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Abstract

Background: The mutational processes underlying non-coding cancer mutations and their biological significance
in tumor evolution are poorly understood. To get better insights into the biological mechanisms of mutational
processes in breast cancer, we integrate whole-genome level somatic mutations from breast cancer patients with
chromatin states and transcription factor binding events.

Results: We discover that a large fraction of non-coding somatic mutations in estrogen receptor (ER)-positive breast
cancers are confined to ER binding sites. Notably, the highly mutated estrogen receptor binding sites are associated with
more frequent chromatin loop contacts and the associated distal genes are expressed at higher level. To elucidate the
functional significance of these non-coding mutations, we focus on two of the recurrently mutated estrogen receptor
binding sites. Our bioinformatics and biochemical analysis suggest loss of DNA-protein interactions due to the recurrent
mutations. Through CRISPR interference, we find that the recurrently mutated regulatory element at the LRRC3C-GSDMA
locus impacts the expression of multiple distal genes. Using a CRISPR base editor, we show that the recurrent C→T
conversion at the ZNF143 locus results in decreased TF binding, increased chromatin loop formation, and increased
expression of multiple distal genes. This single point mutation mediates reduced response to estradiol-induced cell
proliferation but increased resistance to tamoxifen-induced growth inhibition.

Conclusions: Our data suggest that ER binding is associated with localized accumulation of somatic mutations, some of
which affect chromatin architecture, distal gene expression, and cellular phenotypes in ER-positive breast cancer.

Introduction
Somatic mutations are the driving force for cancer cell
evolution [1]. Large-scale efforts, including The Cancer
Genome Atlas (TCGA) [2] and International Cancer
Genome Consortium (ICGC) [3], have mapped somatic
mutations genome-wide in multiple cancer types. Be-
yond the protein-coding component of the genome,
these whole-genome sequencing (WGS) efforts revealed
that somatic mutation burden largely resides within
non-coding genomic regions [4–8]. Since identification
of the highly recurrent TERT promoter mutations, which

occur in 50 of 70 (71%) melanomas examined at that
time [9, 10], recurrent non-coding mutations have been
discovered in promoters of PLEKHS1, WDR74, and
SDHD in a pan-cancer analysis of 863 human tumors
[5]. With more WGS data available for any given tumor
type, more recurrent somatic mutations have been deter-
mined in the non-coding regions of specific cancers. For
example, the promoters of protein-coding genes
PLEKHS1, WDR74, and TBC1D12 as well as long inter-
genic non-coding RNAs (lincRNA) MALAT1 and
NEAT1 are recurrently mutated in breast cancer [4, 11].
Although technical advances in sequencing technologies

and analytical pipelines empower us to better detect somatic
mutations, our understanding of their origins and functional
consequences are far from complete. Unlike the driver muta-
tions inherited from the germ line, a variety of mutational
processes may lead to distinct patterns of cancer
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type-specific somatic mutation accumulation during the life-
time of cancer patients [12, 13]. Causes of mutations such as
mutagen exposures, aberrant DNA editing, and replication
errors are known to uniformly affect the genome [14]. On
the other hand, for cancers driven by external mutagens such
as tobacco smoking in lung cancer and UV radiation in mel-
anomas, differential chromatin accessibility and recruitment
of nucleotide excision repair (NER) machineries have been
proposed as major contributors for regional variation of mu-
tation rate [15–17]. However, for most other cancers, the
underlying mutational processes are not known. In this
study, we examined whole-genome somatic mutations in
560 breast cancers in order to understand the biological pro-
cesses and the regulatory impacts of recurrent non-coding
mutations in breast cancer.
Breast cancer is the number one cause of cancer-related

deaths in women [18, 19]. At the molecular level, it is
mostly driven by aberrant hormonal activity of estrogens
and estrogen receptor (ER). Estradiol (E2, 17β-estradiol),
which is a natural hormone ligand for ERα, is essential for
normal development and function of mammary tissue
[20]. Paradoxically, a persistently elevated blood level of
estrogen is causally linked to increased breast cancer inci-
dence [21, 22]. Although how estrogen causes malignant
mammary development is unclear, we hypothesized that
there might be a mechanistic link between ER, the major
transcription factor (TF) mediating estrogen response in
breast cancer, and localized non-coding mutational load in
the ER-positive breast cancer genome.
To test the hypothesis, we integrated whole-genome breast

