
Karaoğlanoğlu et al. Genome Biology           (2020) 21:72 
https://doi.org/10.1186/s13059-020-01975-8

METHOD Open Access

VALOR2: characterization of large-scale
structural variants using linked-reads
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Abstract

Most existing methods for structural variant detection focus on discovery and genotyping of deletions, insertions,
and mobile elements. Detection of balanced structural variants with no gain or loss of genomic segments, for
example, inversions and translocations, is a particularly challenging task. Furthermore, there are very few algorithms to
predict the insertion locus of large interspersed segmental duplications and characterize translocations. Here, we
propose novel algorithms to characterize large interspersed segmental duplications, inversions, deletions, and
translocations using linked-read sequencing data. We redesign our earlier algorithm, VALOR, and implement our new
algorithms in a new software package, called VALOR2.
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Background
Alterations of DNA content and organization larger than
50 bp, commonly referred to as genomic structural varia-
tions (SVs) [1], are among the major drivers of evolution
[2, 3] and diseases of genomic origin [4]. Despite decades
of research, they remain difficult to accurately characterize
contributing to our lack of full understanding of the etiol-
ogy of complex diseases, termedmissing heritability [5].
High-throughput sequencing (HTS) technologies are

widely employed to discover and genotype various classes
of SVs since their inception [6–13]. However, effec-
tiveness has been limited by either very short read
lengths (e.g., Illumina) or high error rates (e.g., PacBio
and Oxford Nanopore). The human genome complexity
further contributes to our lack of full characterization
of structural variants, especially large-scale duplications
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and balanced rearrangements (inversions and balanced
translocations) due to the repetitive and duplicated
sequence at the SV breakpoints [14]. Despite high error
rates and high requirement for DNA input, long reads
offer improvement in complex SV discovery, either used
alone [15, 16] or when integrated with standard short-read
sequencing data [17].
Recently the linked-read sequencing method such as

the 10x Genomics system (10xG), transposase enzyme
linked long-read sequencing (TELL-Seq), and single-tube
long fragment read (stLFR) was introduced as an alterna-
tive method to generate highly accurate Illumina short-
read data with additional long-range information [18]. In
linked-read sequencing, large DNA molecules (typically
10–100 kbp) are barcoded and randomly separated into a
very large number of partitions (here, we term these par-
titions “pools”). For example, in the 10xG system, each
pool contains roughly 2–30 large molecules, and the num-
ber of pools is typically over a million. These pools are
then sequenced at very low coverage (∼ 0.1×) using the
standard Illumina platform. Shared barcodes among Illu-
mina read pairs show them as generated from the same
pool. Since each pool is diluted to contain only a very
small fraction of the input DNA, the probability of bar-
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code collision is negligible [19]. For example, assuming
20 molecules per pool and an average size of 30 kbp per
molecule, each pool on average contains only 1

5000 of the
haploid human genome. Linked-reads then can be used to
“reconstruct” largemolecules that originate from the same
haplotype. Furthermore, linked-read sequencing makes it
possible to obtain very high physical coverage with the
cost of generating moderate sequence coverage data1.
The ability of extracting long-range information from

accurate and inexpensive but short-read sequencing data
makes linked-read sequencing attractive for various appli-
cations [13]. It has been used for genome scaffolding
[20], haplotype-aware assembly [18, 21, 22], metage-
nomics [23], single-cell transcriptome profiling [24, 25]
and regulatory network clustering [26], haplotype phasing
[18, 21, 27], and genome structural variation discovery
[19, 28–30].
Linked-read techniques for genomic structural varia-

tion discovery include VALOR [28], Long Ranger [29], and
GROC-SVs [30]. VALOR was the first algorithm that used
“split molecule” signature, similar to the commonly used
split read signature [31], together with traditional read
pair signature [1, 8, 32] to characterize large (> 500 kbp)
inversions. Split molecules are defined as large molecules
that span an SV breakpoint, and therefore mapped as two
disjoint intervals to the reference genome.
Long Ranger [29] is a comprehensive software package

developed by 10x Genomics, for the purpose of barcode-
aware read alignment (Lariat module) and resolving full-
scale human germline genome variation, while GROC-
SVs is an optimized tool for somatic and complex SVs
in cancer genomes. Both Long Ranger and GROC-SVs
employ a novel idea to utilize discordance in expected
“barcode coverage” as well as barcode similarities across
distant locations for potential large-scale SV signals. In
addition, GROC-SVs [30] performs local assembly on
barcoded reads to detect large complex events that are
between 10 and 100 kbp with breakpoint resolution.
Despite the aforementioned advances in SV discovery

