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Abstract

Chromatin interactions are important for gene regulation and cellular specialization. Emerging evidence suggests
many-body spatial interactions play important roles in condensing super-enhancer regions into a cohesive
transcriptional apparatus. Chromosome conformation studies using Hi-C are limited to pairwise, population-averaged
interactions; therefore unsuitable for direct assessment of many-body interactions. We describe a computational
model, CHROMATIX, which reconstructs ensembles of single-cell chromatin structures by deconvolving Hi-C data and
identifies significant many-body interactions. For a diverse set of highly active transcriptional loci with at least 2
super-enhancers, we detail the many-body functional landscape and show DNase accessibility, POLR2A binding, and
decreased H3K27me3 are predictive of interaction-enriched regions.
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Background

Chromosome folding and nuclear organization play
essential roles in fundamental processes such as regula-
tion of gene expression [1, 2] and cellular specialization
[3, 4]. A wealth of information on chromatin organization
has been gained through studies based on chromosome
conformation capture techniques such as Hi-C [5-8],
which measure pairwise, proximity interactions between
chromatin regions that are averaged over a population of
cells [6, 9]. There is now growing evidence that multi-
valent interactions play important roles in formation of
phase-separated and highly dense, functional chromatin
assemblies in super-enhancers (SEs) [10, 11]; however, it
is difficult to detect and quantify many-body (> 3) inter-
actions from pairwise and averaged Hi-C measurements.
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Several experimental techniques have been developed
to detect putative many-body chromatin interactions.
These include single-cell Hi-C [12-14], Dip-C [15, 16],
Tri-C [2], GAM [17], and SPRITE [18]. However, there
are limitations with these techniques. For example, while
single-cell Hi-C permits detection of instances of many-
body interactions in individual cells, it often has low
genomic coverage [19]; GAM and SPRITE do not read-
ily distinguish direct from indirect many-body chromatin
interactions due to ancillary coupling effects [17, 18].
Overall, our current knowledge of many-body chromatin
interactions and their functional roles in chromatin con-
densation is limited.

With the extensive availability of population-averaged
Hi-C data for many biological systems, we ask whether
it is possible to gain insight into functionally impor-
tant many-body spatial interactions from these high-
quality, high-resolution measurements. While no com-
putational method is currently available, we hypothe-
size that 3-D polymer modeling can be used to over-
come the limitations of population-averaged, pairwise
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Hi-C measurements. However, there are a number of
significant technical challenges. These include (i) decon-
volving the population-averaged and pairwise Hi-C con-
tact frequencies into an underlying ensemble of single-
cell 3-D chromatin folds, such that instances of many-
body interactions in single cells are collectively consistent
with the input Hi-C, and (ii) distinguishing specific (i.e.,
highly non-random) many-body interactions from non-
specific interactions which are largely due to effects of
linear genomic proximity [20] and nuclear confinement
[21-23].

Modeling of 3-D chromatin structure allows for detailed
analysis of nuclear organization patterns and can detect
spatially interacting regions [21-34]. There are many
well-developed physical models for chromatin folding,
including the Strings and Binders Switch (SBS) model
[24], the Minimal Chromatin Model (MiChroM) [26,
28], and the n-Constrained Self-Avoiding Chromatin
(nCSAC) model [21, 22]. The nCSAC approach folds
polymers under the influence of predicted specific pair-
wise interactions obtained after controlling for effects
of nuclear confinement. The SBS and MiChroM mod-
els follow block copolymer approaches [29, 30], in
which chromatin regions are assigned different affini-
ties for each other based on their corresponding types.
In SBS, chromatin types are defined by their affinity to
Brownian binder particles which facilitate bridging of
multiple chromatin sites up to a specified valency. In
MiChroM, chromatin types and affinities are based on
clustering of epigenetic markers, followed by maximum-
entropy optimization of the resulting energy function.
SBS and MiChroM can reproduce important physi-
cal phenomena such as the dynamics of chromatin
condensation leading to phase separation; however, no
methods for calling specific many-body chromatin inter-
actions based on these models have been reported
yet.

Several computational methods have been developed
to detect specific pairwise chromatin interactions present
within Hi-C datasets [20]. These include the negative
binomial model of Jin et al. [35], the non-parametric
spline approach of Fit-Hi-C [36], the binomial model
of GOTHIC [37], the local neighborhood loop-calling
approach of HiCCUPS [9], and the hidden Markov ran-
dom field model of Xu et al. [38]. These methods
rely on the empirical Hi-C for estimation of a back-
ground model that is then used to assess the signifi-
cance of each pairwise chromatin contact; hence, these
approaches may contain intrinsic bias as the observed
Hi-C data is being used for construction of its own
null hypothesis test. In addition, these methods lack
a 3-D folding model and therefore cannot assess the
significance of many-body (> 3) chromatin spatial
interactions.
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In this work, we describe CHROMATIX (CHROMatin
mlIXture), a new computational approach for detect-
ing specific many-body interactions from population-
averaged Hi-C data. We focus on uncovering occur-
rences where 3, 4, or more genomic regions all spa-
tially co-locate to within a defined Euclidean dis-
tance threshold. We further require that these occur-
rences do not arise from simple physical effects of
monomer connectivity, excluded volume, and spatial
confinement; we refer to these as specific many-body
interactions.

