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Abstract

Single-cell RNA-seq (scRNA-seq) profiles gene expression of individual cells. Unique
molecular identifiers (UMIs) remove duplicates in read counts resulting from
polymerase chain reaction, a major source of noise. For scRNA-seq data lacking UMIs,
we propose quasi-UMIs: quantile normalization of read counts to a compound Poisson
distribution empirically derived from UMI datasets. When applied to ground-truth
datasets having both reads and UMIs, quasi-UMI normalization has higher accuracy
than competing methods. Using quasi-UMIs enables methods designed specifically for
UMI data to be applied to non-UMI scRNA-seq datasets.
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Background
Single-cell RNA-seq (scRNA-seq) has become a standard tool for measuring gene expres-
sion patterns from individual cells. The initial molecule capture and reverse transcription
(RT) steps in scRNA-seq protocols result in low quantities of cDNA, so a large number
of PCR cycles are needed to produce enough material for measurement. The resulting
libraries, that are then sequenced, contain many duplicates of each of the single mRNA
molecules extracted from the original cell [1]. To account for this distortion, some pro-
tocols include unique molecular identifiers (UMIs), which enable computational removal
of PCR duplicates [2]. However, read count datasets generated without UMIs are still
commonly used for at least two reasons. First, many public datasets have been produced
with non-UMI protocols. Second, current UMI protocols sequence only the 5-prime or
3-prime end of the mRNA molecule and therefore prevent quantification of transcript
isoform levels within the same gene [3] or allele-specific expression [4]. An exception
to this is the recently proposed Smart-seq3 protocol [5], but few public datasets are yet
available from this technique.

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-020-02078-0&domain=pdf
mailto: ftownes@princeton.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Townes and Irizarry Genome Biology          (2020) 21:160 Page 2 of 17

In both UMI and read count data, the fraction of zeros per cell is often a dominant
source of variation. Not only does the zero fraction strongly correlate with the first prin-
cipal component, but it also affects the entire gene expression distribution [6]. While
the zero fraction could be driven by biological processes such as the cell cycle, this is
completely confounded by cell-to-cell differences in capture and RT efficiency, which
have nothing to do with underlying biology. For UMI counts, systematic variation intro-
duced by these technical components can be addressed by using multinomial models
[7]. However, for read counts, such models are precluded by the additional multiplicative
distortions of PCR. Here, we focus on the analysis of read counts from non-UMI pro-
tocols such as Smart-seq2 [8]. Note however that read counts (with PCR bias) may also
be obtained from UMI protocols if the UMIs are simply ignored when constructing the
expression measurements.
The substantial distortions in read counts have motivated the development of sophis-

ticated normalization procedures. One approach is to attempt to transform the data
to more closely follow a normal (Gaussian) noise model. For example, log-transformed
expression values after normalization by transcripts per million (TPM), scran [9], or
SCnorm [10] may be used as input to principal component analysis (PCA) which implic-
itly assumes Gaussian noise. However, due to the large number of zeros in scRNA-seq, log
transformation of normalized counts requires a pseudocount, which introduces substan-
tial bias [11]. The resulting distributions can be far from Gaussian, even for UMI count
data [7]. In contrast, the census counts method transforms read counts and attempts to
match the underlying UMI distribution based on the key observation that the mode of
the nonzero UMI count distribution is typically one [1]. Rather than matching a normal
distribution, this approach needs only to remove PCR bias to be effective. The resulting
census counts can be analyzed as if they were UMI counts by methods specifically devel-
oped for UMI data [7, 12]. Census count normalization relies on a complex mechanistic
model of scRNA-seq biochemistry and applies a linear transformation [1]. However, due
to the nonlinearity of PCR, this approach is inadequate for removing bias.
Here, we present quasi-UMIs (QUMIs), a normalization technique for scRNA-seq read