using various technologies, detecting complex SV such
as balanced rearrangements (i.e., inversions and translo-
cations), and segmental duplications (SDs) remains chal-
lenging due to mapping ambiguity. Note that it is still
possible to identify increase in SD copy number using read
depth signature [33, 34]; however, no linked-read-based
method yet exists to anchor a new SD (i.e., find their insertion
locations). We note that the TARDIS algorithm [35] can
locate new SDs; however, it is developed for short-read
sequencing data only; therefore, it can find only short dupli-
cations (up to 10 kbp) copied to a distance of up to 50 kbp.
Here, we present novel algorithms to discover deletions,

inversions, translocations, and large (> 40 kbp) direct
1For example, 30× sequence coverage corresponds to 150× physical coverage
when molecule coverage is only 0.2×.

and inverted interspersed SDs using linked-read sequenc-
ing data. We redesign and extend upon VALOR and use
split molecule and read pair signatures to detect SDs and
estimate the insertion sites of the new SD paralogs, and
further include read depth signature to filter potential
false positives caused by incorrect mappings. We imple-
mented our new algorithms as the VALOR2 software
package. Briefly, VALOR2 differs from the former ver-
sion of VALOR through (1) it can characterize segmental
duplications in both direct and inverted orientation, (2) it
can discover translocations and deletions, (3) it incorpo-
rates read depth information to improve predictions and
reduce false calls, (4) it provides full support to alignment
files (i.e., BAM) generated from 10xG linked-read data
sets, and (5) provides a 10-fold speed up in run time (data
not shown).
Using simulated data sets, we show that VALOR2

achieves highprecisionandrecall (85%and83%, respectively)
for segmental duplications, 83% and 60% for large inver-
sions, 91% and 87% for deletions, and 100% and 71% for
translocations. We also applied VALOR2 to the genomes
of NA12878 and a Yoruban trio (NA19238, NA19239,
NA19240) in addition to two haploid genomes (CHM1
[18], CHM13 [36]) sequenced with the 10xG platform.

Methods
We have previously described an earlier version of
VALOR2 that uses split molecules and read pair signature
to detect inversions [28]. Here, we describe novel formula-
tions, algorithms, and optimizations to characterize large
(> 80 kbp) inversions, deletions (> 100 kbp), transloca-
tions (> 100 kbp), and segmental duplications (> 40 kbp)
in both direct and inverted orientations. We depict the
split molecule and read pair sequence signatures for these
types of large SVs in Fig. 1.
Glossary
Here, we define several terms that we use in this
manuscript:

• Molecule: a large molecule (30–50 kbp) that was
barcoded and pooled using a linked-read platform.
Here, we refer to as the physical entity.

• Submolecule: a molecule identified in silico by the
VALOR2 algorithm by analyzing the read map
locations.

• Candidate split : a pair of submolecules with the same
barcode that potentially signal single breakpoint of an
SV event.

• Split molecule pair: a pair of candidate splits with
different barcodes that potentially signal the different
breakpoints of the same SV event.

Overview of the VALOR2 algorithm
VALOR2 depends on only the alignment files (i.e., BAM)
with the necessary barcode information generated with
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Fig. 1 Split molecule and read pair sequence signatures used in VALOR2. a Deletion. b Inversion. c Interspersed duplication in direct orientation. d
Inverted duplication. e Translocation. Note that e, shows only non-reciprocal translocations. For reciprocal translocations please refer to
Additional file 1: Figure S1). In each case, the large molecules that span the SV breakpoints are split into two mapped regions. Note that it is not
possible to determine the mapped strand of the split molecules shown here. In e, the section including B and C is moved to between A and D. We
do not show the inverted translocations here for simplicity. From the perspective of the reference genome (i.e., mapping), A, B, C, D, E, and F are
defined as submolecules; A/B, C/D, and E/F pairs are candidate splits; and A/B-C/D quadruple is a split molecule pair
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Long Ranger/Lariat, BWA-MEM, or a similar read map-
per. Briefly, VALOR2 first tries to identify the underlying
large molecules separately for each barcode, which we
call submolecules. In this step, we do not consider reads
that map to satellite regions, and we discard very short
submolecules. Two identified submolecules are paired
together (called candidate splits) if the summation of their
span is≤ μmolecule+3σmolecule where μmolecule is the aver-
age and σmolecule is the standard deviation of the inferred
submolecule sizes. Next, VALOR2 removes those candi-
date splits with no read pair support. VALOR2 then (1)
matches candidate splits with different barcodes that are
likely to signal individual breakpoints of the same SV
event; (2) filters out candidates with low read pair sup-
port, additionally it discards those that signal a deletion
or duplication event without read depth support; and (3)
models the split molecule pairs as vertices in a graph
and approximately discovers themaximal quasi cliques for
each connected component of this graph. In this graph,
edges represent overlap (i.e., “agreement”) between two
split molecule pairs. Finally, VALOR2 reports SVs that are
supported by more than a threshold of split molecules.
Below, we present the details for each step in the