We extend the nCSAC [21, 22] folding method which
allows for nearly unbiased construction of random poly-
mer chains to serve as a null model completely decoupled
from the Hi-C data. By further integrating extensive poly-
mer simulations under a Bayesian generative framework
[39], we resolve complex dependencies among chromatin
contacts and deconvolve population Hi-C data into the
most likely single-cell contact states. These contact states
are then folded to produce a 3-D structural ensemble con-
sistent with the measured Hi-C. We achieve our results
through a novel deep-sampling algorithm called fractal
Monte Carlo, which can generate 3-D polymer ensembles
with improved structural diversity and target distribu-
tion enrichment (see Additional file 1: Supplementary
Information).

To study highly non-random and direct higher-order
interactions among super-enhancers, enhancers, and pro-
moter regions, we apply our method to a diverse
set of 39 highly transcriptionally active loci in the
GM12878 mammalian cell line; specifically, all TAD-
bounded [40, 41] loci (< 2 MB), each with at least
2 super-enhancers [1, 3, 4] showing evidence of possi-
ble super-enhancer condensation (see Additional file 1:
Supplementary Information, Additional file 2: Table S1)
[18]. We detect specific many-body interactions in
each of these loci, summarize the landscape of func-
tional associations among participating regions, and
report common biological factors predictive of interaction
enrichment.

Results

Model for chromatin folding

We independently modeled the 39 genomic loci, ranging
in size from 480 KB to 1.94 MB, each as a connected,
self-avoiding polymer chain where monomer beads rep-
resent 5 KB of 11-nm chromatin fiber [42, 43]. Locus
lengths in base pairs are from the corresponding TAD
(arrowhead) boundaries as reported in Rao et al. [9] (see
Additional file 1: Supplementary Information). Each locus
was simulated under a confining sphere based on the
GM12878 nuclear diameter reported in Sanborn et al.
[44] and scaled to preserve a constant base pair density

(bp/ nm3 )
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Identifying specific interactions from Hi-C data

The CHROMATIX modeling pipeline is illustrated in
Fig. 1. Briefly, we first identify pairwise specific contacts
from measured Hi-C interaction frequencies by follow-
ing the general approach of Giirsoy et al. [21]; namely,
we identify chromatin interactions with Hi-C frequencies
unlikely to be observed under a uniform random folding
environment [45, 46]. We extend the approach of Giir-
soy et al. by using the method of fractal Monte Carlo
weight enrichment (see Additional file 1: Supplementary
Information) to uniform randomly sample an ensemble of
~ 400,000 3-D polymer conformations (see Fig. 1a, and
Additional file 1: Figure S1 for examples of random poly-
mers). These polymers are used as a null ensemble for
identifying significant Hi-C interactions that are unlikely
to be formed due to random chance (Fig. 1b). The assump-
tion of spherical confinement makes this null model more
stringent in calling specific interactions as discussed in
[22], although our tool supports other confinement mod-
els (e.g., ellipsoid). Details on p value calculations can be
found in the “Methods” section.

Identifying a minimal set of sufficient interactions

We conjecture that not all specific interactions are
required to produce the observed Hi-C chromatin fold-
ing patterns [22, 47]. To identify a minimal set of inter-
actions that are sufficient to drive chromatin polymers
into a folded ensemble that exhibit the observed Hi-C
frequencies, we retain roughly 5% of the identified spe-
cific contact interactions using clustering [48, 49] (see
Additional file 1: Supplementary Information for more
details). We call this procedure coarse-graining of the spe-
cific contacts (Fig. 1c); coarse-graining also regularizes
our model to help prevent overfitting.
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Single-cell contact state deconvolution

Many-body interactions occur probabilistically in individ-
ual cells. To reconstruct the 3-D chromatin polymer for
each cell of a modeled population, we must predict which
contacts among the set of minimally sufficient interac-
tions are co-occurring within each individual cell. We
call these co-occurring interactions the single-cell contact
states (Fig. 1c). Once a single-cell contact state is properly
generated, we then construct a set of 3-D chromatin poly-
mers that are all consistent with this single-cell contact
state. By generating a large number of single-cell contact
states, we can obtain an ensemble of 3-D chromatin poly-
mers which accurately reproduce the observed population
Hi-C measurements. Structural analysis of the ensemble
of single-cell chromatin conformations can then reveal
specific spatial many-body interactions.

The key to properly generating single-cell contact states
is to account for dependencies among chromatin inter-
actions; namely, how certain physical interactions may
cooperatively induce formation of other interactions due
to polymer folding. These dependencies are identified by
in silico knock-in perturbation studies, where differential
contact probabilities are assessed between two ensem-
bles of chromatin polymers, one with and another without
the target contact knocked-in. A large number of possi-
ble dependencies are identified through these extensive
polymer knock-in simulations (see the “Methods” section
and Additional file 1: Supplementary Information). Such
simulations also identify geometrically infeasible contact
combinations.