counts that, like census counts, attempts to match the UMI count distribution. Our
approach differs from census counts in that we apply quantile normalization rather than
a linear transformation, producing a discrete distribution. In general, quantile normaliza-
tion forces all cells to follow a specific target distribution. The most widely implemented
version of quantile normalization generates the target distribution by averaging over
empirical distributions from the data [13]. In the case of scRNA-seq, however, we know
that if we could remove PCR duplicates from read counts, we would obtain UMI counts,
which have a markedly different distribution from any of the empirical read count distri-
butions [7]. We therefore use the characteristics of UMI counts as a guide to construct
the QUMI target distribution such that it will approximate a true UMI count distribu-
tion. Specifically, we fit Poisson-lognormal models to seven public datasets from different
tissues, species, and UMI protocols. The Poisson-lognormal distribution has a heavy tail
that approximates a power law, and power laws have been observed previously in gene
expression [14, 15]. This target QUMI distribution depends on a single shape parame-
ter and makes no assumptions about biochemical mechanisms. On three independent
benchmark datasets where both read and UMI counts were available, we transformed
read counts to QUMIs and census counts. We assessed accuracy by computing distances
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between normalized read counts and the true UMI counts. QUMIs had higher accuracy
than census counts and read counts. When read counts are affected by gene-length bias
[16], TPMs can be used as input to QUMI normalization. Finally, on two datasets without
UMIs, using QUMIs combined with a UMI count-based dimension reduction reduced
batch effects and increased detection of biological groups.

Results and discussion
Datasets

We used thirteen public scRNA-seq datasets (Table 1). For the seven training datasets,
we only obtained UMI counts. For the three test datasets and the differential expression
dataset, we obtained both UMI counts and read counts. Finally, for the two prediction
datasets, we obtained only read counts. We refer to each dataset using the first author’s
last name.

Current normalization methods inadequate for scRNA-seq read counts

We explored the effects of normalization on read counts from both UMI and non-UMI
protocols. The variability introduced by PCR resulted in hundreds of genes with read
counts above 100 that mapped back to less than five UMI counts, in some cases just one
(Fig. 1). Current normalization methods such as transcripts or counts per million (TPM,
CPM) and census counts apply linear transformations to read counts from non-UMI pro-
tocols, which preserve the PCR distortions and result in variable distributions even when
the data are generated with the same cell type [25] (Fig. 2a, d–f). Different distributions
can be observed when data are processed in different batches (Fig. 2g–i) which can then
lead to apparent differences in the low-dimensional representations used, for example, to
discover new cell types [6]. For example, the Patel dataset [28] consists of five glioblas-
toma tumors, with one of these processed in two batches. Current normalizations do not
remove the substantial variation in distributions between the batches (Fig. 2h, i). Since
not only the scale but also the shape of the distribution of expression values is highly
variable between cells of the same biological condition, normalization based on linear
transformation is insufficient.

Table 1 Single-cell RNA-seq datasets used

First author Year Species Tissue Protocol Cells Use

Cao [17] 2017 C. elegans Several sci-RNA-seq 32,061 Train

Clark [18] 2019 M.musculus Retina 10x chromium V2 7680 Train

Grun [19] 2016 H. sapiens Pancreas CEL-Seq 1726 Train

Klein [20] 2015 M.musculus Embryonic stem cells inDrops 2717 Train

Schiebinger [21] 2019 M.musculus Induced stem cells 10x chromium V2 14,925 Train

Zeisel [22] 2015 M.musculus Brain STRT 3005 Train

Zhang [23] 2019 H. sapiens Synovial/monocytes CEL-Seq 2 10,001 Train

Macosko [24] 2015 M.musculus Retina dropseq 7581 Test

Tung [25] 2016 H. sapiens Induced stem cells SMARTer 564 Test

Zheng [26] 2017 H. sapiens Monocytes 10x gemcode 2612 Test

Vieira Braga [27] 2019 H. sapiens Lung dropseq 261 DE

Patel [28] 2014 H. sapiens Glioblastoma Smart-seq2 430 Predict

Segerstolpe [29] 2016 H. sapiens Pancreas Smart-seq2 1554 Predict

Training data contained only UMI counts. Test and differential expression (DE) data contained UMI counts and read counts.
Prediction data contained only read counts
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Fig. 1 PCR amplification produces a wide range of read count values originating from genes represented by
small UMI count values in the Zheng dataset. Each panel is a cell. Color indicates UMI count value