cancer sequencing data from 560 primary tumors (referred to
as BRCA-EU) [4] with ChIP-seq identified ER binding events
obtained from > 20 primary as well as metastatic ER-positive
breast tumors (referred to as ER ChIP-seq) [23]. The integra-
tive analysis shows a disproportionately large amount of som-
atic mutations at ER binding sites (ERBS). Importantly, we
find that the highly mutated sites make more frequent chro-
matin loops and their target genes are expressed at higher
levels. We also identified multiple uncharacterized recurrent
(existing in more than one patient) non-coding mutations at
ERBS. By utilizing the CRISPR interference and CRISPR base
editing approaches, we interrogated the functional roles of
two of these recurrent non-coding mutations in breast cancer
cells. Bioinformatics, biochemical, and functional interference
results at the chromatin as well as genetic levels suggest that
these non-coding mutations alter expression of multiple distal
genes through changes in non-ER TF binding and 3D DNA
topology, and differentially modulate the cellular response to
estradiol-induced cell proliferation and tamoxifen-induced
growth inhibition.

Results
To assess the relationship between ER binding activity
and somatic mutation accumulation in breast cancer, we

investigated whether there is increased mutational fre-
quency at ERBS. We, therefore, acquired ER DNA bind-
ing profiles from Ross-Innes et al. (ER ChIP-seq) [23] for
eight good-outcome ER+, progesterone receptor (PR)+,
and HER2−, seven poor-outcome (ER+ PR− HER2− or
ER+ PR+ HER2+) primary breast tumors, and three ER+

distal metastatic tumors from women with breast cancer.
The original ER ChIP-seq study also included two breast
cancer samples that were ER− (ERα-negative), but
expressed high transcript levels of ERβ as a control for
ERα-specific binding events. By aggregating the ERBS
identified by the two methods described in the original
ER ChIP-seq study (MACS [24] and SWEMBL), we de-
termined 253,908 ERBS in total for the 21 samples (in-
cluding separate sections from the same tumor) [23]. To
ensure the generalizability of this study, we used ERBS
detected in at least two independent patients (N =
67,267), except for the particular analysis on ERBS
shared by different numbers of patients. For the muta-
tion data, we leveraged genome-wide somatic mutations
identified through whole-genome sequencing of 560 ER+

HER2− normal-matched breast tumors (BRCA-EU) [4].
Simple somatic mutations including 3,430,287 single
base substitutions, 255,203 deletions, and 92,372 inser-
tions of ≤ 200 bp were used in this study. Multiple base
substitutions were not incorporated because of its
limited number (N = 2680). With these two high-
throughput genome-wide data sets from primary breast
tumors (BRCA-EU and ER ChIP-seq), we aimed to de-
cipher the in vivo mutational landscape underlying this
lineage specifying TF-ER and identify the regulatory im-
pact of non-coding somatic mutations associated with
breast cancer.
Since chromatin organization is a major contributor to

mutation rates in the genome [25], we also included glo-
bal chromatin accessibility data as measured by
high-throughput sequencing of DNase I hypersensitive
sites (DNase-seq) in MCF-7 breast cancer cells, which
are ER-positive. To differentially investigate the mutation
rates at ER-specific binding sites versus globally access-
ible DNase I hypersensitive sites (DHS), we divided all
the identified DHS in terms of their overlap with the ER
ChIP-seq peaks. We also selected an equal number of
DHS that do not overlap with ER or other ENCODE-
mapped TF binding sites. We then calculated the muta-
tion rates at ± 1 kb around the center of the DHS sites.
Notably, in these three sets of genomic regions with
comparable DNase-seq signal intensity, we observed the
highest rate of somatic mutations in DHS overlapping
with ERBS (fold change [FC] = 1.24, chi-square test P =
1.81 × 10−233; Fig. 1a). This elevated mutation rate could
not be explained by the expected mutation rate of the
corresponding tri-nucleotide sequence context [13]. We
also observed substantial mutation burden at DHS
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without ER binding but bound by other ENCODE-
mapped TFs (FC = 1.11, chi-square test P = 2.16 × 10−55;
Fig. 1a). This enrichment was significantly lower than
the DHS sites with ER binding (two-sided ks test P =
1.82 × 10−10), suggesting that, to a lesser extent, add-
itional TFs may also contribute to the localized mutation
burden. The DHS without ER and any ENCODE-
mapped TF binding had the lowest mutation burden
(FC = 1.09, chi-square test P = 4.68 × 10−36; Fig. 1a).