VALOR2 algorithm.

Molecule recovery
The first step of the VALOR2 algorithm involves identifi-
cation (or, recovery) of the large molecules from mapped
data. Initially, we call the intervals returned by this recov-
ery as submolecules. For this purpose, we use a sliding
window approach to greedily group reads with the same
barcode which are mapped in close proximity (Addi-
tional file 1: Algorithm S1). Here, we only consider con-
cordantly mapped read pairs, and we take the full span
of a read pair as a fragment. For each barcode, we scan
each chromosome and merge together fragments if they
are within a user-defined distance T, or if a new frag-
ment is within distance Q from the leftmost fragment in
a re-identified submolecule. We use Q = 2 · μmolecule
and T = μmolecule/4 by default2, determined by parame-
ter sweeping. Finally, we remove very short submolecules
(< 3 kbp by default) that correspond to less than 10% of
expected average molecule size from consideration.

Candidate split matching
We first record all pairs of submolecules that share the
same barcode and map to the same chromosome as
candidate splits and then compare all possible pairs of
candidate splits across different barcodes (termed split
molecule pairs) to find those that signal a structural vari-
ation (see Fig. 1 for the depiction of candidate splits and

2Note that the empirical value of μmolecule is calculated after the molecule
recovery step. Therefore, here, we use μmolecule as the expected value and set
to 40,000 by default (can be changed by the user).

split molecule pairs). We limit inversion predictions and
the duplication size by the largest inversion size we can
find in the literature [37] (≈ 7Mbp). Next, we test whether
the split molecule pairs are supported by read pair signa-
ture (Fig. 1). Here, we require at least 3 read pairs to signal
the same SV event, and we remove candidate splits with
insufficient support from consideration.

Candidate splits for translocations
While it is possible to exhaustively test all pairs of can-
didate splits for intra-chromosomal events, it is infeasible
to follow the same approach for inter-chromosomal vari-
ants. This is due to the relatively high number of distinct
molecules sharing the same barcode (up to 30) and very
high number of barcodes (up to 4 million). To overcome
this issue, we first use discordant read pairs as anchors and
attach two other submolecules with the same barcode that
map close to each end (Additional file 1: Figure S2).

Clustering using SV graph
We construct an SV graphG as follows (Fig. 2). We denote
each remaining split molecule pair as a vertex in G, and
we create an edge between two vertices if their corre-
sponding split molecule pairs signal the same SV event.
Finally, on the resulting graph, we find clusters of read
pair-supported split molecule pairs by approximately solv-
ing the maximal clique problem using the quasi-clique
formulation [38]. Here, a quasi clique is defined as an
approximate clique with V vertices and γ · (|V |

2
)
edges,

where γ is a user-defined parameter, which we set to
γ = 0.6 by default. Each quasi clique defines a putative SV
event.
We identify inversion and deletion breakpoints with two

coordinates, duplications, and translocations with three
coordinates. Third breakpoint denotes the insertion coor-
dinates given within a confidence interval.

