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Abstract

Background: Single-cell RNA sequencing (scRNA-seq) plays a pivotal role in our understanding of cellular
heterogeneity. Current analytical workflows are driven by categorizing principles that consider cells as individual
entities and classify them into complex taxonomies.

Results: We devise a conceptually different computational framework based on a holistic view, where single-cell datasets

are used to infer global, large-scale regulatory networks. We develop correlation metrics that are specifically tailored to
single-cell data, and then generate, validate, and interpret single-cell-derived regulatory networks from organs and
perturbed systems, such as diabetes and Alzheimer's disease. Using tools from graph theory, we compute an unbiased
quantification of a gene’s biological relevance and accurately pinpoint key players in organ function and drivers of diseases.

Conclusions: Our approach detects multiple latent regulatory changes that are invisible to single-cell workflows based on
clustering or differential expression analysis, significantly broadening the biological insights that can be obtained with this

leading technology.

Background

Single-cell RNA sequencing (scRNA-seq) is the leading
technology for exploring tissue heterogeneity, unraveling
the dynamics of differentiation, and quantifying transcrip-
tional stochasticity. scRNA-seq data are being used to an-
swer increasingly demanding biological questions, which
has driven the development in recent years of an array of
computational tools for scRNA-seq analysis [1]. Currently,
these tools focus on improving features such as clustering,
retrieving marker genes, and exploring differentiation tra-
jectories [1]. These scenarios are inspired by a dividing,
fragmenting principle, where each cell is an independent
identity that must be categorized into different types or
stages of increasing hierarchical complexity. This is illus-
trated by recent large-scale cell atlases that often reach
hundreds of stratified (sub)clusters [2]. This has undoubt-
edly improved our understanding of cell diversity in vari-
ous biological contexts. However, we hypothesize that a
very different approach, inspired by a unifying rather than
dividing ideal, would add a novel layer of information that
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would significantly increase the knowledge gained from
single-cell datasets.

Gene expression is tightly regulated by networks of tran-
scription factors, co-factors, and signaling molecules. Un-
derstanding these networks is a major goal in modern
computational biology, as it will allow us to pinpoint crucial
factors that determine phenotype in healthy systems as well
as in disease [3, 4]. Unraveling the determinants of a given
phenotype provides mechanistic insights into causal de-
pendencies in complex cellular systems. Potentially,
single-cell information offers the opportunity to derive a
global regulatory network [5]. Traditional approaches to
transcriptome profiling, namely microarray and RNA-seq
of pooled cells, have been successfully used to infer and
characterize regulatory networks, with a recent example
using 9435 bulk RNA-seq samples to decode tissue-specific
regulatory networks [6]. To date, there are only small-scale
efforts to derive regulatory networks from single-cell tran-
scriptomics data, and these efforts have been restricted to
specific network properties [7, 8]. This seems unexpected
given that single-cell sequencing is the ideal technology for
monitoring real interactions between genes in individual
cells. However, single-cell data is undermined by a series of
technical limitations, such as drop-out events (expressed
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genes undetected by scRNA-seq) and a high level of noise,
which have made it difficult to infer regulatory networks
using this type of data [9].

In this paper, we demonstrate the feasibility and value
of regulatory network analysis using scRNA-seq datasets.
We present a novel correlation metric that can detect
gene-to-gene correlations that are otherwise hidden by
technical limitations. We apply this new metric to gener-
ate global, large-scale regulatory networks for 11 mouse
organs [10], for pancreas tissue from healthy individuals
and patients with type 2 diabetes [11], and for a mouse
model of Alzheimer’s disease [12]. We then validate the
resulting networks at multiple levels to confirm the reli-
ability of the reconstruction. Next, we analyze the net-
works using tools borrowed from graph theory, such as
node centralities and dynamical properties. Finally, we
integrate network-driven results with standard analyses
such as clustering and differential expression analysis
and show that key regulators of healthy and diseased
systems can only be identified by using integrated,
network-based approaches. Together, our results repre-
sent the first complete, validated, high-throughput, and
disease-centered application of single-cell regulatory
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network analysis, significantly increasing the knowledge
gained from this leading technology.

Results

Inferring regulatory networks from large-scale single-cell
transcriptomics

We initially set out to develop a reliable approach for in-
ferring global regulatory networks from single-cell data
(Fig. 1). To generate a regulatory network starting from
expression data, we require a robust measure of correl-
ation between genes. Unlike in RNA-seq from pools of
cells (bulk), single-cell data is inherently noisy and highly
sparse, which prevents the effective use of standard coeffi-
cients such as Pearson, Spearman, or Cosine correlation,
or even mutual information. Hence, we conceived a novel
correlation measure based on a computational framework
tailored to analyze single-cell data, with the rationale that
two correlated genes follow similar patterns of differential
expression between cell sub-types (see the “Methods” sec-
tion). Therefore, instead of searching for relationships
using the original variables, namely (normalized) expres-
sion counts, we compute the correlations between trans-
formed variables, in which expression counts are replaced
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Fig. 1 Overview of the computational framework. Preparation: A change of variable (from expression values to Z-score) is used to detect
otherwise hidden correlations between genes in single-cell datasets, ultimately allowing us to infer the global regulatory network. Gene centrality:
Biological importance of genes is quantified using concepts from graph theory. Dynamical properties: We characterize the putative dynamical
behavior of the regulatory networks by measuring the monotonicity. Applications: We generated, compared, and characterized the networks of
11 organs in the mouse (Tabula Muris), in the pancreas from healthy and type 2 diabetes human subjects, and in a mouse model of
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by Z-scores. These Z-scores are derived from an unsuper-
vised analysis based on iterative differential expression
(DE) between small clusters of cells. To compute Z-scores,
we exploit a probabilistic model of the noise that considers
all sources of variability in single-cell data. Thereby, this ap-
proach can detect correlations that would otherwise be
concealed by drop-out events and other technical artifacts
and, thus, is particularly suitable for single-cell RNA-seq
data. When applied to a dataset of 7697 microglia cells
[12], we identified 933,936 significant gene-to-gene correla-
tions (Pearson > 0.8), a gain of almost 40,000-fold compared
to normalized UMI count data (only 24 correlations,
Fig. 2a). This large increase in the number of detected cor-
relations is supported by a different distribution in the
Z-score space compared to the UMIs/reads space (Fig. 2a).
Drop-out events can entirely obscure correlations, when
genes, although being co-expressed in the same cell type
(ie., cluster), experience mutually exclusive drop-outs
(Fig. 2b). When applied to seven additional datasets gener-
ated using different scRNA-seq techniques (Fluidigm C1,
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10x Genomics Chromium, MARS-seq, Smart-seq2), with
different sequencing depths and from different tissue
sources [10, 13, 14], the Z-score metric consistently outper-
formed standard approaches, suggesting that it is a valid
correlation metric for scRNA-seq data (Fig. 2c).