These results suggest that TF binding in general, par-
ticularly ER binding, is strongly associated with in-
creased somatic mutation burden in breast cancer
beyond the effect of open chromatin states.
Next, we investigated if ER binding intensity is differ-

entially associated with somatic mutation rates. We sep-
arated ERBS into quartiles based on the binding
intensity in ER ChIP-seq. We found that there are sub-
stantially more somatic mutations at sites with stronger

a

c

b

Fig. 1 ER binding is associated with increased somatic mutation rates in breast cancer. Heatmaps show DNase I sequencing read intensity as a measure of
DNase hypersensitivity in MCF-7 cells (ENCODE) and ER ChIP-seq read intensity in 21 ER+ breast cancer samples profiled by Ross-Innes et al. [23]. Observed
somatic mutation rates (red line) for 560 ER+ breast cancer patients (ICGC BRCA-EU) [4] were calculated for sites with different ER binding and DNase
hypersensitivity intensity. Expected mutation rates (black line) were calculated based on tri-nucleotide compositions of corresponding genomic sequences
using previously established method [15]. Fold changes (blue bar) are comparing the observed mutation rates within 200 bp of ER binding or DHS peaks
with the rates in flanking regions (> 200 bp and ≤ 1 kb); corresponding P values (orange bar) were obtained using chi-square test followed by Benjamini-
Hochberg adjustment. a The observed and expected mutation rates were calculated for three sets of DHS sites with comparable intensity: the sites that
overlapped with ER ChIP-seq peaks (DHS w/ ERBS), the sites that overlapped with other ENCODE identified TF but not ER binding sites (DHS w/o ERBS)
and finally DHS with no TF binding sites (DHS w/o TF BS). b The observed and expected somatic mutation rates for four quartiles of ER binding sites with
increasing ER binding intensity are shown. c The observed and expected somatic mutation rates at ERBS shared by more than 3 patients, 2 patients, and
patient-specific are shown. Fold changes and P values are shown for each set of ERBS as described above
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ER binding (FC = 1.19, chi-square test P = 9.26 × 10−73)
and a positive correlation (Pearson correlation coeffi-
cient = 0.9) between ER binding intensity and the som-
atic mutation rate (Fig. 1b). In line with this, the
genomic regions that are constitutively bound by ER
(from ER ChIP-Seq data) across different patients have
significantly higher mutation rates, suggesting that more
commonly used ERBS contain more somatic mutations
(FC = 1.23, chi-square test P = 5.60 × 10−176, Fig. 1c). In
contrast, the patient-specific ERBS have near
background-level mutation rates (Fig. 1c). Notably, since
commonly used ERBS tend to be the high-intensity ones
[23], the above noted observation remains significant
(Wald test P = 1.11 × 10−8) even after controlling for
ERBS binding intensity using a negative binomial gener-
alized linear regression model (Additional file 1: Figure
S1). Thus, both ER binding intensity and frequency
among independent patients are associated with
increased somatic mutation burden (Additional files 2
and 3). The ERBS located in promoter, intronic, or inter-
genic regions contain comparable levels of mutations
(Additional file 1: Figure S2). Interestingly, when we ana-
lyzed the insertions and deletions (≤ 200 bp) at ERBS,
we observed negative association between ER binding
activity and the rate of insertions/deletions, suggesting a
potentially protective effect (Additional file 1: Figure S3).
When we separated all the single nucleotide mutations
into the six possible nucleotide changes, we observed
significant enrichment for C>G and C>T mutations at
ERBS, which is indicative of an APOBEC mutational sig-
nature, consistent with the genome-wide trend reported
by Nik-Zainal et al. [4], Morganella et al. [26], and Peri-
yasamy et al. [27] (Additional file 1: Figure S4).
These data support our hypothesis that the binding ac-

tivity of ER is associated with increased somatic muta-
tion rates. Next, we studied whether the mutated ERBS
are differentially associated with transcription and chro-
matin organization. We therefore integrated ER binding
and mutation data with gene expression and 3D chro-
matin organization assayed by RNA pol II Chromatin
Interaction Analysis by Paired-End Tag Sequencing
(ChIA-PET) [28] and Hi-C mediated topologically asso-
ciating domains (TADs) in MCF-7 cells [29]. Notably,
the highly mutated ERBS make more frequent chromatin
interactions (corrected for ER binding intensity; Fig. 2a,
Additional file 1: Figure S5). More importantly, we ob-
served that genes topologically associated with highly
mutated ERBS (within the same TAD and forms a
ChIA-PET loop) are expressed at significantly higher
levels (two-sided t test P = 7.46 × 10−4 for ERBS with 3–
16 mutations, Fig. 2b). Critically, when the same analysis
is performed based on 2D-linear proximity, the genes
proximal to the same sites (within 50 kb) are not
expressed significantly higher (Fig. 2b). These results

indicate that highly mutated ERBS are involved in regu-
lation of multiple target genes [30] through long-range
chromatin interactions and support the concept of “tran-
scription factories” [31].
We next investigated whether ERBS that are associated