Molecule depth filtering
Although there are only a small number of molecules that
share the same barcode (2–30), it is still possible that two
ormore different molecules originate from the same chro-
mosome. Additionally, the molecule sizes do not follow
Gaussian, Poisson, or a similar distribution (Fig. 3); thus,
it is not possible to distinguish true split molecules from
“normal” but short molecules. The read pair sequence sig-
nature is not entirely reliable either due to themismapping
artifacts within or around repeats and duplications. We,
therefore, apply additional filtering on duplication calls
based on “molecule depth.” We reason that the number
of molecules that originate from segmental duplications
must be higher than the genome-wide average, similar
to the traditional read depth signature [33, 39]. In this
step, we first calculate the average molecule depth (μdepth)
and standard deviation (σdepth) in the entire genome.
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Fig. 2 Building the SV graph from split molecule pairs for an interspersed duplication. a Four pairs of split molecules that signal the event. b
Corresponding SV graph, where each vertex denotes a pair of submolecules that signal the SV, and edges show “agreement” between pairs. The
shaded area corresponds to the quasi-clique selected as representative of the putative SV

We then discard segmental duplication predictions with
molecule depth < μdepth + σdepth, deletion predictions
with molecule depth > 0.5μdepth + 0.5σdepth, and translo-
cation predictions with molecule depth outside μdepth ±
1.5σdepth at the source.

Results
We tested VALOR2 using both simulated and real
data sets to compare the precision and recall rates of
VALOR2 with the state-of-the-art tool that use linked-
read sequencing (Long Ranger [29]), three tools that use
only short-read WGS data sets (DELLY [40] LUMPY [11],
TARDIS [12, 35]), and one that uses long read WGS data
sets (Sniffles [41]). For LUMPY, we used the smoove
wrapper as recommended by the authors. We also tried
to run GROC-SVs; however, the tool crashed due to
excessive memory usage.

Among these tools, VALOR2 and TARDIS are the
only tools that can characterize interspersed duplications.
However, the size range of variants that they can detect is
complementary. VALOR2 aims to find duplications larger
than 40 kb copied to > 80 kb away from the source, where
TARDIS can only detect duplications that are copied
within 50 kb from the source; therefore, we removed
TARDIS from comparisons of segmental duplication pre-
dictions. Since there is no comparable tool to our knowl-
edge, we only provide VALOR2 results on interspersed
duplications. We compared inversion and deletion pre-
diction performance of VALOR2 with LUMPY, DELLY,
TARDIS, Sniffles, and Long Ranger. Similarly, we com-
pared the translocation predictions with LUMPY, DELLY,
and Long Ranger since TARDIS and Sniffles do not cur-
rently support translocation discovery. As we designed
VALOR2 as a complementary method, we also provide

Fig. 3Molecule size histogram mapped to chromosome 1 as observed in the linked-read sequencing data generated from the genome of the
NA12878 sample [18]
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results of union and intersection of VALOR2 and Long
Ranger SV calls.

Simulation experiments
We used VarSim [42] to generate a simulated diploid
human genome. We note that VarSim randomly selects
SNVs, indels, and SVs from a database of known variants
and inserts them into the simulated genome. Our simu-
lation included variants of various lengths and types: 2.8
million SNPs, ≈ 195,000 indels, and ≈ 5000 SVs (> 50 bp,
up to 6 Mbps). We found that VarSim only generates tan-
dem duplications and does not simulate translocations;
therefore, we randomly changed a subset of simulated tan-
dem duplications to interspersed duplications and non-
reciprocal translocations (by deleting the source copy) in
the simulated VCF file, assigned random insertion break-
points, and then applied changes to the reference. We
then generated Illumina WGS reads using ART [43] and
PacBio long reads using PBSim [44] at 40× depth of cover-
age and 10xG linked-reads at 50× coverage using LRSim
[45]. The 10xG linked-read simulation has extra coverage
to account for the barcode sequences that are part of the
read and other losses as also described in [29].
Auxiliary files released with the current version of Var-

Sim only support the human reference genome build 37
(GRCh37); therefore, we mapped the simulated reads to
GRCh37 using BWA-MEM [46] for Illumina, NGMLR
[41] for PacBio (as recommended by Sniffles authors),
and Long Ranger for 10xG data sets. We then applied
the standard BAM processing that includes sorting with
SAMtools [47] and marking duplicates with Sambamba
[48]. We used VALOR2 and Long Ranger to generate SV
call sets from the 10xG simulation, and DELLY, LUMPY,
and TARDIS to call variants using the Illumina simula-
tion, and Sniffles using the PacBio simulation (see Addi-
tional file 1: Table S1 for version numbers for tools and
respective command lines). We limited our comparison
to only large SVs (> 80 kbp for inversions, > 40 kbp
for duplications (> 100 kbp for deletions and transloca-
tions), and we required > 50% reciprocal overlap between
the simulation and the prediction for SVs using BEDtools
[49]. We also require the inferred insertion breakpoint
is within a distance of μmolecule/2 (in simulation experi-
ments μmolecule = 50 kbp) of the simulated breakpoint to
consider a duplication to be correctly predicted.
We present the prediction performance of the tools

