbances of varying degrees, leading to a misinterpretation of results

[81]. Enzymes and duration of dissociation procedures might be two important factors

[81, 82]. Considering the properties of different enzymes and the heterogeneous cell

types in organs, we optimized the protocols to achieve better dissociation and higher

cell viability for each organ (Additional file 11: Table S49). We observed that most or-

gans had a higher density of low total dissociation scores [81], meaning that

dissociation-related genes were not significantly induced in the majority of cells (Add-

itional file 1: Figure S30). Moreover, high expression of FOS, a dissociation-related gene

according to previous studies [81], was observed widely in multiple human tissues be-

fore dissociation (Additional file 1: Figure S31). Furthermore, each major cell type de-

rived from multiple organs treated with different dissociation procedures shared similar

transcriptional profiles as reflected by the cluster analyses. These suggest that the dis-

sociation procedures had minimal effects on the transcriptomes in our study. However,

we could not rule out the possibility that the dissociation procedures might have im-

pacts on some cell types, which awaits further investigations.

We acknowledge that the current AHCA has several limitations. First, although we

obtained a sufficient number of sequencing reads for each sample, the number of genes

detected in each cell was limited. This might underestimate the roles of some lowly

expressed genes, such as long non-coding RNAs. Second, we obtained around 5000

cells on average for each organ, which might limit our ability to identify rare cell types

and thus underestimate the heterogeneity of inter-cell interactions in organs. Third, we

included only 15 organ tissues from a single donor in our study. Further studies on

gene expression profiling at both the transcriptional and protein levels, as well as func-

tional characterization with more organs from a larger number of donors, would pro-

vide a much broader and more detailed global view of the human cell atlas and cell

biology.

Conclusions
We generated an AHCA, by profiling the single-cell transcriptome for more than 84,

000 cells of 15 organs from one research-consented donor. The AHCA uncovered the

heterogeneity of cells in major human organs, containing more than 250 subtypes of

cells. Comprehensive analyses of the AHCA enabled us to delineate the developmental

trajectories of major cell types and to identify novel cell types, regulators, and key mo-

lecular events that might play important roles in maintaining the homeostasis of the

human body and/or those otherwise developing into human diseases.

Materials and methods
Organ tissue collection

An adult male donor who died of a traumatic brain injury was recruited at the First Af-

filiated Hospital of Sun Yat-sen University (SYSU-1H). For single-cell RNA sequencing,

besides the organs for transplantation purposes, we collected tissues from 15 organs in
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sequence, including the blood, bone marrow, liver, common bile duct, lymph node

(hilar and mesenteric), spleen, heart (apical), urinary bladder, trachea, esophagus, stom-

ach, small intestine, rectum, skin, and muscle (thigh). All hollow viscera tissues were

dissected according to the whole layer structure, and all parenchymal viscera tissues

were obtained from the organ lower pole. All the tissue collection procedures were ac-

complished within 20min to maximize cell viability. To avoid cross-contamination, we

used different sets of sterilized surgical instruments. The blood and bone marrow sam-

ples were loaded into 10-ml anticoagulation tubes containing EDTA (BD Biosciences,

Cat. no. BD-366643), and other tissues were placed in physiological saline (4 °C) to

wash away the blood and secretions, and then immediately in a D10 resuspension buf-

fer, containing a culture medium (DMEM medium; Gibco™, Cat. no. 11965092) with

10% fetal bovine serum (FBS; Gibco™, Cat. no. 10099141). All tissue samples were kept

on ice and delivered to the laboratory within 40 min for further processing. For immu-

nohistochemistry assays, paraffin-embedded normal samples were collected from add-

itional patient donors at the SYSU-1H.

Tissue dissociation and cell purification

All tissues were dissociated within 1.5 h, and viable cells were collected at the end using

fluorescence-activated cell sorting (FACS; BD FACS Aria™ III). For solid tissues exclu-

sive of the liver, each fresh tissue was cut into 1-mm pieces and incubated with a

proper digestive solution including enzyme cocktail (Additional file 11: Table S49),

followed by neutralization with the D10 buffer and then passed through a 40-μm cell

strainer (BD, Cat. no. 352340). The cell suspension was centrifuged at 300×g for 5 min

at 4 °C, and the pellet was resuspended with a 0.8% NH4Cl (Sigma-Aldrich, Cat. no.