After identifying gene-to-gene correlations, an adaptive
threshold is applied to retain only significant correlations
(see the “Methods” section). This adaptivity equalizes the
effects of different cell numbers and coverage, and other
technical features of scRNA-seq datasets. The retained
correlations then become the weighted edges of the regu-
latory network, with either positive or negative signs. In
the final step, gene ontology (GO) information is used to
subset the network to “regulators of gene expression,” in
order to retain only putative causal (regulatory) relation-
ships (Fig. 2d). Note that using external information (e.g.,
GO) is an established method for refining networks [15—
17]. To determine the importance of a given gene in a
single-cell regulatory network and its underlying biological
system, we applied analytical tools from the field of graph
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Fig. 2 A metric tailored to single-cell data allows detection of hidden correlations. a Distribution of Pearson correlations pg, in normalized
expression data (7697 microglia cells) or in the Z-score space. We detect only 24 correlations |pp| > 0.8 in the first scenario, but almost one million
|op| > 0.8 in the Z-score space. b Examples of correlations using either expression values or Z-score-transformed data (o, Pearson, p. Cosine, ps
Spearman). Due to drop-out events and other artifacts, the positive correlation between Mmp25 and Ankrd22 is only exposed using Z-scores.
Similarly for the negative correlation between Samd9l and Cx3cri. ¢ Comparison of detected correlations |pp| > 0.8 using either original expression
values or Z-score-transformed data across different scRNA-seq technologies, sequencing depths (from 625 [12] to 6480 [13] average detected
genes per cell), and source material. d An adaptive correlation cutoff and GO annotations are used to infer the regulatory networks from
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theory. These tools allow us to quantify the biological rele-
vance of a gene using various measures of centrality,
namely degree, betweenness, closeness, pagerank, and ei-
genvalues (Fig. 1). For example, genes with a high be-
tweenness centrality are crucial for the flow of information
between network modules (bottlenecks), genes with a high
closeness can rapidly spread a signal across the network,
and genes with a high eigenvalue are highly influential (see
the “Methods” section).

Benchmarking inferred correlations

The inferred correlations were linearly proportional to the
correlations computed over the average gene expression
per cluster, confirming that the approach is not introdu-
cing global biases nor artifacts (Additional file 1: Figure
Sla). The quality of the inferred correlations critically de-
pends on the number of clusters: a tradeoff between sensi-
tivity and specificity. Partitioning cells in few, large
clusters allows a sensitive DE analysis, however, with re-
duced specificity. For example, partitioning 3005 brain
cells [14] in three clusters detected 52 million correlations
(p>0.8, Fig. 3a). However, the median co-expression of
correlated gene pairs was only 7% (Jaccard index), indicat-
ing that most of the correlated genes are not expressed in
the same cell (Fig. 3a, b). As three clusters are not suffi-
cient to segregate sub-types, cells with different pheno-
types enter the same cluster and generate false-positive
correlations. Importantly, our approach applies a recursive
clustering that maximizes the number of biologically in-
formative clusters, increases the quality of correlations,
and preserves sensitivity (see the “Methods” section). Ex-
emplarily, recursive clustering divides the 3005 brain cells
into 48 clusters, increasing the average co-expression to
51% (Fig. 3a, b). Of note, drop-out events impede the de-
tection of a complete co-expression of 100%.

Next, we quantified the false discovery rate (FDR)
of the inferred correlations using the 3005 brain cells
and random cluster assignment as the null model.
Any correlation found with the random clustering
must be false positive, originated from an uncon-
trolled sensitivity in the DE analysis and subsequent
Z-score-based correlation. We applied a reshuffling of
the 48 clusters to generate random assignments with-
out altering the distribution of cluster sizes. We ob-
served an average FDR of 0.062 +0.012%, indicating
that the approach has a low detection of false-positive
events (S.E.M., 5 independent repetitions of random
clusters; Additional file 1: Figure S1b).

We then tested if the approach was a robust predictor
of correlations. To this end, we randomly sampled two
non-overlapping groups of 5000 cells from the 1.3 mil-
lion dataset of mouse brain cells [18], to quantify the ex-
tent to which correlations inferred from a training set
(group 1) can predict correlations in a test set (group 2).

Page 4 of 20

Correlating genes in the training set were very likely to
be correlated in the testing dataset, as illustrated by a
clear distribution shift compared to the background (ap-
proximate p value < 1e-31128, Wilcoxon signed-rank
test; Fig. 3c). Specifically, 42% (97.6%) of correlations
found in the training set (p >0.8) revealed correlations
of p>0.8 (p>0.6) in the test set (Fig. 3d). We repeated
this simulation for smaller (2500 cells) and larger
(10,000 cells) datasets, consistently determining the in-
ferred correlations as valid predictor (Fig. 3e). Overall,
these results indicate that our inferred correlations are
reproducible, with datasets of similar type (e.g., bio-
logical replicates) yielding similar correlations. Import-
antly, the robustness of the prediction increased with the
dataset size, suggesting that the approach efficiently
exploited higher cell numbers to infer more robust cor-
relations. This is particularly important considering the
trend towards very large datasets in single-cell tran-
scriptomics studies [19].

Imputation is utilized in single-cell dataset to replace
drop-out events with non-zero estimates of predicted ex-
pression values. We assessed if imputation improves cor-
relation coefficients of transcript count data and
therefore constitutes a viable alternative to the here pre-
sented approach. We applied scImpute [20], a widely
used and benchmarked imputation tool [21, 22], on
8333 microglia cells [12], an extremely sparse and chal-
lenging dataset (6.1% non-zero values after filtering for
expressed genes). Although imputation was able to de-
crease the sparsity (non-zeros increased to 20.4%), the
improvement was not sufficient to detect correlations
(Pearson p > 0.8, Fig. 3f). We further tested MAGIC, a
Markov affinity-based graph imputation method, previ-
ously shown to be able to denoise count matrixes and to
fill in missing transcripts [23]. The imputed dataset was
able to detect large amounts of correlations (Pearson co-
efficients p >0.8), however, with excessive amounts of
false-positive correlations compared to our approach
(Additional file 1: Figure Slc), a common artifact of im-
putation methods [24]. In line with previous observa-
tions [24, 25], we concluded that imputation, although
certainly valuable in aiding clustering and phenotyping,
is not sufficient to cope with the detrimental effects of
drop-out events, preventing correlation analysis of
single-cell expression count data.

We next sought to further validate our approach using
simulations [26]. First, we simulated a single-cell “refer-
ence dataset” with minimal sparsity (3% sparsity, 97%
non-zero values), which was used to calculate the true
positive correlations. Next, we generated testing datasets
by adding increasing levels of drop-out events (35%,
64%, 88%, and 97% sparsity). The performance of our
approach in recovering true positive correlations was
then quantified with the AUC (area under the curve)
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ROC (receiver operating characteristics) curve. Our
approach performed optimally up to the sparsity of
88% (AUC=283%, Fig. 3g) and still performed better
than random chance at the highest sparsity (97%,
AUC =67%, Fig. 3g, h).

In principle, segregating a dataset with recursive cluster-
ing and computing average gene expression per cluster
might sufficiently mitigate the effects of drop-out events
and improve the performance of correlation metrics.
However, averaged expression values were considerably
more skewed than Z-scores, presenting few outliers with
high expression levels (Additional file 1: Figure S1d, f). As
a result, the correlations inferred by cluster-average ex-
pression values are mainly driven by outliers (highly posi-
tive clusters). In contrary, Z-scores use the information of
all clusters, making them overall more accurate (Add-
itional file 1: Figure S1d, e, f).