we tested in Table 1. We found that VALOR2 is
able to correctly predict > 82% of large duplications
(inverted and direct combined) and 60% of large inver-
sions, while maintaining 84–86% precision for duplica-
tions and 83% precision for inversions. Long Ranger,
the other algorithm that used linked-reads, demonstrated
the same recall rate (60%) of the inversions with lower
precision (73%).

Of the WGS-based tools, Sniffles achieved the highest
sensitivity for inversions owing to its use of long reads as
it was able to correctly predict 80% of large inversions;
however, it suffered from very low precision (11%). On the
contrary, using only short reads, TARDIS achieved high
precision (97%), but it was able to discover only 38% of
the simulated inversions. This is likely because none of the
WGS-based tools was optimized to find such large inver-
sion events. VALOR2 showed a very good precision/recall
balance with an F1 score of 0.70, but overall, combina-
tion of Long Ranger and VALOR2 performed the best in
terms of precision/recall for inversions in the simulation
experiment.
For large deletions, once again, Long Ranger and

VALOR2 combination performed the best, but VALOR2
by itself was able to correctly predict 87% of the simulated
variants with a high precision rate (91%). As expected,
WGS-based tools (based on both short and long reads)
achieved low precision (15 to 46%), although they per-
formed well in terms of recall (78 to 85%).
Finally, the translocation simulation experiment proved

VALOR2 to be the best single algorithm in terms of pre-
cision with no false-positive calls, with a good recall rate
(71%). Only DELLY surpassed VALOR2 in recall (79%),
but it suffered from a high number of false positives (26%
precision). As in the other experiments, using both Long
Ranger and VALOR2 achieved the best F1 score of 95%.

Size detection spectrum for structural variation
As we have described above, our simulation included
SVs with different sizes, starting from 50 bp to 6 Mbp.
To understand the detection power of using different
sequencing technologies, we investigated the size distri-
bution of the correctly identified deletions and inversions
in the simulation (Fig. 4). We observe that the both short
read-based (TARDIS, DELLY, LUMPY) and long read-
based (Sniffles) tools tend to capture similarly sized and
relatively shorter SVs compared to the linked-read based
(Long Ranger, VALOR2) algorithms. Among the linked-
read-based tools, VALOR2 captures larger SVs than Long
Ranger, demonstrating its complementary use to Long
Ranger, and short- and long-read WGS analysis.

Biological data sets
Next, we evaluated VALOR2 and compared it to a linked-
read-based method (Long Ranger) and three WGS-based
tools (DELLY, LUMPY, and TARDIS) using biological data
sets. We obtained both linked-read and WGS data from
the genomes of a parent-child trio from Yoruba popula-
tion (NA19238, NA19239, NA19240) [50], one individual
of Northern European descent (NA12878) [51], and two
haploid genomes (CHM1 and CHM13). The details of
the data sources are given in the “Availability of data
and materials” section, and we provide large deletion,
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Table 1 Prediction performance evaluation using simulated structural variants