To properly deconvolve population Hi-C interactions
into single-cell contact states, we adopt a Bayesian
generative approach. The dependencies and infeasible
geometries among contacts are incorporated as a Bayesian
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Fig. 1 CHROMATIX modeling pipeline. a Random polymers are generated using fractal Monte Carlo sampling. b Specific contacts are identified
from measured Hi-C using a random polymer ensemble as the null distribution [21]. € Specific contacts are coarse-grained and single-cell contact
states are deconvolved then folded to generate simulated Hi-C (see Additional file 1: Supplementary Information)
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prior. This physically based prior along with the mea-
sured Hi-C data enables efficient Bayesian inference over
the posterior distribution of single-cell contact states.
Specifically, we use Gibbs sampling for this inference
(see Additional file 1: Supplementary Information). For
efficiency, we first coarse-grain the called specific Hi-C
interactions before carrying out knock-in simulations and
Gibbs sampling. Only about 5% of the specific interactions
are retained, which substantially reduces the computa-
tional cost, making this approach highly practical.

Reconstructing 3-D chromatin folds

For a given deconvolved single-cell state of chromatin
contacts, we uniformly sample among the set of 3-D
folds satisfying the spatial proximity interactions speci-
fied by the single-cell state. Specifically, we sample from
the uniform distribution of chromatin chains conditioned
on the deconvolved contact state of each cell, where
two regions are spatially interacting if their Euclidean
distance is < 80 nm [47]. This procedure is repeated
for each sampled single-cell contact state (see Addi-
tional file 1: Figure S2 for examples of sampled chromatin
polymers).

Overall, we aggregate ~ 50 folds per single-cell to gen-
erate an ensemble of 25,000 3-D chromatin polymers
at each of the 39 modeled genomic loci. These sam-
pled conformations form the reconstructed ensemble of
intrinsic 3-D folds underlying the population-aggregated
Hi-C.

Simulated 3-D polymer ensembles strongly correlate with
Hi-C measurements

We find the chromatin interaction frequencies from the
computed 3-D polymer ensembles (called simulated Hi-
C) to strongly correlate with measured Hi-C frequencies
(Fig. 2). The Pearson correlations between the simulated
and measured Hi-C frequencies have approximate mean
and standard error of the mean (SEM) of 0.970 + 0.003
over the 39 modeled genomic loci (see details in Addi-
tional file 1: Supplementary Information). Here, correla-
tions were computed at 5-KB resolution after the mea-
sured Hi-C counts were quantile normalized according
to the uniform randomly sampled polymer ensemble
(Fig. 1a). This approach is motivated by similar methods
for comparing gene expression microarrays [50]; it allows
direct comparison between simulated ensemble frequen-
cies and measured Hi-C counts. To exclude proximity
effects owing to genomic distance, we further remove the
first two diagonals from the Hi-C heatmaps; namely, all
Hi-C frequencies within 10 KB are excluded. The sim-
ulated and measured Hi-C data again exhibit excellent
Pearson correlations, with an approximate mean and SEM
of 0.96 + 0.003; more details on simulations of the 39
loci are shown in Additional file 1: Figure S3. We also
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computed the distance corrected Pearson correlations [51]
and obtained a mean and SEM of 0.64 + 0.02 (more
details in Additional file 2: Table S1 and Additional file 1:
Figure S4). These results indicate that our 3-D ensem-
bles are consistent with the measured Hi-C interaction
patterns.

Reconstructed single-cell chromatin structures

We have compared our single-cell chromatin models with
publicly available single-cell Dip-C data for GM12878
[15]. For each cell in the Dip-C ensemble, we iden-
tified the corresponding CHROMATIX cell with max-
imal overlap of contacts. Figure 3 shows the overall
pattern of agreement and examples of individual sin-
gle cells. In general, CHROMATIX single-cell mod-
els contain more contacts (gray regions in Fig. 3a—c)
than that of Dip-C, but there is overall good agree-
ment, with many long-range contacts appearing in both
Dip-C and CHROMATIX single cells (Fig. 3a—c). The
median overlap coefficient is ~ 65% for the n = 976
cell loci.

Analysis of single-cell chromatin domains

Motivated by single-cell optical imaging studies of Bintu
et al. [52], we examined the 3-D chromatin structures at
locus chrX:19,560,000—20,170,000 to assess if single-cell
domains are present (Fig. 4). Our key findings are similar
to that of [52], even though the cells we modeled are of
different cell lineage. Specifically, diverse patterns of chro-
matin contacts are seen in reconstructed chromatin folds
of single cells: domain-like patterns appear among single-
cell distance plots (Fig. 4c), which resemble the domains
in the mean distance plots (Fig. 4a). Similar to [52], there
are many instances where the domain patterns are less
clear. Furthermore, there is non-zero probability of form-
ing domain boundaries at all locations of the locus, and
the precise boundaries shift from cell to cell. However, we
observe similarly consistent boundary strengths at similar
genomic coordinates (Fig. 4b, d).

3-body complexes, maximal many-body complexes, and
principal loops

For each of the 39 loci, we are interested in fully interact-
ing 3-body complexes, which are formed by three genomic
regions where the Euclidean spatial distances among all
pairs of regions are < 80 nm [47]. These 3-body complexes
may be a component of a larger (k > 3) fully interacting
complex.

We are also interested in maximal many-body com-
plexes which are formed by k > 3 genomic regions, where
all pairwise Euclidean distances are < 80 nm, and cannot
be extended to include additional regions while satisfying
the distance requirement. We characterize a maximal 3-
, 4-, 5-, or higher-order k-body complex by its principal
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loop, which is the longest genomic span in base pairs
within each k-body complex (Fig. 5).