In summary, the benchmarking confirmed our approach for
inferring correlations to be accurate, scalable, robust, artifact-
free, and out-performing imputation-based approaches.

Single-cell regulatory networks identify essential and
specific genes for organ function

To evaluate the value of using large-scale regulatory net-
works inferred from single cells to aid biological interpret-
ation of scRNA-seq datasets, we first applied our
framework to a single-cell resolved mouse organ atlas
[10]. We generated regulatory networks from 11 organs:
endoderm (lung, pancreas, intestine), mesoderm (heart,
fat, spleen, bladder, bone marrow), and ectoderm (skin,
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brain, mammary glands). The adaptive correlation thresh-
old, required to normalize batch effects such as sequen-
cing depth or cell numbers, reached high values for all
organs (Puesh > 0.9, Table 1), which confirms the signifi-
cance of selected correlations. Inferred networks had a
scale-free topology (a structure conferring fault-tolerant
behavior, p>0.01 Kolmogorov—Smirnov test, Add-
itional file 1: Figure S2) which is in line with previous find-
ings in manually curated networks [27-29].

As expected, the number of nodes (i.e., genes) in the
network scaled with the average number of detected
genes (Pearson p=0.82, Table 1). All networks had a
positive modularity, indicating a structure organized into
multiple, separated modules of genes (also called com-
munities). The most modular networks were the pan-
creas, heart, and brain, and the bone marrow was the
least modular (Table 1). Interestingly, networks showed
a wide variation in their density (ratio edges/nodes).
Lower network densities could indicate a frequent use of
“indirect” transcriptional regulation, signaling cascade
involving genes without direct gene regulatory function
(see the “Methods” section). Of note, network density
and modularity showed an inverse relationship (Pearson
p=-0.8, Table 1), suggesting that sparser networks
(such as the brain, heart, and pancreas) preserve a
strong intra-modular connectivity at the expense of de-
creased inter-modular connectivity (Table 1). Hence,
modularity represents a proxy for the tissue heterogen-
eity, with an increased phenotype diversity being related
to more modular networks.

Table 1 Overview of specifications for inferred regulatory networks. In order: the adaptive correlation threshold set to retain
significant correlations; average detected genes, number of edges, and percentage of negative edges; number of nodes and
percentage of nodes being “regulators of transcription”; network density (ratio edges/nodes), number of connected components,

average shortest path, and modularity

Network Corr. Tresh.  Avg. det. genes  Edges  Edges <0 (%) Nodes RT% E/N Conn. Comp.  Avg. short. path  Modularity
Marrow 0.95 3152 48,748 00 3221 27.5 1513 3 4.06 0.37
Intestine 0.94 4046 60941 00 5858 244 1040 1 633 049
Heart 0.94 2682 3460 04 1519 237 228 3 6.71 0.75
Brain 0.92 3195 23492 00 5131 273 458 2 0.84 0.73
Fat 0.89 3409 35495 14 4814 267 737 3 527 042
Mammary 0.95 3623 38,088 1.2 5978 260 637 2 792 0.64
Skin 0.85 3410 42,965 86 5361 286 801 1 5.56 0.59
Spleen 0.88 1839 30424 34 4560 288 667 1 6.95 043
Pancreas 092 4408 30,191 05 6586 246 458 1 8.84 0.75
Bladder 0.99 4873 46,136 262 5729 228 805 5 7.19 0.52
Lung 0.90 2546 15008 06 2921 257 514 2 773 0.66
Pancreas, healthy ~ 0.90 5580 48540 1.1 7432 280 653 2 7.06 0.58
Pancreas, T2D 091 6636 52035 67 7501 270 694 1 6.63 0.57
Microglia, healthy  0.89 625 32064 00 2665 316 1203 3 4.16 045
Microglia, AD 0.84 676 20970 00 2774 267 756 1 6.74 0.65
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We next sought to validate our predicted regulatory
edges. We reasoned that when a system is perturbed, pairs
of connected genes (linked by an undirected edge), on
average, are more likely to be activated/deactivated to-
gether. Thus, we used the Molecular Signature database
(MSigDB), which contains an extensive collection of ex-
perimental signatures representing perturbations in differ-
ent biological systems. We performed a proportional test
(Fisher’s exact test) to quantify the co-occurrence of neigh-
boring genes in MSigDB experimental signatures, thereby
testing the significance of each individual edge in the net-
work (Fig. 3i). In the brain network, the edges (23,492)
showed an overall distribution bias towards positive fold
enrichment and significant p values, which supports our
inferred regulatory links (Fig. 3j, k). Specifically, 34% of
the edges were validated (p < 0.05), and this percentage in-
creased when we considered only the edges whose genes
are present in many MSigDB signatures (Fig. 3k). In fact,
100% of the edges were validated when considering only
genes appearing in at least 360 signatures. The results
were similar for the other 10 mouse organ networks (Add-
itional file 1: Figure S3a).

Notably, genes that were central in the different mea-
sures showed marginal overlap (Fig. 4a, Additional file 1:
Figures S4, S5), which suggests that conceptually different
centralities quantify distinct types of biological importance
and provide mutually complementary information.

To confirm the importance of central regulatory genes
in the biological system, we calculated their enrichment
among experimentally validated essential genes (Online
GEne Essentiality (OGEE) database); knockdown of
these genes causes lethal or infertile phenotypes in Mus
musculus (see the “Methods” section). For all centrality
metrics, gene centrality was proportional to biological
essentiality (Fig. 4b, c), which supports the reliability of
our networks and the validity of applying node centrality
theories to single-cell data. These results also suggest
that, in principle, all the tested centralities yield bio-
logical insights. However, some centralities (pagerank,
betweenness, degree) produced more stable predictions
irrespective of the network structure (Fig. 4d, Add-
itional file 1: Figure S6). For example, closeness centrality
did not perform well on disconnected graphs.

Next, to assess genes’ organ-specific centrality and
how this relates to biological functions, we compared
the centrality of genes across organs. In 11 regulatory
networks, we identified genes that were central for single
or multiple mouse organs (Fig. 4e, Additional file 1: Fig-
ure S3b). Genes that were central in multiple organs ap-
peared more essential than organ-specific genes (Fig. 4g,
Additional file 1: Figure S3c). In line with this, shared
central genes were associated with general housekeeping
functions (e.g., gene expression or metabolic processes),
whereas organ-specific central genes were associated
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with organ-specific processes (GO enrichment, Fig. 4h).
Examples include epidermis development in the skin (p
<3.2x107°), regulation of blood vessel diameter in the
heart (p <4.1 x 107°), and regulation of neuron apoptotic
process in the brain (p < 5.8 x 107%). Importantly, regula-
tory network analysis provided biologically relevant in-
formation not captured by gene expression levels alone.
In fact, most organ-specific central genes are not upreg-
ulated in their respective organs (Fig. 4f). This implies
that gene expression levels are not an adequate measure
of the importance of such genes for their underlying bio-
logical system.