Variant Tool # Sim. # Pred. TP FP FN Pr. Rec. F1

Duplications (direct) VALOR2 111 103 89 14 22 0.86 0.80 0.83

Duplications (inverted) VALOR2 49 51 43 8 6 0.84 0.88 0.86

Inversions VALOR2 90 65 54 11 36 0.83 0.60 0.70

VALOR1 90 63 47 13 43 0.78 0.52 0.63

LUMPY/smoove 90 35 27 7 63 0.79 0.30 0.44

DELLY 90 358 39 293 51 0.12 0.43 0.18

TARDIS 90 43 34 1 56 0.97 0.38 0.54

Sniffles 90 787 72 603 18 0.11 0.80 0.19

Long Ranger 90 75 54 20 36 0.73 0.60 0.66

Long Ranger ∪ VALOR2‡ 90 102 70 31 20 0.69 0.78 0.73

Long Ranger ∩ VALOR2 90 38 38 0 52 1.00 0.42 0.59

Deletions VALOR2 85 81 74 7 11 0.91 0.87 0.89

LUMPY/smoove 85 292 66 226 19 0.23 0.78 0.35

DELLY 85 496 72 424 13 0.15 0.85 0.25

TARDIS 85 152 70 82 15 0.46 0.82 0.59

Sniffles 85 467 72 395 13 0.15 0.85 0.26

Long Ranger 85 262 79 175 6 0.31 0.93 0.47

Long Ranger ∪ VALOR2‡ 85 270 163 185 3 0.47 0.98 0.63

Long Ranger ∩ VALOR2 85 84 79 5 6 0.94 0.93 0.93

Translocations VALOR2 38 27 27 0 11 1.00 0.71 0.83

LUMPY/smoove 38 4 2 2 36 0.50 0.05 0.10

DELLY 38 116 30 86 8 0.26 0.79 0.39

Long Ranger 38 29 26 3 12 0.90 0.68 0.78

Long Ranger ∪ VALOR2‡ 38 38 53 3 3 0.95 0.95 0.95

Long Ranger ∩ VALOR2 38 18 18 0 20 1.00 0.47 0.64

We evaluate the prediction performance of only large SVs (> 80 kbp for inversions, > 40 kbp for duplications, > 100 kbp for deletions, and > 100 kbp for translocations).
Note that VALOR1, LUMPY, DELLY, Sniffles, and Long Ranger are not able to call interspersed duplications, and TARDIS can call duplications < 10 kb, which is smaller than the
variants shown in this table. Precision is calculated as TP

TP+FP , and recall is defined as TP
TP+FN , where TP is the true positive, FP is the false positive, FN is the false negative, Pr. is

the precision, and Rec is the recall. F1-score (shown as F1) is calculated as 2× precision×recall
precision + recall .

‡SV calls predicted by both Long Ranger and VALOR2 (> 50% reciprocal overlap)
are merged into a single call. Best values are highlighted with boldface font
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inversion, and translocation calls generated by VALOR2
in Additional file 1: Tables S2, S3, and S4, respectively. We
used DELLY, LUMPY, and TARDIS to generate SV call
sets using the WGS data and VALOR2 using the linked-
read data on the human reference genome GRCh38. For
the haploid genomes, we used VALOR2 in haploid-aware
mode, where the read depth and split molecule sup-
port thresholds are adjusted accordingly. We obtained the
publicly available Long Ranger calls: Yoruba trio call set
is available from the Human Genome Structural Varia-
tion Consortium [50], and NA12878 call set is available
in the European Nucleotide Archive (accession number
PRJEB28297), published by Marks et al. [29]. We have run
Long Ranger on the CHM1 and CHM13 genomes.
Table 2 summarizes the prediction results of large dele-

tions, segmental duplications (SDs), translocations, and
inversions. We note that TARDIS predicts only smaller
SDs (< 10 kb), and Long Ranger, DELLY, and LUMPY do
not differentiate between tandem and interspersed SDs.
We therefore merged different types of SD predictions
generated by VALOR2.We also compared our predictions
with two different gold standard data sets. For deletions
and duplications, we used the non-redundant data set in
dbVar [52], and for inversions and translocations, we used
gnomAD SV calls [53]. Since gnomAD call set was only
available in GRCh37, we used the UCSC liftOver tool to
convert the coordinates to GRCh38.
Note that in the absence of complete and curated large

SVs that are experimentally validated for these biological
data sets, we cannot calculate precision and recall rates.
However, assuming the dbVar and gnomAD resources are
gold standard, deletion predictions of VALOR2 include
no false positives (Table 2). Long Ranger and TARDIS
also show low number of false positives for deletions. For
inversions, we found that 28 to 70% of VALOR2 calls inter-
sect with previously identified inversions. Although Long
Ranger calls intersected better with the gnomAD calls, it
also predicted only a handful of inversions. As expected,
WGS-based tools showed a higher ratio of likely false
positives.
VALOR2 predicts only interspersed segmental dupli-

cations (SDs), where Long Ranger, LUMPY, and DELLY
can detect only tandem SDs, and TARDIS can detect
both, although new location of interspersed SDs should be
< 50 kb away from the source. The SDs reported in dbVar
are detected using read depth-based methods; therefore,
there is no discrimination between interspersed and tan-
dem. Therefore, dbVar only includes the coordinates of the
“source copy” of the duplicated segments. We thus com-
pared the source coordinates of our interspersed SD calls
with dbVar and found that 43 to 67% of SDs predicted
by VALOR2 were previously reported. Only Long Ranger
achieved a higher intersection with known data, however
with fewer predictions.