Furthermore, we are interested in specific 3-body com-
plexes and specific maximal many-body complexes, whose
spatial interaction frequencies are unlikely to be observed
under a uniform random folding environment (see the
“Methods” section).

SPRITE concordance

We compared our predicted 3-bodies and maximal many-
body principal loops, generated from population-averaged
Hi-C, with publicly available SPRITE (split-pool recogni-
tion of interactions by tag extension) data for GM12878
cells [18]. The SPRITE technique captures clusters of co-
occurring chromatin interactions. However, SPRITE does
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not distinguish direct from indirect cross-linking among
chromatin fragments [18]—i.e., some chromatin regions
present within a SPRITE cluster may not have direct spa-
tial interactions, but, rather, may have been co-captured
through a sequence of cross-links among spatially prox-
imal regions that could extend to distances beyond the
cross-linking threshold. Nevertheless, a high propor-
tion of our predicted many-body interactions were also
observed to co-occur within a SPRITE cluster; we term
this proportion the found fraction. Specifically, across all
39 modeled genomic loci, we saw fairly similar median
found fractions for specific and non-specific 3-bodies
(approximately 90% and 86% respectively) as well as for
principal loops (both medians approximately 99%) at 5-
KB resolution.

To adjust for bias due to genomic distance, we stratified
principal loops of many-body complexes by base pair span
and computed their respective SPRITE coverage fractions,
i.e., proportion of SPRITE clusters containing the princi-
pal loop. Specifically, we computed the median SPRITE
coverage fraction at each 5-KB genomic distance span
for both specific and non-specific principal loops (Addi-
tional file 1: Figure S5). We found the proportion of
specific median coverage fractions exceeding the corre-
sponding non-specific coverage was significantly elevated
in 29 of 39 (~ 74.4%) modeled genomic loci (FDR < 0.05,
see the “Methods” section).

We performed a similar procedure for 3-body inter-
actions, with stratification by both principal and minor
(lowest bp span) loops. In this case, the proportion of
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specific median coverage fractions exceeding the corre-
sponding non-specific coverage was significantly elevated
in 25 of 39 (~ 64.1%) modeled loci (FDR < 0.05, see the
“Methods” section).

Overall, we find that after controlling for genomic dis-
tance, our many-body predictions are concordant with
SPRITE clusters such that specific many-bodies generally
exhibit elevated SPRITE coverage over the correspond-
ing class of non-specific many bodies. More details can be
found in Additional file 1: Supplementary Information.

Specific 3-body complexes are enriched in direct

interactions among functional genomic regions

Our 3-D chromatin ensembles contain rich structural
information. Despite the strong effects of nuclear con-
finement and genomic connectivity that likely induce
many bystander proximity ligations (Fig. la) [21, 22],
our model can identify specific many-body interactions.
Figure 6 provides an overview of our findings for spe-
cific 3-body interactions across the 39 super-enhancer
containing loci. While functional genomic regions (i.e.,
super-enhancers, enhancers, and promoters) participate
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in both specific and non-specific 3-body interactions, the
proportion of interactions with no known functional asso-
ciations is markedly increased for non-specific (33 + 3%
SEM, Fig. 6a) compared to specific (19 £ 2% SEM, Fig. 6¢)
3-body interactions. Further, the medians of non-specific
vs. specific 3-body interactions without functional asso-
ciations (31% and 17% respectively) are significantly dif-
ferent (p value = 4.5 x 10~ by Mann-Whitney U test,
Additional file 1: Figure Sé6a).

Functional landscape of specific 3-body complexes shows
interactions among super-enhancers and promoters

The functional landscape of 3-body spatial interactions
is shown in Fig. 6b and d. We observe a higher propor-
tion of specific 3-body interactions involving multiple (>
2) super-enhancers directly co-interacting with promot-
ers, when compared to non-specific 3-body interactions
(approximately 5.54+0.6% SEM vs. 1.24+0.3% SEM respec-
tively, with p value = 1 x 10~% by Mann-Whitney U
test on the corresponding medians of 4.5% and 0.8%,
respectively, Additional file 1: Figure S6b). Similarly, we
observe a slightly higher proportion of specific 3-body

P,* — Promoter

E,+ — Enhancer

c SE, — Super-Enhancers
N — No annotation

Fig. 6 Functional landscape of 3-body chromatin interactions. Pie (a, €) and corresponding sunburst (b, d) charts for the proportion of specific
(bottom) and non-specific (top) 3-body interactions involving the functional genomic regions of super-enhancer (SE), enhancer (E), and

promoter (P). The innermost ring of the sunburst charts (b, d) are the same as the corresponding pie charts of (a, €), with outer rings representing
the sub-fractions of interacting partners with SE, E, or P functional associations. Gaps in the sunburst charts represent the fractions of interacting
partners with no known SE, E, or P annotation. Here, 3-body interactions are not required to be maximal and can be part of a larger many-body
complex where all regions are within 80 nm. Plots shown are the averages across all 39 modeled genomic loci
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interactions with at least 3 distinct super-enhancers rel-
ative to non-specific 3-body interactions (approximately
1.2+0.4% SEM vs. 0.24+0.1% SEM respectively at p value =
8.4 x 10~° by Mann-Whitney U/ test on the corresponding
medians of 0.5% and 0.0% respectively, Additional file 1:
Figure S6c¢).