UMI counts fit by Poisson-lognormal distribution

To quantile normalize read counts to match UMI counts, we identified the qualitative
characteristics of the target UMI count distribution. Due to the heavy tail of UMI counts,
log-log plots [30] are an effective way to visualize their distribution (Fig. 3a). Log-log plots
are essentially histograms with both axes log transformed, and if the right tail of the dis-
tribution appears linear, it is suggestive of a power law distribution [31]. Stacking log-log
plots for 500 randomly chosen cells, we observed a monotonic decreasing trend for all
cells but with substantial variability in the observed proportions for each UMI count value
(Fig. 3b). Consistent with [1], the most prevalent nonzero value was one.
A recent survey of a wide variety of datasets found that ostensible power law relation-

ships are better described by lognormal distributions [32]. We therefore considered both
the Poisson-Lomax, which has a true power law tail, and the Poisson-lognormal fami-
lies as candidates for the quantile normalization target distribution. We also compared
the negative binomial distribution due to its popularity as a noise model for RNA-seq.
Probability mass functions (PMFs) are listed in the “Methods” section.
We first sought to quantify goodness of fit by computing the Bayesian information cri-

teria (BIC) [33] for each cell in the training data, but due to the predominance of zero
and low counts, BIC did not clearly distinguish between the three candidate models
(Additional file 1: Figure S1). By visualizing randomly chosen cells, we observed the neg-
ative binomial was a poor fit to the data, especially for larger counts, due to its lighter tail.
Note that this does not contradict the validity of the negative binomial as a noise model, as
that corresponds to a conditional probability distribution independent of biological sig-
nal, whereas here we are concerned with marginal probabilities that integrate biological
signal.While both heavy-tailed distributions fit the training data well overall, the Poisson-
Lomax tended to overestimate the probability of high magnitude outliers (Fig. 4). We
confirmed this result using a predictive check [34] (Additional file 1: Figure S2); details are
provided in the “Methods” section. Furthermore, maximum likelihood estimation of the
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Fig. 2 Current normalizations are inconsistent with UMI counts and do not remove distributional variation
across biological replicates and batches. a Kernel densities of nonzero read count values for 20 random cells
from individual NA19098, replicate r3 of the Tung dataset. b UMI counts from the same cells as a. c Quasi-UMI
counts (Poisson-lognormal with shape 2.0) computed from read counts of the same cells. d As a but
normalized to counts per million. e As a but normalized to census counts. f As a but normalized with scran. g
Kernel densities of nonzero read count values for 20 random cells from each batch of tumor MGH26 in the
Patel dataset. Color indicates batch. h As g but normalized to transcripts per million. i As g but normalized to
census counts

parameters of the Poisson-Lomax model was numerically less stable. Hence, we focused
on the Poisson-lognormal model in our subsequent assessments.

Quantile normalization of read counts to quasi-UMIs

Assuming the underlying UMI count distribution is Poisson-lognormal, only two param-
eters are needed to describe each cell: scale and shape. If UMI data are available, these are
easily estimated using maximum likelihood (MLEs). However, in read count data without
UMIs, this is not possible due to PCR distortion. Conveniently, if the shape parameter is
known a priori, the scale parameter can be estimated from the fraction of zeros. This is
useful because the zero fraction derived from read counts equals the zero fraction in the
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Fig. 3 Log-log plots reveal monotonically decreasing, heavy-tailed distributions in UMI counts. a Log-log
plot of UMI counts from cell cele-002-090.AATCATACGG in the Cao dataset. b As a but with 500 random cells.
Vertical gray bar indicates discontinuity due to horizontal axis log scaling

UMI counts for the same cell; zero is the only expression value in read count data that
is not altered by PCR bias. Therefore, if the shape parameter is assumed known, the tar-
get distribution for a given cell can be determined from the read count data. Our method
requires the shape parameter to be fixed. To determine reasonable shape parameter
values, we computed MLEs for all cells in the training data.

Fig. 4 Log-log plots of UMI counts (points) with maximum likelihood fits (curves). a Cell
cele-002-090.AATCATACGG in the Cao dataset. b Cell GSM2142268_ACTGATCG from the Grun dataset. c Cell
1146 from the d2 group in the Klein dataset. d Cell ACGGCCAGTTATCCGA from sample DiPSC_serum_C2 of
the Schiebinger dataset. e Cell 1772067059_H11 from the Zeisel dataset. f Cell S011_L4Q4_F14 from the
Zhang dataset
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The shape parameters varied both within and between training datasets, with values
ranging from 1.0 to 3.0 (Fig. 5). We therefore adopted two alternative strategies for quan-
tile normalization. In the default approach, we globally set the shape to 2.0. In the custom
approach, for each test dataset, we identified a training dataset with UMI counts from the
same tissue type by searching a comprehensive single-cell database [35].We then used the
median of the MLE distribution across cells in the matched training dataset as the shape
parameter for all cells in the corresponding test dataset (Additional file 1: Table S1).
While it was necessary to fix the shape parameter before applying quantile normaliza-