with good-outcome or poor-outcome and metastatic
breast tumors have differential mutation burden. Using
the pre-defined ERBS from Ross-Innes et al. (ER ChIP-
seq) [23], we found that the poor outcome/metastasis-spe-
cific ERBS (poor/met ERBS) were significantly more mu-
tated than both the good outcome-specific ERBS (good
ERBS; two-sided t test P < 2.2 × 10−16) and the constitu-
tively bound common ERBS (core ERBS; two-sided t test
P = 2.30 × 10−3; Fig. 2c). A negative binomial linear regres-
sion model confirmed the higher mutation rate at poor/
met ERBS (Wald test P = 2.57 × 10−3) after correcting for
ER binding intensity and number of chromatin interac-
tions at ERBS (Additional file 1: Figure S6a). This model
suggests that the number of mutations at ERBS is inde-
pendently associated with patients’ clinical outcome. Inter-
estingly, utilizing the sequencing reads from the ER
ChIP-seq data, we identified multiple potential somatic
mutations at the ERBS (Additional file 1: Figure S6b,
Additional file 2). Notably, consistent with our observa-
tions using the BRCA-EU WGS data, we observed a higher
percentage of mutations at poor ERBS in samples with
poor outcome/metastasis (Additional file 1: Figure S6b).
The vast majority of ERBS (98% in this study; Add-

itional file 1: Figure S2) are within non-coding regulatory
DNA elements [23]. Thus, a large fraction of the somatic
mutations that we identified at ERBS do not alter coding
sequences. Among the most highly mutated ERBS, only
three overlap with coding regions, which correspond to
three driver genes (FOXA1, CBFB, and CDH1) reported
previously (Fig. 2d) [4]. The next critical challenge is to
characterize the regulatory impact of non-coding muta-
tions. We focused our efforts on recurrent non-coding
mutations at ERBS that are detected in at least two inde-
pendent patients. We reasoned that such mutations
might have higher regulatory impact due to their select-
ive advantage in tumor evolution. The top recurrent
non-coding somatic mutations were functionally charac-
terized (Fig. 2d).
In an intergenic locus between the LRRC3C and

GSDMA genes, the two recurrent mutations are only
two base pair away from each other (Fig. 3a). We de-
tected the C→G conversion in five BRCA-EU patients
whereas the G→C mutations in six patients; of these pa-
tients with the mutant alleles, two patients carry both
mutations. To study the potential regulatory function of
these mutations, we performed bioinformatics analysis
to see the probabilities of which TF motifs are changed
the most in the presence of these mutations. The
analysis results suggest that the probabilities of
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MYC-associated factor X (MAX) motif is decreased the
most by the C→G mutation whereas the G→C mutation
is more likely to create novel TF motifs (Fig. 3b). Inter-
estingly, the in vitro electrophoretic mobility shift assay
(EMSA), which measures the biochemical affinity of pro-
teins in cellular extract to a given oligonucleotide se-
quence, shows that the C→G mutation alone was
responsible for most of the diminished protein binding
affinity, while the G→C mutation had minimal effect, in-
dicating that the C→G recurrent mutation is likely dis-
rupting TF binding activity (Fig. 3c). Notably, ENCODE
ChIP-seq data shows that MAX is among the TFs that
strongly bind to this locus (Fig. 3a) [28]. Our computa-
tional and biochemical results led to the hypothesis that
the recurrent C→G mutation disrupts TF-DNA inter-
action at this site. To further study the potential gene
targets and the functional role of the mutation in an in

vitro setting, we utilized the CRISPR interference assay
by targeting catalytically inactive dCas9 to the recurrent
mutation site in MCF-7 cells, which are wild type for the
mutations. Previously, through ChIP-seq analysis, we
showed that dCas9 strongly associates with DNA and
occupies an ~ 150 bp genomic region [32]. We designed
four separate sgRNAs: a non-genome targeting control,
another control that targets a 4-kb distal non-regulatory
genomic site, and two separate sgRNAs with slightly
overlapping guiding sequences that target the mutation
site. Upon targeting dCas9 with these sgRNAs, we mea-
sured transcriptional alterations in all genes within cer-
tain spatial proximity as well as genes that are
topologically associated with the mutation site. It is
worth noting that we only observed significant reduction
in the mRNA levels of the ORMDL3 and PSMD3 genes,
which are topologically associated with the mutation site