Overall, our framework for single-cell network analysis
was capable of exposing functional regulatory structures
and key genes that are undetectable by current computa-
tional strategies. We believe that this approach will be
very valuable and broadly applicable for interpreting
healthy and diseased complex biological systems. For the
latter, regulatory networks will allow us to detect the
molecular fingerprints of perturbations and to identify
key driver genes for disease.

Altered regulatory network architecture in the pancreas
from type 2 diabetes (T2D) patients

We considered that regulatory networks and gene central-
ities would be particularly informative about latent
disease-related regulatory changes that are invisible to
current analytical approaches. Thus, we generated healthy
and T2D regulatory networks for 2491 single-cell tran-
scriptomes from diabetes patients and controls [11]. First,
we studied disease-related changes in pagerank centrality,
a metric originally conceived to rank the popularity of
websites. Nodes with high pagerank centrality indicate
“popular” genes involved in multiple regulatory pathways.
We hypothesized that genes with altered pagerank cen-
trality would represent T2D regulatory changes with high
functional impact on disease pathology. We found 162
genes with significantly increased pagerank centrality in
T2D, despite showing equal expression levels (p > 0.05) in
T2D patients and healthy controls (Fig. 5a, b). In addition,
we detected 10 genes, including insulin (INS), with in-
creased pagerank that were significantly downregulated in
T2D (p < 0.05). Consistent with known disease pathology,
insulin was the most downregulated gene (p<2.2x
1072%%), but had significantly higher pagerank centrality
(from 0.3 to 0.9; Fig. 5a, b). This shows that insulin is a
crucial limiting factor in the T2D network, and further
emphasizes its pivotal role for the disease. Next, we used
GO and MSigDB to confirm the importance of the 172
genes with increased pagerank for pancreas function.
Gene set enrichment supported their role in diabetes
pathophysiology, as illustrated by the overrepresentation
of terms such as “onset of diabetes in the young” signature
(p<0.016; Fig. 5c). Genes showing changes in the
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remaining centralities (eigenvalues, closeness, betweenness,
degree) were also enriched in diabetes-related functions,
further highlighting the value of our method for interpret-
ing scRNA-seq data (Additional file 2).

Finally, we identified genes with a simultaneous increase
or decrease in the five centralities, which we expect to drive
essential regulatory changes in T2D. We detected 4 (6)
genes with repeated increased (decreased) centrality, most
of which have previously been linked to diabetes pathology
(Fig. 5d, e) [30-37]. For example, ARRB2, a gene with a
demonstrated role in /3 cell development [38], showed no
differential expression (p > 0.05) but was simultaneously de-
creased in all six centrality measures. This is particularly re-
markable because S cells were the most deregulated cell

type in the original analysis [11], which however did not de-
tect the importance of ARRB2 in this context. This further
supports the notion that generating global regulatory net-
works from single-cell data provides important insights into
the pathological mechanisms of diseases. We further mea-
sured the degree of monotonicity to test whether the T2D
network had a more chaotic dynamical behavior compared
to the healthy pancreas network, but did not find significant
changes for this attribute (Additional file 1: Figure S7c, d).

Network-driven interpretation of differentially expressed
genes

Differential expression (DE) is the backbone of most
analytical pipelines for RNA-seq. A typical challenge is
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to interpret differentially expressed genes and identify
functionally important events. This is generally achieved
by (i) focusing on the genes with most significant p
value, (ii) integrating external databases (GO or
MSigDB) to elucidate key genes and pathways, or (iii)
using personal knowledge to identify previously anno-
tated genes. However, none of these approaches guaran-
tees an unbiased classification of biological importance.
In fact, in DE analysis, p values rank genes by technical
reproducibility, not by biological importance, and both
external databases and personal knowledge can be
biased. Single-cell regulatory networks can be used to
provide an unbiased, hypothesis-free classification of the
biological importance of genes, allowing us to automat-
ically identify pivotal deregulated genes, which greatly
facilitates data interpretation. Comparing gene expres-
sion in /5 cells between healthy and T2D individuals, we
detected 911 genes upregulated in T2D S cells (p < 0.05;
Fig. 6a). Ranking these genes by centrality rather than p
values (i.e., Z-scores) provided quantitative sorting by
biological importance, allowing us to immediately focus
on the most relevant candidates. For example, NEU-
RODI and RCANI showed the highest centrality of all
deregulated genes according to multiple metrics (Fig. 6a,
b), suggesting that they are the most informative and
biologically relevant. Interestingly, mutations in NEU-
ROD1 were associated with T2D [39], whereas upregula-
tion of RCANI was shown to cause hyperinsulinemia,
cell dysfunction, and diabetes [40]. Notably, neither of
these genes was highlighted with DE p values (NEU-
RODI 2829th, p<2x10™% RCANI 4331th, p<0.05).
This example highlights the high additive value of using
single-cell regulatory networks and related node central-
ities to aid interpretation of DE results.

Inversions of gene correlations in T2D

Regulatory networks can be further interrogated to de-
tect changes in local interactions, namely pairwise corre-
lations between genes. We reasoned that gene pairs with
an inverted correlation in T2D samples compared to the
healthy pancreas represent rewired functional modules
with potential pathological implications. Of note, a
complete inversion of correlation, from positive (training
set, p>0.9) to negative (test set, p <0), never occurred
when benchmarking the correlation approach (25,632
computed cases, p<1/25,632; Fig. 3c—e). Performing
comparative analysis of the healthy and T2D networks,
all pairwise correlations were highly similar under
healthy and T2D conditions (example of BMP5 and
PCSK1, Fig. 6c, d), which is remarkable considering that
the data come from different donors and are subject to
inter-individual variability as well as several confounding
factors (e.g., age and weight). In contrary, correlations
inferred directly from expression data were few, in line
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with our previous results on other datasets (Fig. 2¢), and
unreproducible across conditions (Additional file 1: Fig-
ure S7a, b). This indicates that our approach works
transversely to confounding variables, ultimately expos-
ing the true functional correlations between genes (see
the “Confounding variables” section in the “Methods”
section). Closer inspection revealed a number of mod-
ules (14) with strongly (p > 1) inverted correlations, the
most striking example being ZNF134 and TFAMPI,
which switch from a strong positive correlation in the
healthy pancreas (p =0.92) to a negative correlation in
T2D (p = - 0.7). Neither of these genes showed a change
in expression between conditions (healthy/T2D), which
renders their altered functionality invisible to standard
methods (Fig. 6e, f).

Several other genes displaying inverted correlations
have previously been linked to diabetes (7/18), either by
functional studies (TRIB1, glucose metabolism; NFKBIA,
insulin resistance pathway) or as candidate disease genes
in GWAS or gene expression studies (IMPPE, PRTG,
and ZNF319) [41-46]. Functionally, the most interesting
are SREBP2 and GSK3A, which have a direct mechanis-
tic relationship and are both implicated in T2D and
which also switched from a positive to a negative correl-
ation. SREBP transcription factors are major players in
lipid metabolism and possibly insulin resistance, whereas
GSK3 phosphorylates SREBP in the absence of insulin
and AKT signaling, leading to its degradation [47-49].
Consequently, we can speculate that the reversal in cor-
relations inferred from single-cell data is directly related
to a change in insulin signaling and the degradation of
SREBP2 through GSK3A.