Functional landscape of maximal 4- and 5-body complexes
shows specific principal loops bridging super-enhancers

Our high-resolution 3-D chromatin ensembles also con-
tain information on maximal higher-order many-body
interactions. Figure 7 provides an overview of the func-
tional landscape of maximal k-body complexes (k > 3)
among the 39 SE-associated loci. Here a maximal k-
body complex is defined such that it cannot be extended
to form a fully interacting kK 4+ 1 or higher complex;
this is unlike the 3-body complexes depicted in Fig. 6,
which may be part of still higher-order (k > 4) fully
interacting complexes. These maximal many-body com-
plexes are grouped together by principal loop, namely, the
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longest genomic span in base pairs within each k-body
interaction.

Overall, we observe an increased proportion of spe-
cific maximal 4- and 5-body complexes relative to their
non-specific counterparts (29 + 30 = 59 £ 0.9% SEM
vs. 21 + 19 = 40 £ 0.5% SEM respectively, Fig. 7a, c).
Correspondingly, we observe a markedly decreased pro-
portion of specific maximal 3-body complexes relative to
non-specific maximal 3-body complexes (12 + 1% SEM
and 29+1% SEM respectively, Fig. 7a, c). That is, maximal
higher-order interactions beyond 3-body are preferred in
the SE-associated loci.

Furthermore, we observe a higher proportion of spe-
cific principal loops bridging > 2 super-enhancers when
compared to non-specific complexes, at 7.6 £ 1.4% SEM
vs. 1.9 + 0.5 SEM respectively (Fig. 7b, d), with a signif-
icant p value of 6.1 x 1077 (Mann-Whitney I/ test on
the corresponding medians of 4.1% and 0.7% respectively,
Additional file 1: Figure S7a). In addition, we observe
a higher proportion of specific principal loops bridging

P,* — Promoter; E,+ — Enhancer
SE,f — Super-Enhancers

Fig. 7 Functional landscape of principal loops in many-body chromatin interactions. A principal loop is the longest loop (in bp) among chromatin
regions forming a many-body (> 3) interaction, where all pairs of bodies (i.e, chromatin regions) forming the interaction are within < 80 nm
Euclidean distance [47]. The pie (a, €) and innermost ring of the sunburst (b, d) plots both show the proportion of specific (bottom) and non-specific
(top) principal loops within maximal 3-, 4-, 5-, or >6-body interactions; the 2 outer rings(b, d) show the corresponding fraction of principal loops
with functional annotations—super-enhancer (SE), enhancer (E), promoter (P)—where gaps represent the fractions of principal loop regions with
no known SE, E, or P annotation. Only maximal many-body interactions are represented, i.e,, no other chromatin region exists within the interaction
distance such that all pairs are within 80 nm. Plots shown are the averages across all 39 modeled genomic loci

oiy10ads-uoN

ay1oads




Perez-Rathke et al. Genome Biology (2020) 21:13

super-enhancers to promoters when compared to princi-
pal loops of non-specific complexes, at 8.2 + 0.9% SEM
vs. 5.6 + 0.7% SEM respectively (Fig. 7b, d), with a p value
of 0.026 (Mann-Whitney U test on the corresponding
medians of 7.0% and 4.6% respectively, Additional file 1:
Figure S7b). Taken as a whole, these findings suggest that
specific principal loops within higher-order complexes
serve the important role of bridging functional genomic
regions to allow spatial coupling.

Open and transcriptionally active chromatin is predictive
of regions enriched in principal loops of many-body
interactions

We then asked whether biological markers along the lin-
ear genome, such as epigenetic modifications, contained
information on the specific higher-order physical inter-
actions uncovered through our extensive 3-D modeling.
While these loci with super-enhancers are enriched in
active markers such as H3K27ac, we want to know if
there are markers within the context of the enriched
background that can differentiate regions of specific
from non-specific many-body interactions. Notably, we
asked whether biological markers could predict regions
enriched in anchors of specific many-body principal
loops.

To this end, we tested whether 5-KB intervals enriched
in specific principal loop participation could be predicted
using publicly available data, e.g., the ENCODE reference
epigenome for GM12878 cells (ENCSR447YYN, Addi-
tional file 3: Table S2) [53, 54]. For this task, we built a
machine learning classifier based on random forest (Fig. 8,
the “Methods” section) [55, 56].

Our predictor achieved good performance, with a mean
ROC AUC of 0.804 and an out-of-bag error of 21.5% over
5-fold cross-validation (Fig. 8c). Our results indicate that
genomic intervals enriched with specific principal loop
anchors can be identified by biological markers.

Inspection of our model revealed biological markers
most predictive of principal loop enrichment are con-
sistent with open chromatin and active transcription—
i.e.,, increased signal intensities for DNase accessibility,
POLR2A binding, H3K4mel, and nuclear fraction RNA
(Fig. 9). Box plots of the corresponding z-score signal
distributions revealed significant differences among prin-
cipal loop enriched versus non-enriched regions (Fig. 9b,
¢). The active chromatin marker H3K27ac was also sig-
nificantly increased in principal loop enriched regions (p
value = 4.0 x 10723); however, likely due to close correla-
tions with both DNase accessibility and H3K4mel (Pear-
son coefficients of 0.81 and 0.68 respectively), H3K27ac
itself was not considered as informative according to the
feature importance criteria of our classifier (Fig. 9¢).