a

c
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Fig. 2 Frequently mutated ERBS are associated with more chromatin loops and higher gene expression. Boxplots presented in this figure illustrate the
lower quartile (Q1) and higher quartile (Q3) as the box, median as the line inside the box, and 1.5 × interquartile range (IQR =Q3 - Q1) as the whiskers. a
Boxplot depicts corrected long-range chromatin contact frequency from Pol2 ChIA-PET data in MCF-7 cells, for ERBS with different numbers of somatic
mutations in BRCA-EU. The contact frequency was corrected using a negative binomial linear regression model to remove the effect of ER binding
intensity (Additional file 1: Figure S5). Gray dash line indicates the average corrected contact frequency for all ERBS. b Boxplot represents expression levels
of genes that are topologically associated (within the same TAD and associated with ERBS via ChIA-PET loop) or linearly associated (50 kb distance) with
ERBS. ERBS were grouped according to the number of mutations within 200 bps of its summit (same as in panel a). c Mean number of somatic mutations
is plotted for ERBS that are associated with good outcome, poor outcome/metastasis and shared by at least 75% of breast cancer patients (core ERBS) [23].
The average mutation number was calculated based on random sampling of 100 ERBS from each group for 50 times. P values are calculated using two-
sided Student’s t test. d Bar plot shows the number of BRCA-EU patients carrying mutations at the ERBS, which contained the most number of somatic
mutations within 200 bps of the summit (except for FOXA1, somatic mutations ~ 100 bps beyond the 200-bp limit were included due to its recurrence)
across all the patients. Asterisk indicates if there are recurrent mutations (existing in at least two BRCA-EU patients). Gene symbols for the ERBS within
coding regions are shown inside the bars. The two ERBS that are characterized in this study are in bold font
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based on both Pol II and CTCF ChIA-PET data (Fig. 3a,
d). The two immediate proximal genes instead, LRRC3C
and GSDMA, neither interact with the mutation site nor
expressed at detectable levels in either the MCF-7 breast
cancer cell line (Fig. 3a) or primary breast tumors
(TCGA) [33]. Variants of ORMDL3 (ORMDL Sphingo-
lipid Biosynthesis Regulator 3) were expressed in differ-
ent breast cancer cell lines [34]. Although the functional
relevance of ORMDL3 to breast cancer has not been re-
ported, it has been shown to be differentially expressed
in ER+ tumors [34]. PSMD3 (proteasome 26S subunit,
non-ATPase 3), encoding a member of the proteasome
subunit, may participate in numerous cellular processes,

including cell cycle progression, apoptosis, or DNA
damage repair. Silencing of PSMD3 has been shown to
have an additive inhibition of cell viability as well as in-
duced apoptosis in HER2+ breast cancer cells [35]. How-
ever, its functional role in HER2− cells is not
characterized.
The second highly mutated ERBS we investigated is

within the promoter of ZNF143, with the recurrent mu-
tation (C→T) present in five independent patients
(Fig. 4a). Our motif analysis indicated that this mutation
significantly disrupts the binding of ZBTB7A (Fig. 4b).
In line with this, the EMSA results suggested significant
reduction of protein binding affinity to the mutant oligos

a b

dc

Fig. 3 A recurrent intergenic somatic mutation disrupts TF binding and decreases expression of distal genes. a Genomic region of two recurrent
somatic mutations and their neighboring genes is shown. Inset shows the number of BRCA-EU patients with mutations in the intergenic locus
between the LRRC3C and GSDMA genes. Nucleotide changes for the two recurrent mutations and the relative position of the ER peak (gray shadow)
are shown. Relevant tracks (ENCODE) and positions of the sgRNAs used in panel d are also displayed. b Motif scores were calculated with and without
each mutation using the PWMEnrich package [57], which performs DNA motif enrichment analysis against databases such as MotifDb. Motif score
ratios were displayed as blue and red bars representing higher motif scores with and without the mutation, respectively. Downward black arrows
indicate the mutation position within each motif. c EMSA results demonstrate protein binding affinity for WT and mutant oligonucleotides (oligos)
with either double or single mutations. The three lanes for each case are biotin-labeled oligos only, biotin-labeled oligos plus nuclear extract, and
biotin-labeled oligos plus nuclear extract and competitor probes from left to right. Competitor probes are unlabeled oligos to examine DNA-protein
binding specificity. Non-specific interactions are labeled as “n.s.”. d Neighboring gene expression levels were assessed by qRT-PCR in MCF-7 cells with
CRISPR-dCas9-based interference of control and the mutation sites. All the P values were calculated with two-sided Student’s t test. ***P < 0.001. Error
bars represent standard deviations from six biological replicates
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Fig. 4 (See legend on next page.)
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(Fig. 4c). ZBTB7A ChIP-seq data is not available in
breast cancer cell lines. However, although TF binding is
context and cell line-specific, the publicly available data
for K562 leukemia and Ishikawa endometrial cancer cells
show strong ZBTB7A binding to this site (Fig. 4a) [28].
To more comprehensively characterize the regulatory
function of this mutation, we used the CRISPR base edi-
tor technology [36] to engineer the exact mutation in
breast cancer cells. The CRISPR base editor (BE3) is
exploiting cytidine deaminase activity of the APOBEC
enzyme, which is fused to a nickase Cas9 and results in
a direct C→T conversion at the target site without DNA
double-strand breaks. We recently used the CRISPR
base editor to introduce early STOP codons as a safer
approach to induce gene silencing [37]. To create min-
imal experimental artifacts, we transiently transfected
the BE3 complex with an sgRNA targeting the mutation
site to introduce the C→T mutation in MCF-7 cells,
which contain the wild-type allele (Fig. 4d). Since we
aimed to identify clones with a single point mutation, we
devised a qPCR screening approach where a C→T con-
version results in ~ 2 ΔCt difference in qPCR signals
(Additional file 1: Figure S7). Using this strategy, we
screened the genomic DNA isolated from ~ 400 single
cell expanded colonies and identified multiple clones
with one copy of the mutant T allele at the desired pos-
ition (Fig. 4d, e). Then, we examined whether ZBTB7A
binding is altered as predicted by the computational
motif analysis and EMSA results. Critically, our
ChIP-qPCR analysis shows that the ZBTB7A enrichment
is reduced approximately eightfold in the mutant cells
compared to WT MCF-7 cells (one-sided t test P =
0.006; Fig. 4f ). Analysis in an independent mutant clone