Finally, none of the translocation calls predicted by
either tool intersects with the gnomAD call set. This is
in fact on par with the literature, since no translocations
are expected to occur in the germline genomes of healthy
individuals as they often play roles in cancer development
[54]. Therefore, any translocation predictions are either
false positives or could be caused by cell line artifacts [55].

Functional consequence of predicted variants
A majority of predicted translocations and duplications
span regions that do not contain gene coding sequences.
This is unsurprising since a large amount of disruptive
variants are not expected to be in normal genomes. How-
ever, VALOR2 did identify events that potentially affect
protein coding genes. A large segmental duplication event
at chr1:16,728,420–16,797,669 is present in 5 of the 6
genomes analyzed and found to overlap the CROCC gene
which encodes a structural component of ciliary motility
[56]. Another duplication event covering CLEC18B was
also found in 3 of 6 genomes. The human C-type lectin
18 is expressed abundantly in various cell contexts in the
body [57]. VALOR2 calls also revealed deletion polymor-
phisms, some of which have been previously character-
ized, in the human genome (Additional file 1: Table S2).
Deletion of UGT2B17 and UGT2B28, genes involved in
the metabolism of sex steroid hormones, as well asOR4F5
(olfactory receptor) were found in at least 3 genomes.
These have been previously described as null mutations
within the genome [58]. Similarly, only 3 inversion calls
overlap protein coding regions in these genomes (Addi-
tional file 1: Table S3) though further validation is nec-
essary to confirm functional effect of these SVs on these
genes.

Discussion
Linked-read sequencing techniques emerged very
recently and are still developing. Many groups are already
realizing the power of these techniques for SV detection
and phasing. For example, the InPSYght Consortium has
sequenced a schizophrenia case/control cohort of 545
individuals using the 10x Genomics Chromium linked-
read technology with the aim to study complex structural
variants in a large cohort [59].
While we used the 10xG linked-read datasets to

demonstrate the utility of our SV discovery methods,
several other linked-read platforms are available. BGI
has recently developed a single-tube long fragment
read (stLFR) technology (https://www.bgi.com/global/
sequencing-services/dna-sequencing/lfr-whole-genome-
sequencing/, essentially a linked-read method. The stLFR
linked-read technique produces reads longer than 10 kb
[60] and BGI plans to make the technique their standard
of sequencing in the near future. Several other linked-
read platforms are becoming commercially available.

https://www.bgi.com/global/sequencing-services/dna-sequencing/lfr-whole-genome-sequencing/
https://www.bgi.com/global/sequencing-services/dna-sequencing/lfr-whole-genome-sequencing/
https://www.bgi.com/global/sequencing-services/dna-sequencing/lfr-whole-genome-sequencing/
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Table 2 Large structural variants found in biological data sets