In summary, the comparative analysis of single-cell-
driven correlations is a suitable novel approach for disen-
tangling the molecular mechanisms of diabetes and further
enlarges the repertoire of single-cell data analysis strategies
available for meaningful data interpretation.

Rewiring of microglia gene regulation in Alzheimer’s
disease (AD)

We further evaluated the applicability of our network-
based approach in a different disease and species context
with datasets of higher size and increased sparsity. To this
end, we analyzed scRNA-seq data from immune cells
(CD45+) derived from 5XFAD transgenic mice, a com-
monly used model for AD [12]. The dataset contained
transcriptomes from 22,951 single cells from different dis-
ease stages (1-8 months, control, and 5XFAD) as well as
Trem2™* and Trem2~~ AD and control mice (Trem?2 is a
key receptor that modulates immune response). The var-
iety of conditions made the dataset particularly suitable
for confirming the benefits of our unifying approach. In
fact, instead of progressively fragmenting cells and condi-
tions into stratified groups and clusters, we used all of the
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data as an input to generate regulatory networks for con-
trols and AD. Overall, while the two networks were of
comparable size (Table 1), we observed a general loss of
connectivity in AD, which increased network sparseness
and signal traveling time (shortest paths, Table 1). Conse-
quently, centralities of several genes were different in the

AD network compared to the control (Fig. 7a). Altered
centralities were associated with different MSigDB enrich-
ments, further reflecting the fact that each centrality high-
lights different functional aspects. For example, genes that
lost influence (eigenvalue) significantly overlapped with
genes that were dependent on TremI in monocytes (p <



lacono et al. Genome Biology (2019) 20:110

6.5 x 107%). This observation is intriguing given the rele-
vance of Trem2 in the mediation of immune response in
AD brains.

Other function—centrality associations include genes
that are upregulated in AD patients (p < 5.0 x 107*?), the
interleukin 12 signaling cascade (p < 1.1 x 10®), and genes
that are downregulated in naive B cells compared to
monocytes (p < 3.5 x 107'% Fig. 7a). Overall, betweenness
showed the most dramatic changes of all centralities. In
fact, the AD network was rewired into a circular shape,
which in turn causes a number of genes to become infor-
mation bottlenecks (Fig. 7b). Interestingly, beta catenin 1
(Ctnnbl), part of the main pathway that regulates the on-
set and progression of AD [50], showed the largest in-
crease in betweenness (from 0.0 to 27.3%, Fig. 7b) and
became the main bottleneck in the AD network. Among
the top 10 genes with increased betweenness, we also
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found a poorly annotated transcript 2700060E02Rik
(Fig. 7c), whose heterozygous deletion was previously as-
sociated with tremors and hypoactivity, a common symp-
tom of AD (Mouse Phenotyping Consortium, www.
mousephenotype.org).

Discussion and conclusions

During the last decade, single-cell transcriptomics has be-
coming increasingly important for deconvoluting the cellu-
lar architecture of complex tissues and for classifying cells
with categorizing principles. An integrated scenario, where
single cells are combined to infer global regulatory net-
works, has not yet been comprehensively explored. There
have been isolated studies using small-scale single-cell data
to derive partial regulatory networks, although their reliabil-
ity has been questioned [9]. Hence, it remained unclear
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whether single-cell datasets can be analyzed using strategies
other than clustering-based phenotyping.

The main obstacles that impede network analysis of
single-cell data are the technical limitations inherent to
the technology and the very large data volumes. Guo
and coworkers used least square fitting on expression
data from 28 epithelial cells and inferred a partial regula-
tory network of few hundred nodes and edges [7], how-
ever, without validating it. Further, the use of least
square fitting is known to perform poorly with the
sparse and low complexity of single-cell data [5]. In an-
other work [8], 92 cells were analyzed using an asyn-
chronous Boolean approach to refine literature curated
models of hematopoiesis. Boolean approaches are not
easily scalable [5] and can therefore only be used to in-
spect reduced, specific sub-networks. Other studies ap-
plied graphical approaches not scalable to large-scale
sequencing data [51-57], metrics not tailored to
scRNA-seq-specific features [51, 52, 54, 55, 57, 58], or
dynamic process-specific approaches [53, 54, 58, 59].
More recently, Aibar and colleagues developed the first
tool designed to infer transcription factors and their tar-
get genes from single-cell data [60]. However, this tool
ultimately seeks to infer one network for each cell, with
consequent applications in clustering and phenotyping
but not global regulatory networks.

In this work, we conceived an analytical framework for
inferring large-scale regulatory networks from single-cell
data. To confirm the viability of this approach, we gener-
ated a large and diverse repertoire of regulatory net-
works in healthy and diseased contexts. To support
network interpretation, we applied tools from graph the-
ory and validated this strategy thoroughly at multiple
levels. Importantly, we showed that regulatory networks
derived from single-cell data can be used to obtain novel
and biologically relevant insights into the molecular
architecture of complex systems and the pathophysi-
ology of diseases. This work represents an important
leap forward in the field of single-cell analysis for the
reasons described below.

First, we conducted the first large-scale analysis of glo-
bal regulatory networks using single cells. We processed
datasets from up to 8000 single cells into networks with
up to 60,000 edges and 7000 nodes, going far beyond
previous studies [7, 8]. Second, we conceived a metric
which consistently identified hidden correlations within
the single-cell dataset. The metric was specifically tai-
lored to single-cell data, diminishing the effect of data
sparsity, confounding factors, and other technical arti-
facts. Thereby, it removes main obstacle to processing
scRNA-seq data into regulatory networks. Third, we
studied the global and local properties of networks using
tools from graph theory, enabling a comprehensive
characterization. Fourth, we validated our results at
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multiple levels. Diversified technical benchmarks with
real and simulated datasets proved our method to be
artifact-free, robust, reproducible, accurate, and better
performing than imputation-based approaches. Fifth, we
validated inferred correlations between transcription reg-
ulators and target genes via experimental signatures of
perturbed biological systems. In line with previous evi-
dence, the inferred networks were scale-free [27-29].
The centrality of genes was also validated using external
experimental datasets of essential genes (OGEE data-
base), supporting their biological relevance. Further, we
validated the functionality of organ-specific central genes
in their respective tissue contexts (GO enrichment).
Lastly, we found that genes with altered centrality in
T2D and AD strongly overlap with previous known dis-
ease mechanisms. Sixth, we compared the results from
the regulatory network approach with those from con-
ventional DE analysis. Notably, we found that networks
repeatedly disclosed latent variation and features that
were invisible to standard analysis. Moreover, we showed
that gene centrality analysis was able to work in synergy
with differential expression analysis to provide an un-
biased, quantitative ranking of biological importance
from dysregulated genes. To our knowledge, this is a
unique strategy for deducing a data-driven biological
ranking without the need to incorporate external infor-
mation (e.g., GO or MSigDB) or personal knowledge.
Seventh, we have completed the first single-cell,
network-driven analysis of diseased samples. Here,
graph-based tools allowed us to enhance our under-
standing of their molecular pathology. Our results sug-
gest that different diseases might affect different gene
centralities, as observed in Alzheimer’s disease, which
primarily affected betweenness. This raises the possibility
of different measures of centrality being sensitive to dif-
ferent forms of pathophysiological alterations, i.e., regu-
latory alterations.