showed comparable reduction in ZBTB7A enrichment
at the target site (Additional file 1: Figure S8). ZBTB7A
binding is 125 bps upstream of ER binding summit in
ER ChIP-seq. How its decreased binding affects ER bind-
ing is unknown. ZBTB7A is a member of the POK
(POZ/BTB and Krüppel) transcription repressors [38,
39]. We therefore checked with qRT-PCR to see if the
expression of proximal and topologically associated
genes is altered. Notably, the expression of three genes
(TMEM41B, IPO7 and WEE1) was significantly in-
creased (two-sided t test P = 8.87 × 10−3 for TMEM41B,
P = 0.03 for IPO7, P = 0.04 for WEE1) in two independ-
ent mutant clones compared to clonal wild-type MCF-7
cells (Fig. 4g). Since these genes are topologically associ-
ated with the mutation site (Fig. 4a), we next investi-
gated whether the mutation not only disrupts TF
binding, but also alters the 3D DNA topology of the
locus. As expected, we observed a higher frequency of loop
formation between the mutation site and the target genes in
the mutant MCF-7 clones as assessed by the 3C (Chromo-
some Conformation Capture) approach (Fig. 4h) [40].
Initially, we anticipated this recurrent mutation to

confer a proliferative advantage on MCF-7 cells. Con-
trary to our expectation, we did not observe increased
cell proliferation in the mutant clones. However, we no-
ticed that these mutant cells are less responsive to
estradiol-mediated cell proliferation. This result led to
the hypothesis that the mutation is contributing to hor-
mone independent growth, which is a characteristic of
late-stage breast cancer. We therefore investigated to see
if the mutation renders cells partially resistant to tam-
oxifen. Notably, we observed significant resistance to
tamoxifen-induced growth inhibition in the mutant cells