We also found that chromatin architectural protein
CTCEF and cohesin-subunit RAD21 exhibited significantly
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increased ChIP-seq signal intensities in principal loop
enriched regions (p value = 5.0 x 10~* and 7.0 x 1074
respectively), although RAD21 was found to be a more
important predictor (Fig. 9a, c).

Consistent with increased active markers, we found
decreased ChIP-seq signal intensities for the repressive
mark H3K27me3 to be predictive of principal loop enrich-
ment (Fig. 9a, c). Overall, we found open and active chro-
matin markers, along with decreased repressive markers,
to be strongly predictive of 5-KB intervals enriched for
anchors of specific principal loops.

Discussion

We have developed a computational model for identifying
specific chromatin many-body interactions and for recon-
structing their functional landscapes from population Hi-
C contact frequencies. Our method exploits extensive bio-
physical folding simulations to infer dependencies among
chromatin contacts. By incorporating the inferred depen-
dencies into a Bayesian generative model [39], our method
deconvolves the intrinsic single-cell chromatin contact
states underlying the pairwise, population-averaged Hi-C
data.

Our 3-D chromatin ensembles are highly realistic as
they exhibit spatial interaction frequencies across many
loci at Pearson correlations of 96-97% to the measured
Hi-C. This close level of correlation is significant, as only
basic biophysical assumptions are made (e.g., an 80-nm
interaction distance threshold and nuclear volume con-
finement) with no adjustable parameters. This is in con-
trast to several prior studies where each domain or bead
modeled requires a separate adjustable parameter [57, 58].

Furthermore, the reconstructed 3-D chromatin ensem-
bles are generated from a very sparse set of interactions—
just ~ 5% of the predicted specific Hi-C interactions are
sufficient to produce polymer ensembles with contact
frequencies consistent with Hi-C measurements (Fig. 2).
Notably, our models indicate that only 15-32 interac-
tions are sufficient to reconstruct loci of size 480 KB
to 1.94 MB. Hence, these sparsely selected sets are
likely enriched with interactions driving the chromatin
fold [22, 47].

Our computed 3-D chromatin ensembles contain rich
structural information, allowing prediction of specific,
i.e., highly non-random, many-body (> 3) chromatin
interactions. Our predictions are overall concordant with
SPRITE, with a majority of modeled genomic loci exhibit-
ing significantly elevated median coverages for specific vs.
non-specific many-body interactions.

The landscape of many-body interactions emerging
from our analysis of 39 active genomic loci showed
super-enhancers (SE) as enriched in specific many-body
principal loop participation compared to non-SE regions
(p = 2.24 x 107'?%, Additional file 1: Figure S8), with
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overall levels of SE-SE and SE-promoter interactions ele-
vated in specific many-bodies (Figs. 6 and 7). While the
loci studied were a priori selected based on SPRITE clus-
ters containing multiple super-enhancers, SPRITE mea-
surements per se cannot distinguish direct from indirect
cross-linking. Therefore, to our knowledge, this work is
the first to provide computational evidence, with mea-
surable Euclidean distances estimated from our models,
that super-enhancers are directly and non-randomly inter-
acting spatially with other functional genomic regions
in many-body complexes [18]. These predictions can be
tested experimentally.

Our principal loop heatmaps can reveal important
insight into the higher-order spatial organization of chro-
matin. As an example, Fig. 10 shows that at the SH3KBP1
locus, regions participating in many-body principal loops

generally do not appear to be forming domains, with
the exception of 3-body principal loops which appear
to resemble the patterns of the original pairwise Hi-
C (Fig. 2d). Instead, as evidenced by the banding pat-
terns of the 4-, 5-, and 6-body heatmaps (bottom row
of Fig. 10), principal loops may primarily be facili-
tating direct, long-range interactions among functional
genomic regions such as super-enhancers, enhancers, and
promoters. Such banding patterns at 5 KB are likely
not due to A/B compartmentalization (100 KB-1 MB
scale), as our loci are mostly (> 90%, Additional file 2:
Table S1) in A compartments. This is consistent with
our functional landscapes exhibiting decreased preference
for maximal 3-body complexes and relatively increased
functional associations among specific many-bodies
(Figs. 6 and 7).
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In contrast to other models which focus on heterochro-
matin condensation [29], we instead examine highly active
chromatin regions. Our analysis showed that even in
super-enhancer loci where active markers are enriched
at baseline, open chromatin (DNase hypersensitivty) and
the presence of active transcriptional marks such as

POLR2A and nuclear fraction RNA are predictive of 5-KB
regions enriched for anchors of specific many-body prin-
cipal loops. Our findings are consistent with the opinion
that nuclear RNAs may be important factors for nuclear
organization through promotion of phase separation and
ultimately enhancer-promoter looping [59, 60].
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Fig. 10 Principal loop heatmaps. Heatmaps are for the TAD (arrowhead) region containing the SH3KBP 1 genomic locus
(chr X: 19,560,000-20,170,000). For reference, the corresponding measured Hi-C is shown in Fig. 2d. Columns, from left to right, are for principal
loops within 3-, 4-, 5-, and 6-body chromatin interactions respectively. The rows show the principal loop interaction frequencies captured under
random (top) and deconvolved, single-cell (bottom) folding after aggregation. Axes of all heatmaps are in units of 5 KB
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Conclusions

We have developed CHROMATIX, a computational
framework for predicting the intrinsic 3-D structural
ensembles underlying population-averaged Hi-C data;
our method is general and can be applied to other cell
lines where pairwise chromatin contact information is
available. We demonstrate our predicted 3-D structural
ensembles have close correlation with the measured Hi-
C data over 39 modeled genomic loci. Our CHROMATIX
framework can also identify specific many-body chro-
matin interactions, and we show the predicted many-
body interactions to be broadly concordant with SPRITE
clusters.