tion to the test data, each cell was allowed to have its own scale parameter. If the scale
parameters were also held fixed, theQUMI target distributionwould be identical for every
cell and would predict a constant zero fraction across cells. But this is discordant with the
fact that UMI count data exhibit variation in the zero fraction across cells [7]. Since the
varying zero fractions in read counts exactly match the zero fractions in underlying UMI
counts, it would be inappropriate to alter these correct expression values by normalizing
to a global target distribution. Instead, we estimated each cell’s scale parameter directly
from the zero fraction in read counts using the method of moments (MOM). A detailed
explanation of the estimation procedure is provided in the “Methods” section. Because
this approach matched each cell’s zero pattern, only the nonzero read counts needed to
be adjusted by the normalization, which improved computational efficiency.
After estimating the scale parameter for each cell, we obtained empirical quantiles

(ranks) from read counts and transformed the ranks to QUMI counts by matching to
the target distribution’s theoretical quantiles (see the “Methods” section for detailed
algorithm). We did not adjust read counts for gene-length bias because this bias is not
substantially present in UMI protocols [16].
In terms of computational speed, quasi-UMI normalization is comparable to census

[1]. On the full Segerstolpe dataset, which consisted of 18,978 genes and 2209 cells, cen-
sus normalization took 23 min (0.6 s per cell), whereas computing QUMI counts with a
Poisson-lognormal target distribution and shape 2.0 took 14 min (0.38 s per cell). These

Fig. 5 Poisson-lognormal shape parameter maximum likelihood estimates (MLEs) for the training datasets.
klein_2015_d0d7 and klein_2015_d2d4 indicate different experimental conditions within the same dataset
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numbers reflect serial processing, but QUMI normalization is an independent computa-
tion for each cell, so straightforward parallelization can enable scaling tomassive datasets.
We provide R code for this as part of the companion github repository.

Quasi-UMIs approximate UMIs more closely than census counts

Using the three test dataset UMI counts as ground truth, we compared the accuracy
of Poisson-lognormal quasi-UMI (QUMI) counts with census counts and unnormalized
read counts. We quantified the accuracy of a normalization method for a given cell by
computing the Euclidean distance between the log of the normalized count vector and
the log of the UMI count vector. Zero values were omitted from the computation because
all of the normalization methods preserved the sparsity structure of the read counts.
Across datasets, QUMI counts had the highest accuracy (smallest median distance

from UMIs counts), while census counts were more accurate than read counts (Fig. 6).
The improvement from using QUMI normalization was most dramatic on the deeply
sequenced Tung dataset. The Macosko and Zheng datasets came from droplet protocols
with shallow sequencing, while the Tung data came from a plate protocol. The latter is
more similar to non-UMI protocols such as Smart-seq2, suggesting QUMI normalization
is likely to be effective in those settings. A visualization of the QUMI count distribution
shows its strong similarity to the UMI count distribution (Fig. 2b, c).
The accuracy of QUMI counts was not strongly affected by the choice between default

and custom shape parameters. This could be due to the custom parameters being close to
the default value for these particular test datasets (Additional file 1: Table S1). As a sen-
sitivity analysis, we repeated the QUMI normalization for all datasets with fixed shape
parameter values at the extremes of the training data MLE distributions. While this dra-
matic misspecification of the shape parameter degraded the accuracy of QUMI counts,
the difference was small compared to the difference between QUMIs with any parameter
value and census counts (Additional file 1: Figure S3).
In addition to an overall comparison averaging across genes, we examined the effects

of competing normalization schemes on gene-level statistics that average across cells. For