254134-5G) red blood cell lysis buffer (RBCL) on ice for 10 min, followed by an add-

itional wash with the D10 buffer. The liver tissue was cut into 3–4-mm pieces and in-

cubated with 1 mM EGTA (Sigma-Aldrich, Cat. no. E0396-10G) in 1× DBPS (Gibco™,

Cat. no. 14190250) for 10 min at 37 °C with rotation at 50 rpm. After washing with 1×

DPBS to remove EGTA, each tissue was then incubated in a pre-warmed digestion buf-

fer (Additional file 11: Table S49) with rotation at 100 rpm at 37 °C for 30 min. The

liver cell suspension was carefully passed through a 70-mm nylon cell strainer (BD,

Cat. no. 352350), which was further centrifuged at 50×g for 3 min at 4 °C to pellet hepa-

tocytes. The supernatant was centrifuged at 300×g for 5 min at 4 °C to pellet non-

parenchymal cells. The pellet was resuspended and treated with RBCL. The blood and

bone marrow samples were pelleted by centrifugation at 300×g for 5 min at 4 °C and re-

suspended with RBCL on ice for 10 min, followed by an additional wash with the D10

buffer. All cells from each tissue were resuspended with the D10 buffer to a concentra-

tion of 50–500 million cells per milliliter and stained with Calcein AM (component A:

AM) and Ethidium homodimer-1 (component B: EH) in LIVE/DEAD Viability/Cyto-

toxicity Kit (Invitrogen, Cat. no. L3224) for 20 min on ice. Only the AM+EH− cells were

collected by FACS for each tissue.

cDNA library preparation

The concentration of single-cell suspension was determined using a Cellometer Auto

2000 instrument (Cellometer) and adjusted to 1000 cells/μl. Approximately 14,000 cells
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were loaded into a CHROMIUM instrument (10x Genomics, CA, USA) according to

the standard protocol of the Chromium single cell V(D)J kit in order to capture

5000~10,000 cells per channel. In brief, mRNA transcripts from each sample were li-

gated with barcoded indexes at 5′-end and reverse transcribed into cDNA, using Gem-

Code technology (10x Genomics, USA). cDNA libraries including the enriched

fragments spanning the full-length V(D)J segments of T cell receptors (TCR) or B cell

receptor (BCR), and 5′-end fragments for gene expression were separately constructed,

which were subsequently subjected for high-throughput sequencing.

Single-cell RNA sequencing data processing

5′-end cDNA, TCR, and BCR libraries were mixed and subjected for sequencing on

Illumina HiSeq XTen instruments with paired-end 150 bp. Raw data (BCL files) from

HiSeq platform was converted to fastq files using Illumina-implemented software

bcl2fastq (version v2.19.0.316). cDNA reads were aligned to the human reference gen-

ome (hg38), and digital gene expression matrix was built using STAR algorithm in Cell-

Ranger (“count” option; version 3.0.1; 10x Genomics) [83]. TCR and BCR reads were

aligned to human reference VDJ dataset (http://cf.10Xgenomics.com/supp/cell-vdj/

refdata-cellranger-vdj-GRCh38-alts-ensembl-2.0.0.tar.gz) using CellRanger (“vdj” op-

tion; version 3.1.0; 10x Genomics). Parameters were set as default except for “force-

cells” as 13,000. Raw digital gene expression matrix in the “filtered_feature_bc_matrix”

file folder generated by CellRanger was used for further analysis.

Cell clustering, doublet identification, and differential gene expression analysis

Quality control filtering, variable gene selection, dimensionality reduction, and clustering for

cells were performed using the Seurat package [6] (version 3.1.5; https://satijalab.org/seurat).