(See figure on previous page.)
Fig. 4 A recurrent non-coding somatic mutation at the ZNF143 locus affects TF binding, 3D chromatin architecture and expression of multiple
distal genes. a Genomic region of the recurrent mutation at the ZNF143 promoter and the neighboring genes is shown. Inset shows the number
of BRCA-EU patients with mutations around the ZNF143 promoter. The sequence flanking the C to T mutation and the relative position of the ER
peak (gray shadow) to the mutations are shown. Relevant ENCODE sequencing tracks are also displayed. b Motif score ratios were calculated
between genomic sequences with and without the mutation. Blue bars indicate higher motif scores with the mutation, thus motif created; red
bars represent higher motif scores without the mutation, thus motif disrupted. Downward black arrows indicate the mutation position within
each motif. c EMSA results demonstrate protein binding affinity for WT and mutant (with the C>T mutation; Mut) oligonucleotides. The three
lanes for each case are biotin-labeled oligos only, biotin-labeled oligos plus nuclear extract, and biotin-labeled oligos plus nuclear extract and
competitor probes from left to right. Competitor probes are unlabeled oligos to examine DNA-protein binding specificity. Non-specific
interactions are labeled as “n.s.”. d Schematic representation of the CRISPR base editor approach to introduce the C to T mutation into MCF-7
cells. qPCR was utilized to screen genomes of more than 400 single cell colonies to detect the specific mutation. e Sanger sequencing results
show the genomic sequences at and around the mutation site in WT and two mutant (Mut) MCF-7 clones. f ChIP-qPCR analysis shows ZBTB7A
enrichment at the mutation site in MCF-7 WT cells and a mutant clone. Error bars represent standard errors of four independent data points
(biological replicates). The P value was calculated using one-sided Student’s t test. g qRT-PCR results show relative mRNA levels of genes that are
topologically or spatially associated with the mutant site in WT and mutant MCF-7 clones. Error bars represent standard deviations from 11
biological replicates. h Bar graphs show contact frequency between the mutated site and the four other proximal sites in WT and mutant MCF-7
cells as measured by the Chromatin Conformation Capture (3C) assay. Interacting sites from the MCF-7 Pol2 ChIA-PET data are colored in
magenta. Hypothetical interaction with the control site is indicated with a gray dash line. The blue boxes at the end of the interaction curves
indicate the primer positions used in the 3C assay. Error bars represent standard deviations (2 biological replicates). i Crystal violet colony
formation assay measures the relative size and viability of colonies for WT and mutant MCF-7 cells in response to control, estradiol (E2) and
tamoxifen (Tam.) treatment. Images and corresponding quantifications are shown. Error bars represent standard deviations from 12 biological
replicates. All the P values were calculated with two-sided Student’s t test unless indicated otherwise. ***P < 0.001, **P < 0.01, *P < 0.05
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(paired two-sided t test P = 7.5 × 10−4, Fig. 4i). It is not-
able that the clinical patients’ survival data (METABRIC)
[41] shows that higher expression of TMEM41B, IPO7,
and WEE1 are significantly associated with poor out-
come (Additional file 1: Figure S9). The TMEM41B en-
codes the transmembrane protein 41B, and its functional
role in breast cancer progression is not known. The
IPO7 gene encodes Importin 7 protein, which regulates
the import of specific ribosomal proteins for ribosomal
assembly. Its expression is stimulated by Myc and sup-
pressed by p53 [42], rendering it a possible pro-survival
gene through ribosomal biogenesis. Importin-7 also reg-
ulates nuclear transport of steroid hormone receptors,
including the androgen receptor [43]. The tyrosine kin-
ase encoded by WEE1 is a crucial component of the
G2-M cell cycle checkpoint that prevents entry into mi-
tosis in response to cellular DNA damage [44]. Normal
cells repair damaged DNA during G1 arrest; however,
cancer cells, often with a deficient G1-S checkpoint, de-
pend on a functional G2-M checkpoint for DNA repair
[44]. And indeed WEE1 is found to be expressed at high
levels in various cancer types including breast cancer
[45] and has been identified as one of the molecules in
the tamoxifen resistance pathway [46]. Moreover, WEE1
inhibition has already been reported to synergistically in-
hibit breast cancer growth in combination with cisplatin
in xenograft models [47].

Discussion
Cancer arises due to aberrant regulation of multiple
genes and signaling pathways [14, 48]. Although genetic
alterations in selected oncogenes and tumor suppressors
may initiate the process of cellular transformation, add-
itional mutations contribute to the evolution of cancer
cells. WGS efforts in large cohorts of patients have im-
proved our ability to identify candidate driver mutations
in the coding and noncoding genomic regions. However,
defining the pathways associated with DNA mutagenesis
and understanding the impact of cancer-associated mu-
tations in non-coding genomic regions are yet to be
complete.
Our results presented here suggest that ER binding is

associated with increased mutation burden at the bind-
ing site. The molecular mechanism that mediates accu-
mulation of somatic mutations at and around ERBS is
yet to be identified. Estrogen, the hormone that activates
ER, was shown to potentiate DNA damage nearly three
decades ago [49]. However, why estrogen treatment re-
sults in increased DNA damage and whether this is due
to increased ER binding activity is not fully understood.
We postulate three potential mechanisms to explain the
relatively higher rates of somatic mutations at ERBS.
Firstly, somatic mutations may originate stochastically or
induced by the by-products of estrogen metabolism,