Fig. 6 Quasi-UMI counts approximate UMI counts more closely than census counts. QUMI normalization
with Poisson-lognormal target distribution was applied to read counts from three datasets. qumi_custom:
shape parameter (1.9 for Macosko, 2.4 for Tung and Zheng) set by maximum likelihood fit to matched
training data from same tissue type. qumi_default: shape parameter set to 2.0 for all datasets
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each normalization method and gene, we computed the average expression and coeffi-
cient of variation on the Tung and Zheng test datasets. We compared these to the same
statistics computed using UMI counts as a ground truth using M-A plots. The quasi-UMI
counts were much more consistent with UMI counts than read counts, scran, or census
counts (Additional file 1: Figures S4,S5).
To examine the effect of QUMI normalization on differential expression (DE) analy-

sis, we obtained read counts and UMI counts from the Vieira Braga dataset (Table 1), a
dropseq experiment on the human lung [27]. We identified differentially expressed genes
between endothelial and ciliated cells fromUMI counts as a ground truth, then performed
the same DE test on each of the competing normalizations as well as the raw read counts.
The quasi-UMI normalization produced p values and gene sets most concordant with the
ground truth (Additional file 1: Figure S6).

Quasi-UMIs enable dimension reduction of read counts

Quasi-UMI counts may be analyzed as if they were UMI counts. To illustrate this, we
applied quasi-UMI normalization, scran [9], and census [1] to TPM values from the Patel
dataset [28]. We used TPM values instead of raw read counts as input because full-length
scRNA-seq protocols exhibit gene-length bias [16]. This dataset lacked UMIs and pro-
filed 430 cells from five glioblastoma tumors. One tumor (MGH26) was processed in two
batches on two different sequencing machines. These two batches differed in the fraction
of zeros [6].
We examined the effects of normalization on downstream dimension reduction using

principal component analysis (PCA) [36], GLM-PCA [7], and UMAP [37]. Preprocessing
is described in the “Methods” section. PCA applied to normalized counts failed to merge
the two batches of MGH26 for all normalizations. This was not surprising for QUMI
counts since they, like UMI counts, follow a discrete distribution that violates implicit
PCA assumptions [7]. In contrast, GLM-PCA, a dimension reduction method specifically
designed for UMI counts, when applied to QUMI counts merged the MGH26 batches
(Fig. 7). GLM-PCA applied to census counts did not remove the batch effect however. The
results were similar when the nonlinear UMAP algorithm [37] was used instead of PCA
(Additional file 1: Figure S7). This showed that QUMI counts remove a prominent source
of nuisance variation when combined with an appropriate dimension reduction method
such as GLM-PCA.

Quasi-UMIs improve biological resolution of read counts

We examined the ability of QUMI counts to profile a heterogeneous tissue using the
Segerstolpe pancreas dataset [29]. The original authors provided annotations for all but 41
of the 1554 endocrine cells. These unclassified endocrine cells were observed as a separate
cluster without any clear biological characterization in the original analysis. Using QUMI
counts for all genes, we reduced the dimensionality with GLM-PCA to 20 latent factors.
We visualized the cells by applying t-SNE [38] to the GLM-PCA factors and observed
many of the unclassified cells associated with known clusters (Additional file 1: Figure
S8). Building on this exploratory result, we predicted the types of the unknown cells using
a random forest classifier fit to the QUMI-derived GLM-PCA features, achieving unam-
biguous results in 20 out of the 41 cells.We then validated these predictions by comparing
the relative abundances of the marker genes in the newly classified cells against the cells
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Fig. 7 GLM-PCA dimension reduction applied to quasi-UMI counts reduces batch effects in the non-UMI
Patel glioblastoma dataset. GLM-PCA was designed for UMI counts. In the top four panels, PCA was applied
to normalized counts, and all normalizations failed to merge the two batches of tumor MGH26. In the
bottom two panels, GLM-PCA was applied directly to census counts and QUMI counts (Poisson-lognormal
with shape 2.0)

that were annotated by the original authors and found high concordance (Fig. 8). This
showed that QUMI counts can be used to enhance biological insights in a complex tissue.