“DoubletFinder” (version 2.0.3; https://github.com/chris-mcginnis-ucsf/DoubletFinder) was

used to identify doublets in each organ. All the analytic packages were performed in

R software (version 3.6.3; https://www.r-project.org), with default settings unless

otherwise stated. For each tissue, output cells were forced to 13,000 under “cellranger

count” module, and we removed cells with low quality (UMI < 1000, gene number <

500, and mitochondrial genome fragments > 0.25) as well as genes with rare frequen-

cies (0.1% of all cells). For the remaining cells, gene expression count data for each

sample was normalized with “NormalizedData” function, followed by scaling to re-

gress UMIs and mitochondrial content using “ScaleData” function (negative binomial

model). Principal component analysis (PCA) and t-SNE implemented in the

“RunPCA” and “RunTSNE” functions, respectively, were used to identify the devia-

tions among cells. Genes with high variations were identified using “FindVariable-

Genes” and included for PCA (“mean.cutoff” ≥ 0.1, “dispersion.cutoff” ≥ 0.5). We used

a different value of perplexity and the number of principal components (PCs) deter-

mined by elbow plots for each tissue and cell type (Additional file 11: Table S50). Cell

clusters were identified using the “FindClusters” function and shown using t-SNE.

Subsequently, “DoubletFinder” was used to identify doublets using the same PCs in

PCA above, assuming the 5% doublet formation rate to the loaded cells for each sample

in a droplet channel. The optimal pK values were determined for each organ based on the

mean-variance normalized bimodality coefficient (BCmvn; Additional file 11: Table S51).
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After doublet removal, we rerun the above analyses. Next, differential expression markers

or genes were determined using the Wilcoxon test implemented in the “FindAllMarkers”

function, which was considered significant with an average natural logarithm (fold

change) of at least 0.25 and a Bonferroni-adjusted P value lower than 0.05. Subsequently,

the candidate markers were reviewed and were used to annotate cell clusters. We further

manually removed cell clusters that had multiple well-defined marker genes and over-

lapped gene profiles of multiple different cell types (Additional file 2: Table S4-S18). For

analyses of the merged data from all tissues, we used 30 PCs and a resolution parameter

set to 1 for cell clustering.

Identification and removal of highly transcribed genes with contamination potentials

Because we observed that some cell-specific genes were broadly expressed among all cell

types in a tissue, for example, APOC3 in enterocytes cells in the small intestine with an

average of more than 200 UMIs in a cell, we suspected that if a fraction of a certain type

of cells were broken during the sample processing, cell-specific genes with high transcrip-

tions would be released and thus contaminate all cell droplets. Especially, as such the

genes would screw the differential expression analysis of cell type among all tissues.

Therefore, we identified these genes and removed them for comparison analyses within

major cell types. We assumed that non-epithelial cells from a same linage have similar

gene profiles at a certain degree and that a few genes would have modest expression in

only one organ. Here is a given example for T cells, in which we grouped together the

cells previously labeled with NK/T, T, and immune cells (Additional file 2: Table S4-S18)

in each tissue. Next, we determined the top 2% of genes with high transcription in each

tissue sample based on the total number of UMIs (Additional file 11: Table S52) and

marked these as potentially contaminating genes. We further randomly sampled 300 cells

for each cell type in a tissue and as such generated artificial data for all tissues, with which

differential expression gene analysis was performed using the “FindAllMarker” function.

Any gene with a normal logarithm of FC above 0.25 and with an expression in less than

5% cells in all other tissue samples was considered a contaminating gene. We performed

the above sampling and calculation for four independent times, with seed numbers 1 to 4

in the “FindMarker” function, and only the genes commonly observed in the four calcula-

tions were determined as contaminating genes. After removing the above contaminating

genes, we performed cluster analysis with the first 20 PCs and a resolution of 1.5. After

further removal of cell clusters that had multiple well-defined marker genes of different

cell types, we repeated cluster analysis using a lower resolution setting and removing the

genes encoding immunoglobulins from the gene expression matrices (Additional file 11:

Table S50) to identify CD4+, CD8+, and NK cell (Additional file 11: Table S53) clusters.

For B cells, plasma cells, endothelial cells, macrophages, monocytes, and fibroblasts, we

applied a similar strategy to remove contaminating genes (Additional file 11: Table S54-

S58) and cell clusters with multiple cell-specific markers.

Trajectory analysis

We performed trajectory analysis using Monocle3 alpha [4] for all tissue-derived T cells,

macrophages/monocytes, according to the general pipeline (http://cole-trapnell-lab.

github.io/monocle-release/monocle3/). For T cells, after identification of T cells clusters
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for CD4+ and CD8+ T, raw gene expression counts of cells were imported to the software.