Variant Sample VALOR2 Long Ranger LUMPY DELLY TARDIS

Pred. Known∗ Pred. Known∗ Pred. Known∗ Pred. Known∗ Pred. Known∗

Deletions NA19238 8 8 1 1 81 49 192 127 14 13

NA19239 10 10 3 3 104 64 232 157 17 14

NA19240 11 11 2 2 95 59 228 157 15 14

NA12878 14 14 18 18 138 62 273 170 20 20

CHM1 9 8 109 72 106 47 226 113 20 19

CHM13 7 7 95 65 78 43 660 423 10 8

Inversions NA19238 56 17 2 2 3 0 407 37 14 1

NA19239 49 15 1 1 4 0 406 33 11 0

NA19240 89 25 3 2 4 0 435 31 9 1

NA12878 33 12 5 1 3 0 415 37 43 1

CHM1 35 26 2 2 3 0 259 23 22 1

CHM13 40 28 2 2 5 0 1496 65 50 0

Duplications‡ NA19238 9 5 3 3 142 91 307 183 77 46

NA19239 9 5 0 0 158 96 298 189 79 42

NA19240 19 8 2 2 139 91 284 187 82 47

NA12878 6 4 20 19 196 93 341 184 293 133

CHM1 5 3 0 0 164 83 289 138 131 64

CHM13 7 3 0 0 519 276 1425 784 329 196

Translocations NA19238 1 0 0 0 336 0 8788 0 N/A N/A

NA19239 3 0 0 0 368 0 8946 0 N/A N/A

NA19240 1 0 0 0 362 0 9250 0 N/A N/A

NA12878 1 0 1 0 842 0 9770 0 N/A N/A

CHM1 0 0 0 0 320 0 6511 0 N/A N/A

CHM13 0 0 0 0 184 0 117667 0 N/A N/A

Similar to Table 1, we only report large SVs we discovered in real data sets (> 80 kbp for inversions, > 40 kbp for duplications, > 100 kbp for deletions, and > 100 kbp for
translocations). We ran LUMPY using the smoovewrapper as recommended by the authors. Note that TARDIS does not predict translocations. ‡Wemerged tandem and
interspersed duplications in this table since Long Ranger, LUMPY, and DELLY do not differentiate between them. ∗For CNVs (deletions and duplications), known variants refer
to those that are reported in dbVar [52] non-redundant call set (https://ftp.ncbi.nlm.nih.gov/pub/dbVar/sandbox/sv_datasets/nonredundant/). For balanced rearrangements
(inversions and translocations), we used the gnomAD [53] v2.1.1 call set, lifted over to GRCh38 (https://storage.googleapis.com/gnomad-public/papers/2019-sv/gnomad_v2.
1_sv.sites.vcf.gz)

In particular, TELL-Seq by Universal Sequencing Tech-
nologies (https://www.universalsequencing.com/ is also
a recent single-tube linked-read method. TELL-Seq
does not require a 10xG-like Chromium instrument and
offers a simpler and cheaper library prep routine. Loop
Genomics (https://www.loopgenomics.com/) is another
developing linked-read method.
PacBio with the release of their Sequel II method and

Oxford Nanopore with their newest PromethION have
reduced the cost of long-read methods. While it is not
prohibitively expensive anymore to generate long reads,
the error rate is still much higher compared to short reads
and linked-reads. Moreover, long-read protocols cannot
be utilized with very low input DNA (e.g., less than 10 ng),
which makes ultra-low input linked-read method a very
attractive alternative.
In this work, we presented novel algorithms to effec-

tively utilize the encoded long-range information in
linked-read data for the purpose of characterizing large-

scale structural variations. The current state of the art
SV detection techniques using linked-read such as Long
Ranger or GROC-SVs is optimized for certain range of
SV sizes. For example, GROC-SVs achieves the best sen-
sitivity for events in the range of (30–100 kb). How-
ever, our technique, VALOR2, can detect events of a size
larger than 100 kb, including segmental duplications and
translocations. We also demonstrated that VALOR2 is a
complementary approach to Long Ranger, and both short
and long read-based WGS-based tools for deletion and
inversion discovery (Fig. 4). Through simulations, we also
showed that VALOR2 is a powerful tool for discovering
interspersed segmental duplications and translocations,
two of the most difficult and neglected forms of structural
variation [13].
A future direction for our study is to integrate addi-

tional techniques such as local assembly to characterize
smaller-scale SVs (i.e., starting from only 50 bp) and to
resolve SV breakpoints more precisely by integrating split

https://ftp.ncbi.nlm.nih.gov/pub/dbVar/sandbox/sv_datasets/nonredundant/
https://storage.googleapis.com/gnomad-public/papers/2019-sv/gnomad_v2.1_sv.sites.vcf.gz
https://storage.googleapis.com/gnomad-public/papers/2019-sv/gnomad_v2.1_sv.sites.vcf.gz
https://www.universalsequencing.com/
https://www.loopgenomics.com/
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reads and local assembly. Local assembly was recently
used for detection and assembly of novel sequence inser-
tions using linked-reads [61]. Single-molecule sequenc-
ing techniques such as PacBio and Oxford Nanopore
(ONT) and long-range genome mapping techniques at
single-molecule resolution such as Bionano Genomics are
becoming more developed and cost effective. We can
explore single-molecule techniques not only for the pur-
pose of further validation of our algorithms but also
for devising integrative computational techniques to fully
resolve the complexity of repetitive DNA common in
mammalian genomes.
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