Conclusion
We have shown that UMI counts can be approximated by quantile normalization of read
counts to quasi-UMIs (QUMIs) in scRNA-seq. The Poisson-lognormal model fits UMI
count data well and can be used as a target distribution for QUMI normalization. How-
ever, the conceptual framework is generalizable to any discrete distribution that can be
calibrated against UMI data, such as the Poisson-Lomax or two-componentmixturemod-
els of active and inactive genes [39]. Using test datasets with read counts and UMI counts
from the same cells, we confirmed QUMI counts approximate UMI counts more closely
than census counts and unnormalized read counts.
QUMI normalization mitigates the distortion of PCR amplification in scRNA-seq pro-

tocols that lack UMIs while preserving sparsity. However, just like the use of proper UMIs,
it does not normalize differences between cells resulting from variation in efficiency of
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Fig. 8 Quasi-UMI normalization improves resolution of pancreatic endocrine cells in the non-UMI Segerstolpe
dataset. Each panel represents a marker gene for a specific cell type. Box plots show gene expression levels
for cells that were annotated to each cell type by the original authors. Open circles indicate gene expression
levels for cells that were unable to be annotated by the original authors. These cells were unambiguously
assigned based on a random forest classifier applied to a GLM-PCA dimension reduction of QUMI count
values. The overlap between annotated and reclassified cells validates the accuracy of the classification

capture or reverse transcription. This contributes to differences in the zero fraction across
cells, which are intentionally preserved in QUMI normalization. These sources of techni-
cal variation should be addressed through UMI-specific count models such as GLM-PCA
or its approximations using residuals [7, 12].
QUMI counts do not directly account for PCR bias arising from differences in gene

length or GC content. These biases are not specific to single-cell protocols and have been
addressed in the bulk RNA-seq literature [40]. Since QUMI normalization only requires
the rank ordering of genes in each cell along with the fraction of zeros, bias-adjusted TPM
values from pseudoaligners [41, 42] can be used as input instead of raw read counts. We
followed this approach in analyzing the Patel and Segerstolpe datasets.
A major advantage of QUMI counts is that they can be analyzed as if they were UMI

counts. This avoids the need to develop customized methods of dimension reduction and
feature selection for the read count distribution. Here, we have focused specifically on
scRNA-seq read counts, but traditional bulk RNA-seq read count data is also affected
by distortion from PCR amplification. While it may be possible to extend the QUMI
framework to bulk RNA-seq data, an appropriate target distribution would need to be
identified. This is challenging because a bulk RNA-seq sample, unlike scRNA-seq, is typ-
ically a mixture of cell types with unknown proportions. Such a mixture is unlikely to
be easily characterized by a simple two-parameter distribution. PCR distortion is also
present in read counts from metagenomics experiments [43, 44].
Finally, we caution that QUMIs are not substitutes for proper UMIs. If the latter can be

used in an experiment, they will certainly bemore effective thanQUMIs in removing PCR
distortions. QUMI normalization relies on assumptions, such as a fixed shape parameter,
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which may not be met in certain datasets. Indeed, we observed in the Klein dataset that
the shape parameter was not constant across experimental conditions. However, based
on our sensitivity analysis, the accuracy of QUMI counts was robust to misspecification
of the shape parameter.

Methods
Data acquisition and preprocessing

Training data (UMI counts only)

The Cao dataset [17] was obtained by following instructions on the authors’ website
http://atlas.gs.washington.edu/worm-rna/docs/. The Clark dataset
[18] was obtained by following instructions on a companion github repository
https://github.com/gofflab/developing_mouse_retina_scRNASeq.
The Grun dataset [19] was downloaded from the conquer repository [45]
http://imlspenticton.uzh.ch:3838/conquer/. A preprocessed version of
the Klein dataset [20] was downloaded from https://hemberg-lab.github.

io/scRNA.seq.datasets/mouse/esc/. The Schiebinger dataset [21] was down-
loaded from GEO accession GSE115943, and only completely differentiated iPSCs were
included in the analysis. The Zeisel dataset [22] was downloaded from the authors’ web-
site http://linnarssonlab.org/cortex/, and low-quality cells were removed
according to the same criteria used in the original publication. The Zhang dataset [23]
was downloaded from ImmPort accession SDY998.

Test and differential expression data (UMI and read counts)

The Macosko dataset [24] was obtained by pseudoaligning raw FASTQ files from
Sequence Read Archive using Kallisto version 0.45.1 [41] to produce BUS files [46].
We only included sample r6 from this dataset. The Tung dataset [25] was obtained by
following instructions on the authors’ website https://jdblischak.github.

io/singleCellSeq/analysis/compare-reads-v-molecules.html. The
Zheng dataset [26] was obtained by processing the per-molecule information file from
https://support.10xgenomics.com/single-cell-gene-expression/

datasets/1.1.0/cd14_monocytes. The Vieira Braga dataset [27] was obtained by
the same procedure as for the Macosko dataset, except we used Kallisto version 0.46.2.