In general, given its integrated rather than classifying
use of single cells, we propose that the network ap-
proach is particularly well-suited for complex experi-
mental designs with multiple confounding factors. For
example, a case—control design with biased patient se-
lection (e.g., sex and age) will inevitably result in com-
position biases in single-cell dataset. Disentangling such
confounding from disease-related effects is a challenging
task without a straightforward solution. We showed that,
although greatly affecting DE analysis and clustering,
such biases do not impact on gene-to-gene correlations
and single-cell-derived gene regulatory networks.

In summary, we have shown that regulatory network
approaches can be applied to large-scale single-cell data-
sets and can be used to maximize the biologically rele-
vant information obtained. Testing consistency across
multiple networks will allow us to determine the
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completeness of the captured regulatory interactions,
and this should be the primary future task.

Methods

Inferring gene expression correlations and regulatory
networks from scRNA-seq data

Single-cell sequencing is characterized by a series of
technical limitations that generate artifacts, such as
drop-out events, irregular sequencing depth, and low li-
brary complexity. First, drop-out events represent
expressed genes that are undetected by scRNA-seq for
technical reasons, resulting in zero values in the expres-
sion count matrix. These events make single-cell data-
sets considerably sparser than bulk RNA-seq datasets.
Drop-out events are perhaps the most important factor
affecting the performance of correlation methods, such
as Spearman or Pearson, applied directly to expression
count data. Second, irregular sequencing depth is caused
by the uneven (non-normalized) loading of single-cell li-
braries into the sequencing reaction. Consequently, we
observe large fluctuations in sequencing depth between
cells, which can only partially be addressed by data
normalization. Third, single-cell data present a reduced
dynamic range of expression values, which is a further
challenge for the performance of correlation methods. In
fact, as it is not possible to entirely remove the effects of
read distribution biases, traditional correlation coeffi-
cients have suboptimal performance with this data type.
Since these technical artifacts concur to mask correla-
tions when using expression counts, we envisaged that a
change of variable would greatly improve the perform-
ance of the correlation methods, thereby allowing us to
infer the regulatory networks. To this end, we devised
the following steps:

1) Data pre-processing. Datasets were analyzed using
the bigSCale framework [13], which handles the
noise and sparsity of scRNA-seq data using an ac-
curate numerical model of noise. The framework
includes modules for differential expression analysis
and unsupervised cell clustering. All datasets were
processed using bigSCale under default parameters,
with the exception of parameters regulating the
granularity of clusters. BigSCale was set to the high-
est granularity (i.e., recursive clustering) in order to
produce the highest number of clusters, the ration-
ale being to segregate cell sub-types and subtle cell
states, so as to improve the resolution and quality
of inferred correlations.

2) Measuring correlations in the Z-score space. After
clustering the cells to the highest feasible
granularity, we used bigSCale to run an iterative
differential expression (DE) analysis between all
pairs of clusters. For x clusters, this results in a
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total of x x (x — 1)/2 unique comparisons, each
yielding a Z-score for each gene that indicates the
likelihood of an expression change between two
clusters. This allows us to compute correlations
between genes using Z-scores instead of expression
values. For correlation analysis, we used Pearson,
Spearman, and Cosine coefficients. We also tested
the mutual information to detect non-linear corre-
lations. However, in the Z-score space, this resulted
in an excessive number of false positives. Specific-
ally, mutual information repeatedly identified sig-
nificant dependencies for which one of the two
variables was linearly independent of the other
(slope = 0). Nevertheless, linear correlations in the
Z-score space can also reflect non-linear correla-
tions in the original expression space. Hence, we
chose to rely exclusively on a solid measure of lin-
ear correlation in the Z-score space via Pearson,
Spearman, and Cosine coefficients. The final correl-
ation for each pair of genes was computed as the
lowest (worst) between Pearson and Cosine (Spear-
man is used in a later stage as a further control).

3) Building a regulatory network. In the next step, we
retained significant correlations to define the edges
of the regulatory network. Notably, the distribution
of correlations is influenced by biological and
technical factors. For example, increased cell
numbers or sequencing depth results in a higher
number of significant correlations. Consequently, to
compare regulatory networks inferred from
different datasets, we must first adjust for technical
factors, for which we used an adaptive rather than
fixed correlation threshold. Specifically, the inferred
networks were built by retaining the top 0.1%
correlations. Using this relative correlation
threshold prevents technical factors from producing
artificial differences when comparing different
networks. Although relative thresholds could result
in the inclusion of non-significant correlations (e.g.,
p =0.4), we did not observe such events in any of
the inferred networks, with most adaptive thresh-
olds set between pyresh = 0.9 and pynresh = 0.99. The
lowest (worst) adaptive threshold was pyyesn = 0.84
for the AD network, which is still significant. Spear-
man correlation is used as a further control to dis-
card weak correlations. Specifically, final
correlations for which |pspearman| < |Pthresh — 0.15]
were considered null.

In a final step, the undirected network is polished to
retain only the edges that represent actual regulatory
links. To this end, we utilized GO annotations (version
24/03/2017) to extract putative regulators of transcrip-
tion (GO:0010468 “regulation of gene expression”). We
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discarded from the network edges representing pairs of
genes of which neither was annotated as “regulator of gene
expression,” as we considered these to be spurious
co-expression links. Alternatively, more specific GO terms
could be used for network polishing (e.g., GO:0006355
“regulation of transcription, DNA-templated” or GO:000370
“DNA-binding transcription factor activity”). However, we
opted for a broader term so as to include in our networks
all possible regulatory layers, including indirect signaling
events. We refer to this step as GO sub-setting.

Computing the Z-scores

Differential expression (DE) between clusters of cells
yields a Z-score over which correlations are computed.
DE is based on the methods previously described in [13]
with two main additions.

Briefly, we generate a numerical model of the noise af-
fecting a given single-cell dataset. Cells featuring highly
similar transcriptomes are considered as biological rep-
licas and are grouped together. Next, the expression vari-
ation within groups is used as an estimator of noise.
Eventually, a p value is assigned to each gene, representing
the likelihood of a change of expression from one bio-
logical replicate to another. This model is then generalized
to compute differentially expressed genes between any
given pair of cells. When identifying DE between two
groups (i.e., two clusters), each cell of one group is com-
pared to each of the cells of the other group, resulting in a
total of nl x n2 comparison, where 7 is the number of
cells of each group. For each gene, the nl xn2 logl0
transformed p values (derived from the probabilistic
model and signed to represent up- or downregulation) are
summed into a total raw score. Genes up/downregulated
in one group compared to the other will cumulate high
(positive or negative) total raw scores. The raw score is
next adjusted for the total number of comparison and for
the within-group variability, which is estimated by running
a DE analysis between randomly reshuffled cells in a way
that cells of the same group are compared.