Only genes matching the thresholds (both of mean expression and dispersion ratio greater

than 0.15 for CD4+, CD8+ T cell and myeloid cells) were used for cell ordering and train-

ing the pseudo-time trajectory. For investigating the dynamic gene expression between

TRM and TCM, we extracted those two CD4+ T clusters and performed the trajectory ana-

lysis using Monocle2 with 1000 high variable genes. For trajectory analysis of intestinal

macrophages/monocytes, we extracted the cell clusters with more than 50 cells in our

dataset and combined 50 embryonic macrophages from a previous study [39]. The ana-

lysis was done by correcting the batch effect using function “align_cds” of Monocle3 with

25 PCs included.

TCR and BCR analysis

We assessed the enrichment of TCR and BCR in various organs using R package STAR

TRAC (version 0.1.0) [23], which included only the cells with the certain clonotypes

assigned by CellRanger (version 3.1.0 with updated algorithms to improve the identifi-

cation of TCR/BCR clonotypes) and with paired chains (α and β for T cells, heavy and

light chains for B cells). In brief, cells sharing identical TCR or BCR clones between tis-

sues were measured using migration-index score, and the degree of cell linking between

different clusters of T cells or B cells was determined by the transition-index score.

TCR or BCR diversity (Shannon-index score) was calculated using “1 − expansion-

index score.” For the detailed pipeline, please refer to the website (https://github.com/

Japrin/STARTRAC/blob/master/vignettes/startrac.html).

Presenting-antigen score

To evaluate the antigen-presenting ability of extra- and intracellular of each cell,

antigen-presenting score (APS) was calculated using the “AddModuleScore” function

implemented in the Seurat package, with gene sets “MHC_CLASS_II_ANTIGEN_

PRESENTATION” and “REACTOME_CLASS_I_MHC_MEDIATED_ANTIGEN_PRO-

CESSING_PRESENTATION” pathways, respectively, in the REACTOME database

(http://www.reactome.org).

Gene Ontology pathway enrichment analysis

All GO enrichment analysis was performed using the online tools metascape [84] with

the “multiple gene list mode” (http://metascape.org/gp/index.html). For epithelial cells,

we selected genes with FC ≥ 2 and p.adjust < 0.05 for each tissue, while FC ≥ 1.5, p.ad-

just < 0.05, and ptc.1 > 0.2 for each cluster. For non-epithelial cells, we selected genes

with lnFC ≥0.25, p.adjust < 0.05, and ptc.1 > 0.2 in each cluster. Only the genes that

ranked in the top 150 according to the FC were used for comparisons in each tissue

and subpopulation. The background was given as all the genes expressed in corre-

sponding cell types. In addition, only the gene sets in the “GO Biological Processes”

were considered.

Cellular interaction analysis

To investigate the cellular interaction, we identified the inferred paired molecules using

CellphoneDB software (version 2.0) [18] with default parameters. First, to facilitate the
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pairwise analyses by reducing cell types, we grouped clusters within major cell types, in-

cluding T, B, NK, myeloid, endothelial cells, fibroblasts, smooth muscle cells, and

FibSmo cells within each tissue. Moreover, we manually assigned ITGB1_TN/CM, LEF1_

TN/CM, and GADD45B_TN/CM as TCM cell cluster, and KLF2_TN/CM as TN cell cluster

based on their expression profiles and the developmental states along the trajectory

trees, although naïve and memory T cell clusters could not be accurately determined in

our study. The grouped cell types were as follows: CD4+ T cell (TN, TCM, Treg, TEM,

Th1, and TRM), CD8
+ T cell (TN, TCM, TEM, TEFF, TRM, IEL, and MAIT), γδ T cell, B

cell (naïve and memory B cell), NK cell, plasma cell, myeloid cell (monocyte: Mon,

macrophage: Mac, and dendritic cell: DC), endothelial cell (BEC and LEC), fibroblast

(Fib), smooth muscle cell (Smo), and FibSmo cell (FibSmo). We did not merge subpop-

ulations of epithelial cells because of their high degree of heterogeneity in each tissue.

Considering the test efficiency and computational burden, we focused on cell types

with more than 30 cells and only randomly selected 250 cells of each cell type for ana-

lysis in each tissue. The significant ligand-receptor pairs were filtered with a P value of

less than 0.05 and an average expression of interacting pairs larger than 0. All the ana-

lyses above were performed as tissue independent. For the analysis of interaction across

organs, we only calculated between any one of the immune cells in a tissue and its

interacting cells from a different organ. Visualization of interaction network was done

using Cytoscape (version 3.7.0).