Prediction data (TPMs from read counts only)

The Patel dataset [28] was downloaded from https://github.com/willtownes/

patel2014gliohuman. The Segerstolpe dataset [29] was obtained from the scRNAseq
Bioconductor R package version 2.0.2.
Scran normalization was applied using version 1.14.6 of the Bioconductor R pack-

age. Census counts were obtained using version 2.14.0 of the monocle Bioconductor R
package.

Compound Poisson distributions

The probability mass function (PMF) of a compound Poisson distribution is obtained by
placing a prior on the rate parameter of an ordinary Poisson distribution:

P(X = x) =
∫ ∞

0

λxe−λ

x!
f (λ)dλ

http://atlas.gs.washington.edu/worm-rna/docs/
https://github.com/gofflab/developing_mouse_retina_scRNASeq
http://imlspenticton.uzh.ch:3838/conquer/
https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/esc/
https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/esc/
http://linnarssonlab.org/cortex/
https://jdblischak.github.io/singleCellSeq/analysis/compare-reads-v-molecules.html
https://jdblischak.github.io/singleCellSeq/analysis/compare-reads-v-molecules.html
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/cd14_monocytes
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/cd14_monocytes
https://github.com/willtownes/patel2014gliohuman
https://github.com/willtownes/patel2014gliohuman
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For the Poisson-lognormal distribution with shape (logarithmic standard deviation)
σ and scale (logarithmic mean) μ, the prior is a lognormal distribution with the same
parameters:

f (λ) = 1
λσ

√
2π

exp
{
− (log λ − μ)2

2σ 2

}

For the Poisson-Lomax distribution with shape (power law tail index) α and scale θ , the
prior is a Lomax (shifted Pareto) distribution with the same parameters:

f (λ) = α

θ

(
1 + λ

θ

)−(α+1)

Letm and v represent themean and variance of a given prior distribution in a compound
Poisson model. The marginal mean of the compound Poisson is alsom, and the marginal
variance ism+v. For example, for the Poisson-lognormal, the mean is exp(μ+σ 2/2) and
the variance is m + (

exp(σ 2) − 1
)
m2. The Poisson-Lomax distribution has such a heavy

tail that its moments are only finite in certain parameter regions. If α > 1, then the mean
is θ/(α − 1). If α > 2, then the variance is m + α

α−1m
2. The quadratic variance function

in both families is shared with the negative binomial distribution, so none of them can
be distinguished based on coefficient of variation. The Poisson-lognormal has a strictly
heavier tail than negative binomial, and Poisson-Lomax has a strictly heavier tail than
Poisson-lognormal.
For Poisson-lognormal, we evaluated the PMF using the R package sads. For Poisson-

Lomax, we evaluated the PMF by using 1000 numerical quadrature points. For each cell in
the training datasets, we obtained maximum likelihood estimates (MLEs) of compound
Poisson model parameters (shape, scale) by numerical optimization using the R func-
tion optim. The median of the shape parameter distribution across cells was then used to
calibrate the quasi-UMI target distribution in the test and prediction datasets.

Goodness of fit to training data by predictive checks

For each cell, we simulated a vector of gene expression using the fitted MLE parameters.
We then identified the maximum expression value (count) for each simulated cell. The
test statistic was defined as the log of the ratio of the simulated maximum divided by the
observed maximum in the original UMI counts. Each cell then had its own test statistic.
If the statistic was close to zero, that indicated the fitted model was well calibrated to the
tail of the UMI count data. We therefore computed histograms of the test statistic’s dis-
tribution across all cells in each training dataset and compared how close the distribution
was to a target of zero.

Computing quasi-UMIs from read counts

Method ofmoments estimates from zero fractions

For each cell in the test data, we obtained a target quasi-UMI distribution by estimating
the cell-specific scale parameter from the empirical zero fraction in read counts using the
method of moments (MOM). Specifically, let f (x;μi) be the Poisson-lognormal probabil-
ity mass function (PMF) with fixed shape parameter σ and unknown cell-specific scale
parameter μi. For a given cell i, the theoretical probability of a zero is f (0;μi) (a func-
tion of μi only since σ is fixed). The empirical probability of zero is simply the fraction of
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genes with zero read counts in that cell, which we denote with p̂0i. A MOM estimate of μi
is obtained by finding a root of the function f (0;μi) − p̂0i with respect to μi.