The first modification is adding an independent test of
Z-scores using the Mann—Whitney U test/Wilcoxon
rank-sum test, which was shown to be very effective on
single-cell data, especially with high cell numbers [61].
For every gene, the Z-scores generated by the two tests
(numerical model and Wilcoxon) are eventually joined
in a final Z-score (the module of the two-dimensional
vector whose dimensions are the two Z-scores):

\/ Z2 o odel T Ziicoxon- This merging rewards reprodu-

cibility that is genes with high Z-scores in both methods
will have a higher final Z-score. The two tests work in
synergy, filling each other’s weaknesses. For example,
Wilcoxon Z-scores are bounded by the size of the
groups: small groups will yield limited Z-scores, no
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matter how strongly the genes are differentially
expressed. Z-scores computed with the numerical model
are not limited by group sizes. On the other end, Wil-
coxon is more accurate when the group sizes are large
(> 500-1000 cells).

Secondly, we modified the process in which the raw
score is adjusted for the total number of comparison.
The rationale for this adjustment is to take into account
that genes with sparser expression will produce smaller
scores compared to genes expressed in high frequency.
We changed from a log scale to a linear scale in the
number of comparisons, allowing a far better resolution
and sensitivity, especially in the range of the medium to
highly expressed genes.

Recursive clustering

The recursive clustering is the core process in our ap-
proach to identify and segregate the maximum possible
amount of biologically informative cell clusters (corre-
sponding to cells with a specific phenotype). The recur-
sive clustering is an evolution of the previous clustering
approach used in bigSCale [13], in which (1) all pairwise
cell distances were computed over a set of highly vari-
able genes (genes presenting a high degree of variation
across the dataset) and (2) based on these distances cells
were hierarchically clustered (Ward’s linkage).

Cutting the hierarchical tree very low (i.e., towards the
leaves) would generate many small clusters. However,
these clusters could lack biological relevance, because
they are all created from the same initial set of highly
variable genes, which is predominantly describing only
the major cell types and not the sub-types or subtle cell
states. For this reason, it is not suitable to cluster data-
sets beyond the levels of main clusters (i.e., cell types)
with just one set of highly variable genes. To solve this
issue, we devised a recursive clustering approach in
which each cluster is further re-clustered into sub-clus-
ters upon calculation of its specific set of highly variable
genes. This is recursively repeated (each output cluster
becomes the input for a further clustering) until there is
no more meaningful separation.

This recursive clustering is supported by an algorithm
performing, at each step, an unsupervised decision of the
optimal number of clusters. The algorithm is a variation
of the well-known elbow methods, modified to partition
the cells in few, major clusters and to avoid over-fragmen-
tation. We seek to avoid over-fragmentation to make the
safest possible use of the highly variable genes. Briefly, the
tree is cut at intervals of 10th quantiles (10th, 20th, ...
90th) and whenever an increase in the number of clusters
is detected twice in a row (from example, cutting at 30th
increases the number of clusters compared to 20th, and
cutting at 40th further increases compared to 30th) the
tree is cut at the level just before the clusters started to
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increase (in the previous example, 20th). This rule effect-
ively manages to automatically divide the cells into bio-
logically informative clusters.

Recursive clustering terminates when none of the ob-
tained clusters can be sub-clustered in a meaningful way.
Whether or not a cluster can be meaningfully sub-clus-
tered is decided upon two elements: (1) a fixed parameter
representing the lowest possible partition size (for ex-
ample, set to 50 cells for datasets with less than 5000 cells)
or (2) the hypothetical (unsupervised) cutting depth to
which the cluster would be sub-clustered. Thus, small
groups of cells can be further clustered only if they are
very heterogeneous. The unsupervised cutting depth is
used as a proxy for heterogeneity; the higher the cutting
depth (i.e., the more we cut the tree down to its leaves),
the more heterogeneity. If a given group of cells is hetero-
geneous enough with respect to its size (large groups of
cells are clustered anyway), then it is further clustered.

Confounding variables

Comparing healthy and type 2 diabetes (T2D) cells in
DE reveals an extremely high number of differentially
expressed genes. Specifically, 6716 genes are differen-
tially expressed with p <0.001. A portion of these DE
genes is likely caused by confounding factors (sex, age,
weight). For example, PPPICB is a gene expressed ap-
proximately 14 times higher in male than in female pa-
tients, irrespectively of the disease. The same gene
appears also upregulated in diabetes (p < 3.9e-80), sim-
ply because healthy cells have a larger amount of male
cells (healthy 80% male, T2D 48% male). Consistently,
the entire male signature (approximately 700 genes) is
upregulated in the diabetes dataset. Also, age and weight
and other unknown confounding variables generate fur-
ther biases in the same way. Disentangling confounding
effects from disease-related effects in single-cell patient
data is not straightforward. As for the present example,
the groups will inevitably present unbalanced compos-
ition, affecting DE analysis. In addition, gene-level vari-
ability (the mean and standard deviation) is very
different for DE genes affected by confounding factors.
Our GRN approach is stably inferring correlations, also
across unbalanced sample cohorts, as long as the con-
founding factors are present in both groups. The corre-
lations are stable, and only functional shifts within
expression values (change of phenotype) caused by an
internal rewiring of the regulatory network are detected.

Measuring node centrality

The centrality of a node (gene) is used to quantify its
importance in a network (in our case a gene regulatory
network). There are different metrics to measure node
centrality. Here, we used degree, betweenness, closeness,
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pagerank, and eigenvalue. All these centralities were cal-
culated with the package igraph 1.2.2.

Degree is the most basic measure of centrality: it is
measured as the number of edges afferent to a given
node. Our inferred networks are undirected; therefore,
we do not distinguish between in-degree (incoming
edges) and out-degree (outgoing edges). Betweenness is a
centrality based on shortest paths. It is calculated by
enumerating all shortest paths of a network and by
quantifying the number of times each node falls in a
shortest path. Genes with high betweenness act as brid-
ges in the signaling cascades of the network. More spe-
cifically, given that all our inferred networks showed a
modular structure (Table 1), it is likely that genes with
high betweenness serve as bridges between different
modules of the network. Closeness centrality measures
the mean distance from a node to all other nodes (by
using shortest paths) of a network. Genes with high
closeness are located in a middle, central position in the
network and have therefore quick access to influence or
detect the expression of any other gene. Both between-
ness and closeness scale with the size of the network. In
this manuscript, we always used their normalized values
to avoid biases based on the network size. Pagerank cen-
trality results from a random walk of the network. In
simple terms, this centrality is proportional to the aver-
age time spent at a given node during all random walks.
If we consider the genes as the aliases of the web pages
for which pagerank was initially conceived, then genes
with high pagerank can be seen as “popular” genes.
Eigenvalue centrality uses the eigenvector corresponding
to the largest eigenvalue of the graph adjacency matrix.
Pagerank and eigenvalue are very similar. In fact, pager-
ank is a variation of an eigenvector-based problem. Both
pagerank and eigenvalue centralities exploit the notion
that not all edges are equal. In particular, edges coming
from nodes with higher degree are more important than
edges coming from nodes with low degree. One of the
main differences between pagerank and eigenvalue is
that the first includes an additional term, called damping
factor, which simulates the behavior of an imaginary
web-surfer who will not continue clicking indefinitely,
but he/she would rather continue clicking with a certain
probability. This probability is represented by the damp-
ing factor (typically 0.85).