We find our predicted specific many-body interactions
to be significantly associated with functional genomic
regions such as SEs and promoters; further, they preferen-
tially form maximal 4- or higher-order interactions over
3-body interactions. These findings are consistent with
specific principal loops likely playing the important role
of bridging many genomically distant regions and allow-
ing them to condense into functional assemblies through
direct spatial contact. Overall, the many-body interactions
uncovered in this study may serve as the 3-D manifesta-
tions of phase-separated, multi-valent assemblies among
super-enhancer regions [10].

Further, we have shown that genomic regions enriched
in anchors of principal loops are also enriched in open
and active chromatin marks, such as DNase accessibil-
ity, POLR2A, H3K4mel, H3K27ac, and nuclear fraction
RNA, and depleted in the repressive mark H3K27me3.
These biological markers are likely representative of fac-
tors needed to condense distant chromatin regions into
ordered, spatial complexes necessary to regulate funda-
mental cellular processes such as gene transcription.

The CHROMATIX method has the promise of gen-
erating high-resolution 3-D ensembles of chromatin
structures with detailed information of spatial many-
body interactions using abundantly available population-
averaged Hi-C data. As only about 5% of specific interac-
tions are sufficient to reproduce measured Hi-C frequen-
cies, CHROMATIX can provide higher resolution details
beyond that of input Hi-C measurement.

Our method enables quantification of the extent of
specific 3-, 4-, and higher-order many-body interactions
at a large scale. It also elucidates the functional impli-
cations by providing details on how super-enhancers,
enhancers, promoters, and other functional units prob-
abilistically assemble into a spatial apparatus with mea-
surable Euclidean distances. Our method can predict spe-
cific many-body interactions solely from markers along
the linear genome and allows insight into the biolog-
ical factors that drive the spatial coordination among
genomic regions. Finally, our method can simulate mul-
tiple independent loci located on separate chromosomes
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within the same confining nuclear volume and can be
applied to identify specific inter-chromosomal many-
body interactions.

Methods
We now provide technical details on key components of
the CHROMATIX method (Fig. 1).

Calculating p values for calling specific Hi-C interactions

To assign statistical significance p values to each Hi-
C measured interaction, we use a scalable Bag of Little
Bootstraps resampling procedure [61] over the uniform
random 3-D polymer ensemble, with 10,000 outer repli-
cates, to obtain a null distribution over random chromatin
contacts. p values are assigned to each Hi-C contact fre-
quency based on the proportion of bootstrap replicate
contact frequencies exceeding the measured Hi-C at the
same genomic distance.

Polymer simulation of structural perturbations

To predict which specific contacts are likely co-occurring
within individual cells of the population, we carried out
extensive structural perturbation simulations. These bio-
physical simulations were used to elucidate dependencies
and infeasible geometries among chromatin contacts. We
incorporated information from the perturbed simulations
into a sparsity-inducing Bayesian prior distribution over
hypothetical folding mechanisms among the specific con-
tacts, where each mechanism is encoded in the form of
a directed acyclic graph (DAG) [62, 63]. A considered
DAG, in which each edge represents a possible causal
dependency between two contacts, is restricted accord-
ing to computational knock-in perturbations supporting
such a hypothesis; specifically, if knocking-in a contact
is observed to significantly upregulate the frequency of
another contact beyond random, a directed edge from
the knocked-in contact to the upregulated contact is then
available to be sampled when generating folding mech-
anisms. Given the observed population Hi-C data and
the results of simulated biophysical perturbations, we
infer the posterior distribution of single-cell contact states
through Gibbs sampling (see Additional file 1: Supple-
mentary Information for details on sampling procedures).
We find that our models for 38 out of the 39 loci have
higher posterior probabilities than the naive models of
product of independent pairwise contacts. The naive
models further suffer from the inability to recognize geo-
metrically infeasible combinations of pairwise contacts.

Functional annotation and loci selection

We used LILY [64] to detect functional genomic regions
containing super-enhancers, enhancers, and promoters
based on H3K27ac ChIP-seq data of GM12878 cells
[65](see Additional file 4: Table S3). We used publicly
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available SPRITE data for GM12878 cells [18] to select
clusters containing multiple (> 2) super-enhancers as a
basis for investigating if many-body interactions may form
among multiple super-enhancers. We then used publicly
available Hi-C data for GM12878 at 5-KB resolution [9]
to identify the median TAD (< 2 MB, arrowhead domain)
boundaries for the considered SPRITE clusters. After dis-
carding regions with greater than ~ 25% overlap, we
obtained 39 genomic loci (Additional file 2: Table S1),
35 of which have no overlap, for further investigation
of many-body interactions. Hi-C contact counts at each
locus, normalized via Knight-Ruiz matrix balancing [66],
were obtained using Juicer [67] also at 5-KB resolution.