Quantile normalization

Once a target distribution for an individual cell was determined, we computed the log
of the theoretical CDF by cumulatively applying the log-sum-exp transformation to the
log-PMF function, which provided numerical stability. We then renormalized the prob-
ability distribution to exclude the zero value since zero values in read counts result
from UMI counts of zero and do not need to be adjusted. This resulted in a table with
positive integer indices providing the quasi-UMI count value and corresponding zero-
truncated CDF values indicating the probability of a random variable with the target
distribution falling below that value, conditional on it being nonzero. We then converted
the vector of read counts (or TPMs for Smart-seq2 data) from all genes in the cell to
empirical quantiles (ranks). Each gene was then aligned to a CDF bin based on its rank.
For example, if the zero-truncated CDF had values of 0.8 at 1 and 0.9 at 2, the first
80% of genes with lowest nonzero read count values would be assigned QUMI value of
1 and the next lowest 10% of genes would be assigned QUMI value of 2. Typically, a
single gene was placed into the highest QUMI bin due to the heavy tail of the target
distribution.

Differential expression

For the Vieira Braga dropseq dataset (Table 1), we normalized the read counts to QUMI
counts based on the Poisson-lognormal distribution with shape parameters of 1 and 2,
as well as with the census method [1]. We selected 159 endothelial and 102 ciliated cells
from donor 3 (a male nonsmoker). We retained 12,761 genes that were nonzero in at
least one cell out of the 261 total cells. Note, this filtering did not discard genes that were
entirely zero in one of the two cell types. We computed p values using Fisher’s exact test
for each gene for each normalized count matrix as well as the unnormalized read counts.
We used the p values computed from the UMI counts as a ground truth and computed
three distance metrics for each of the other normalizations using the R package amap.
First, we computed the Manhattan distance between the vector of p values. Next, we
computed the Kendall distance which is based on ranks rather than numeric values of
the p values. Finally, we used the Holm method [47] to adjust the p values for multiple
comparisons and identified sets of differentially expressed genes at significance< 0.05 for
each normalization method. We then computed the Jaccard distance between these sets
and the set identified using UMI counts.

Dimension reduction and classification of read count datasets

Since neither QUMI nor census normalization of TPM values removes cell-to-cell vari-
ation in total counts, we divided the normalized counts by the total counts of each cell,
then multiplied all values by the median of the total count distribution across cells. This
ensured all cells had the same total counts. We then centered each feature (gene) to have
zero mean and scaled to have unit standard deviation prior to running PCA or nonlinear
dimension reductions such as tSNE [38] or UMAP [37]. Negative binomial GLM-PCA,
which automatically adjusts for differences in total counts by using an offset term, was
always applied directly to untransformed census or QUMI counts.
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For the Patel dataset, scran, census, and QUMI normalizations were applied to TPM
values. The QUMI target distribution was set to Poisson-lognormal with shape 2.0. Only
the 5685 genes used by the original authors were included as input to both dimension
reduction algorithms. We directly visualized the cells in two dimensions using PCA,
GLM-PCA, and UMAP.
For the Segerstolpe dataset, after excluding non-endocrine cells, QUMI normalization

(Poisson-lognormal with shape 2.0) was applied to TPM values and GLM-PCA was run
on all 18,301 genes that had at least one nonzero count value across all cells. The number
of dimensions was set to 20, and categorical batch indicator variables were regressed off
from the latent factors using a linear model.We visualized the endocrine cells using t-SNE
with the 20 batch-corrected GLM-PCA factors as input (normally t-SNE uses PCA with
50 dimensions). We trained a random forest classifier on the 20 GLM-PCA features using
labels provided by the original authors indicating cell types. We then used the classifier to
predict the labels for the 41 cells the original authors were not able to cluster. We defined
an unambiguous classification as one where the predicted probability of the assigned class
was > 0.5. For each cell type, the original authors validated the cluster identity using a
marker gene. We therefore validated our classification by comparing the QUMI count
relative abundances of each marker gene for newly classified cells versus the cells that
were annotated by the original authors in the same category.
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