Network densities and GO sub-setting
The large changes observed in the network densities
(Table 1) seem to be in contrast with the functioning of
our adaptive correlation. In fact, the adaptive correlation
threshold initially assigns the same (relative) amount of
edges, hence density, to each network.

In the next steps, the networks are first cleaned by re-
moving isolated nodes (those with zero neighbors) and
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isolated components (sub-networks disconnected from
the main one and smaller than 1% of total network size),
which leads to a decrease in density depending on the
network structure. However, the subsequent GO
sub-setting is probably the major driver in the reduction
of network density. GO sub-setting removes all the
edges not linking to at least one “regulator of transcrip-
tion.” In turn, GO sub-setting triggers a second passage
of edge removal, in which the nodes and components
becoming isolated after GO sub-setting are removed.

GO sub-setting creates larger losses of density when
genes, which are not “regulators of transcription,” ini-
tially attracted a large number of correlations. Consider-
ing that the abundance of “regulators of transcription” is
stable across networks (Table 1), it means that having
more or less correlations driven by non-regulators of
transcription is a functional, biological feature of the tis-
sue. Tissues with signaling cascades reaching the regula-
tor of transcription after passing through multiple other
genes are more likely to end up with lower network
density. This is because the GO sub-setting aims to re-
move all intermediate actors that are not directly in-
volved in the regulation of transcription.

Validation of network edges with external datasets

Our inferred regulatory links represent putative events
of the transcriptional regulation on target gene(s). We
chose to also include indirect regulation events that do
not imply the direct binding of a transcription factor to
the promoter of the target gene(s). By filtering the edges
using the broad GO term “regulators of transcription,”
we included all possible regulatory layers, including tran-
scription co-factors, epigenetic mechanisms, regulation
of RNA stability/degradation, and signaling cascades.
Consequently, neighboring genes (genes connected by
an edge) are likely to belong to a common pathway and
should be similarly affected when the system is per-
turbed. MSigDB contains an extensive collection of ex-
perimental signatures associated with perturbation of
biological systems, which we used to independently val-
idate each edge in our networks.

Specifically, we used collections C4 (computational gene
sets), C6 (oncogenic gene sets), and C7 (immunologic
gene sets) all of which defined form experimental data.

To detect significant enrichment of co-occurrences,
we applied Fisher’s exact test. Edges with significant p
values imply that the related genes are activated/deacti-
vated together in experimentally perturbed systems sig-
nificantly more often than expected by chance.

The distribution of edge-wise fold enrichment (i.e.,
how often the edges translate into co-occurrences in
MSigDB signatures) was biased towards positive values
for all mouse organs tested, indicating an overall simul-
taneous modulation of neighboring genes (Fig. 3e, f).
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Co-regulation was further supported by significant p
values (e.g., Fig. 3g, Additional file 1: Figure S3a), espe-
cially when considering edges with higher numbers of as-
sociated MSigDB signatures (small gene sets are less likely
to yield significant p values in the Fisher exact test). Not-
ably, we inferred organ-specific regulations, whereas the
MSigDB signatures are collected from a highly heteroge-
neous set of biological sources. Inevitably, some of our
organ-specific regulatory links will be not backed-up by
MSigDB signatures, which explains why we could not val-
idate not all individual edges in our networks.

For all the GO (version 24/03/2017) and MSigDB (ver-
sion v6.0) enrichment analyses, we used hypergeometric
distribution with Bonferroni correction.

Validation of network hubs with gene essentiality

To elucidate whether the hubs in our networks repre-
sent essential regulatory factors, we took advantage of
the Online GEne Essentiality (OGEE) database. This
database provides an unbiased, comprehensive catalogue
of the essentiality of experimentally tested genes across
species. In this setting, we used the Mus musculus data-
set (available at http://ogee.medgenius.info/browse/
Mus%20musculus), which lists the essentiality status for
9402 mouse genes. To quantify the essentiality of each
set of hubs, we computed an essentiality score (ES), as:

NEbackground

where Epgs and NEj.,s are the number of essential
and non-essential hubs, and Ep,ciground and NEpackground
are the number of essential and non-essential genes in
the OGEE dataset, respectively.

To assess the significance of each ES, we computed
the empirical probability of finding a score of the same
magnitude by chance. Specifically, given a set with N
hubs, we sampled N random genes from the OGEE data-
set and calculated the ES. We repeated this process
10,000 times, and from the resulting distribution, we
used the one-tailed p value as the proportion of random
ES that are equal to or greater than the observed ES.
After calculating one p value for each ES, we corrected
for multiple testing by applying a Benjamini—Hochberg
correction to the vector of p values.

Detection of changes in centralities

We evaluated two different approaches for ranking
nodes according to their change in centrality. The first
approach identifies the highest absolute change in cen-
trality, where for each node is defined as the difference
in its centrality between networks A () and B (). Next,
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we selected the 1000 nodes with the greatest change in
centrality (either positive or negative). The change in
centrality was then integrated with the p values of the
DE analysis (bigSCale, standard parameters) to identify
genes undetected by DE (Additional file 1: Figure S8a).
In an alternative approach to identify relative changes in
centrality, we searched for dispersed nodes lying outside
the proportional relationship between ¢, and ¢;,. We per-
formed non-linear fitting (smoothing spline) to derive a
confidence interval of the dispersion. Nodes that showed
overdispersion at p < 0.05 were defined as having altered
centrality (Additional file 1: Figure S8b). Ultimately, we
did not use this analysis in the manuscript, opting for
the absolute change only (first approach). This is be-
cause relative changes in centrality, as measured by over-
dispersion, were biased towards small changes in
centrality, which were important at a relative level, but
irrelevant at the absolute level.

Organ-specific genes
The specificity of the genes in the network was quanti-
fied using their connectivity and expression. For the
former, nodes were considered as specific if they were
ranked in the top 20% of a given centrality measure ex-
clusively in a particular organ. The putative function of
each set of organ-specific nodes was assessed by GO en-
richment analysis using the GOstats package [62].
Alternatively, the expression multiplicity of each gene in
the network (the number of organs in which it is exclusively
expressed) was computed as described in [6]. Briefly, we
calculated a modified Z-score for each gene in each net-
work, in which the difference between the mean expression
of a gene in a specific organ and its median expression
across organs is divided by the interquartile range (IQR) of
its expression across organs. The multiplicity is obtained by
counting how many organs have a Z-score>2, and
organ-specific genes are those with a multiplicity = 1.
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S2. Single-cell gene regulatory networks are scale-free. Figure S3. Valid-
ation of inferred networks and analysis of multiplicity. Figure S4. Rela-
tionship between degree and other centralities. Figure S5. The central
genes of different metrics show marginal overlap. Figure S6. Relationship
between gene centrality and biological essentiality. Figure S7. Monotone
behavior of healthy and diseased pancreatic tissue. Figure S8. Detection
of genes showing changes in centrality. (PDF 1880 kb)

Additional file 2: MSigDB enrichments for gene sets with altered
centrality. (XLSX 14300 kb)
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