Cliques and maximal many-body interactions

We extend the nCSAC approach of Giirsoy et al. [21, 22]
to identify specific many-body (> 3) chromatin interac-
tions. We define a many-body interaction as a complex of
5-KB chromatin regions such that the Euclidean distances
between all pairs of regions in the complex are within a
cross-linking threshold of < 80 nm [47]. Using graph the-
ory terminology, a many-body interaction is equivalent to
a clique [68], i.e., a fully connected graph such that all pairs
of vertices are connected by undirected edges. Further, a
many-body complex, or clique, is maximal if no additional
chromatin regions may be added such that all pairs remain
within the cross-linking threshold. We use the highly opti-
mized graph analysis library igraph to detect many-body
interactions within a 3-D polymer [69].

Calling specific many-body interactions
To generate a null distribution over many-body chromatin
interactions, we first tally the frequency of each observed
many-body interaction within a uniform randomly folded
ensemble of 75,000 polymers. We repeat the tally pro-
cedure by bootstrap resampling over the full polymer
ensemble for 1000 total replicates; this produces a distri-
bution over the many-body interaction frequencies under
a null hypothesis of random folding. For 3-body interac-
tions (Fig. 6), we detect all cliques consisting of exactly 3
distinct chromatin regions and do not require them to be
maximal; that is, these 3-bodies may be part of a larger
fully connected complex. For principal loop analysis, we
detect cliques consisting of at least 3 distinct chromatin
regions and require that each clique is maximal (Fig. 7).
We then identify specific many-body interactions at a
locus by first tallying the corresponding many-body fre-
quencies within each sample of the CHROMATIX decon-
volved Hi-C ensemble (i.e., simulated Hi-C) of 25,000
polymers. We stratify the many-body frequencies (ran-
dom and simulated Hi-C) according to both genomic
distance and clique size. Specifically, for 3-body interac-
tions shown in Fig. 6, we stratify all frequencies based
on principal (i.e., longest) and minor (i.e., shortest) loop
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spans in base pairs. For maximal principal loop interac-
tions shown in Fig. 7, we stratify based on clique size and
the base pair span of the principal loop. Stratification is
necessary to control for genomic distance bias, i.e., the
fact that genomic regions with short genomic separation
tend to spatially co-locate [21] and that larger clique sizes
tend to allow correspondingly longer genomic distances
to interact spatially with increased frequency. We assign
a p value to each simulated Hi-C many-body frequency
as the within-stratum proportion of random (bootstrap-
replicated) many-body frequencies that exceed the sim-
ulated Hi-C many-body frequency. Finally, to control for
multiple testing, a simulated Hi-C many-body interaction
is called specific if the FDR-adjusted [70] p value is < 0.05.

Concordance with sPRITE

We compared our 3-body and maximal many-body prin-
cipal loop predictions with publicly available SPRITE data
for GM12878 [18]. To adjust for genomic distance bias,
we stratified principal loops according to base pair span
and computed the SPRITE coverage fraction, i.e., propor-
tion of SPRITE clusters that contained each principal loop
complex. Specifically, we computed the median SPRITE
coverage fraction at each 5-KB genomic distance span
for both specific and non-specific principal loops (Addi-
tional file 1: Figure S5). At each of the 39 modeled loci,
we assessed the significance of the proportion of spe-
cific medians exceeding the corresponding non-specific
medians by permutation testing: we randomly permuted
the specific and non-specific labels assigned to each prin-
cipal loop and re-computed the proportion of specific
medians exceeding non-specific medians for 1000 total
replicates. We then assigned a p value to each locus by the
fraction of permutation replicates exceeding the observed
proportion. A similar procedure was performed for 3-
body predictions, with stratification by both principal and
minor loop. To control for multiple testing, p values where
called significant if < 0.05 after FDR correction [70].

Predictive model for principal loop enrichment

We built a random forest machine learning classifier
[55] to identify biological markers predictive of regions
enriched in the principal loop anchors of many-body
complexes. We used publicly available biological datasets
(Additional file 3: Table S2), primarily from ENCODE
reference epigenome for GM12878 (ENCSR447YYN)
[53, 54], as our input features (Fig. 8a). At each of the
39 modeled loci, genomic regions corresponding to non-
overlapping 5-KB bins were sorted based on principal
loop participation; a subset of those occurring above the
“elbow” inflection point (Fig. 8b) were labeled as enriched;
those occurring below the inflection point were labeled
as not enriched. To avoid ambiguous labels and to pro-
vide a more robust decision boundary among enriched
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versus not enriched regions, we retained the top 20%
of the above-elbow fraction at each locus and discarded
the remainder, while still retaining all samples below the
elbow. Our final data set consisted of 231 regions enriched
(i-e., positive) in many-body interactions and 5800 regions
not-enriched (i.e., negative). To control for potential class
imbalance issues during training, we used the randomFor-
est R package [56] with stratified resampling to present
equal number of positive and negative samples to each
decision tree (# = 500) in the random forest. Classi-
fier performance results, mean ROC AUC of 0.805 and
out-of-bag error of 21.5% (Fig. 8c), were obtained on a
held out test set (~ 20% of labeled samples) over 5-fold
cross-validation using the caret R package [71].
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