Single-cell regulatory network inference and clustering analysis

We conducted SCENIC analysis on cells passing the quality controls for each major cell

types, using R package SCENIC (version 1.1.3) as previously described [85]. Regions for

TF searching were restricted to 10 k distance centered the transcriptional start site

(TSS) or 500 bp upstream of the TSSs. Transcription factor binding motifs (TFBS)

overrepresented on a gene list and networks inferring were done using R package Rcis-

Target (version 1.6.0) and GENIE3 (version 1.8.0), respectively, with the 20-thousand

motifs database. We randomly selected no more than 250 cells for each cell cluster.

The input matrix was the normalized expression matrix from Seurat. The cluster-

specific TFs of one cluster were defined as the top 10 or 15 highly enriched TFs ac-

cording to a decrease in fold change compared with all the other cell clusters using a

Wilcoxon rank-sum test.

Validation analysis in existing datasets

For B and epithelial cells in the HCL dataset [20], we applied similar procedures for cell

clustering and differential gene expression analyses as described above. We only ex-

tracted adult B and epithelial cell clusters identified by the HCL dataset, considering

high sequencing coverage and with less potential cross-cell contamination compared

with the other cell types. Genes encoding immunoglobulin were removed in the epithe-

lial cells from raw count data before further analysis. We set the “mean.cutoff” and

“dispersion.cutoff” as 0.05 and 0.2 in “FindVariableFeatures” step for both B and epithe-

lial cell analyses.

For validation of COCH+ fibroblasts [86–88], sweat gland cells [86, 87], and FibSmo

cells [20, 89], cells from each individual dataset were merged and batch effect was
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removed using the “FindIntegrationAnchors” and “IntegrateData” functions in the Seu-

rat package. The downstream analyses followed the same pipeline of our AHCA

dataset.

Calculation of dissociation scores

For each organ, principal component analysis was performed on a subset of 140 human

homologous dissociation-related genes as described previously [81]. The first principal

component was used as the “dissociation score” as it corresponds to the variance within

these genes.

Analysis of differential pathway

Gene set variation analysis (GSVA) or gene set enrichment analysis (GSEA) was performed

to identify significantly enriched genes in each transcriptional dataset, using R package

GSVA (version 1.34.0) or GSEA software (version 4.0.3) (https://www.gsea-msigdb.org/

gsea/index.jsp) on the 50 hallmark pathways with default parameters, respectively. For epi-

thelial cells in AHCA and HCL datasets, GSVA was performed on the 50 hallmark path-

ways and additional curated metabolic pathway dataset [90].

Immunofluorescence staining assay

For immunofluorescence staining assay, tissue samples were collected within 20min,

washed with 1× DPBS, fixed in 4% paraformaldehyde (pH 7.0), and embedded in paraf-

fin according to routine methods. These paraffin blocks were cut into 4-μm slides and

adhered on the slide glass. The sections were deparaffinized, rehydrated, and subjected

to blockade of endogenous peroxidase activity with 3% H2O2, and high-temperature

antigen retrieval. The tissues were incubated with 3% BSA at room temperature for 30

min, and then incubated overnight at 4 °C with the primary detection antibodies for dif-

ferent organs (Additional file 11: Table S59). The slides were then incubated with the

secondary antibody (HRP polymer, anti-rabbit IgG) at room temperature for 50 min.

Subsequently, fluorophore (tyramide signal amplification, TSA plus working solution;

Servicebio, Cat. no. G1222/3/4) was applied to the tissues. The slides were microwave

heat-treated after each TSA treatment, and the primary antibodies were applied se-

quentially for different organs, followed by incubation with the secondary antibody and

TSA treatment. Nuclei were stained with 4′-6′-diamidino-2-phenylindole (DAPI; Invi-

trogen, Cat. no. D1306) after all the antigens had been labeled. Negative controls were

performed using similar procedure above, except for replacing the primary antibody

with 1× DPBS. To obtain multispectral images, slides were scanned using the Pannora-

mic MIDI II system (3DHISTECH, Hungary).
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