such as quinones [50]. These mutations will likely be
evenly distributed across the genome. However, the mu-
tations at ERBS may be repaired at a reduced rate due to
the physical presence of ER, which may block DNA re-
pair machinery. This may result in relatively higher mu-
tational frequency at and around ERBS [15]. Secondly,
some of these stochastically emerged or metabolite in-
duced mutations may be selected during tissue develop-
ment or tumor evolution due to their functional
impacts. These acquired somatic mutations may alter ER
or other TF binding, affect gene expression and drive
cancer progression. Thirdly, the ER binding activity or
ER induced transcriptional process may directly induce
somatic mutations at ERBS by causing strand breaks or
exposing the local DNA to deaminases such as APO-
BE3B [27]. To this end, a plausible molecular mechan-
ism is transcription coupled R-loop formation at and
around ERBS [51]. R-loop formation at distal enhancers
and actively transcribed genes conflicts with DNA repli-
cation machinery, and is a known process that aggra-
vates DNA damage and activates various DNA repair
mechanisms [52]. It is possible that all these three mech-
anisms contribute to the ERBS mutations. Our results
presented here and currently available genomic data
does not allow us to differentiate among the three mech-
anisms. The recurrent somatic mutations that we report
here could be examples of the second mechanism where
a mutation is selected during tumor evolution. On the
other hand, the observation that the mutated ER binding
sites are topologically associated with highly expressed
genes is supportive of the third mechanism. Regardless
of the original molecular mechanism that causes these
mutations, our functional characterization efforts show
that some of the ERBS mutations may alter gene expres-
sion by affecting the binding activities of TFs as shown
for the C-to-T mutation at the ZNF143 locus.
Critically, our findings also suggest that somatic muta-

tions at ERBS may accumulate in normal/pre-neoplastic
breast tissue as well. In line with this, we observed sig-
nificant more somatic mutations at ERBS when we used
blood instead of tumor adjacent breast tissue as “nor-
mal” in the mutation calling process (chi-square test P =
7.20 × 10−32 [N = 60] vs P = 2.18 × 10−3 [N = 10], Add-
itional file 1: Figure S10a), suggesting that somatic muta-
tions at ERBS exist in pre-neoplastic breast cells
(Additional file 1: Figure S10b). Since the control tissue
type for 87.5% of the BRCA-EU patients was unknown,
this hypothesis needs to be further investigated using
additional WGS samples, ideally matched blood and
breast tissues from normal individuals.
Although identifying whole-genome level cancer muta-

tions is now feasible, understanding the functional sig-
nificance of a vast number of coding and non-coding
mutations and identifying their gene targets remain a
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major challenge. To this end, we employed multiple
complementary novel approaches to characterize the
two recurrently mutated non-coding genomic regions.
We demonstrate that the CRISPR interference and base
editor approaches can be utilized to characterize func-
tional significance of a single point mutation. Unlike bio-
chemical EMSA or plasmid-based luciferase assay, such
tools allow interrogating endogenous chromatin loci for
their downstream effects, which is more informative as
shown by the ZNF143 locus. Specifically, a recent study
by Rheinbay et al. [11] discovered this very same muta-
tion through customized exome-capture sequencing of
an independent cohort of 360 breast cancer patients.
Their subsequent EMSA and luciferase promoter ana-
lysis indicated the functional impact of this mutation on
ZNF143 gene expression, but our genetic base editing
data suggest that although expression of ZNF143 is
slightly altered, the major regulatory impact of the muta-
tion is observed at the topologically associated distal
genes. These findings further highlight the power of util-
izing CRISPR editing approaches in combination with
ENCODE-derived topological data in characterizing the
functional roles and identifying the potential targets of
non-coding mutations in the genome. To this end, the
CRISPR base editor tools, which are being significantly
expanded to edit not only C•G to T•A transitions but
also A•T base pairs to G•C [53], will be immensely use-
ful to interrogate the regulatory impact of various
non-coding mutations in cancer as well as other
diseases.
It is notable that the two recurrent mutations that we

identified and functionally interrogated here are impli-
cated in the expression of multiple distal genes. Such find-
ings demonstrate that it is important to study the
regulatory effect of non-coding mutations beyond the
most proximal promoter. In addition to the recurrent mu-
tations, it remains to be studied whether non-recurrent
mutations also contribute to differential survival or prolif-
eration in cancer cell evolution. Since the rate of recur-
rence is simply determined by the number of patients
carrying the mutant allele in the BRCA-EU cohort, it is
likely that many other non-coding mutations may have
“driver” functionality in cancer evolution.

Methods
Data accession and preprocessing
Whole-genome sequencing data (BRCA-EU)
Whole-genome somatic mutations of 560 ER+ and HER2−

breast cancer patients (BRCA-EU) in International Cancer
Genome Consortium (ICGC) were obtained from ICGC
Data Portal (https://dcc.icgc.org) [4, 26]. Simple somatic
mutations including 3,430,287 single base substitutions,
255,203 deletions, and 92,372 insertions of ≤ 200 bp de-
tected in the original study were used here. Multiple base

substitutions were not analyzed because of its limited
number (n = 2680).

ER ChIP-seq data
ER binding sites (ERBS) from 18 independent ER+ breast
cancer patients were obtained from Gene Expression
Omnibus (GEO; GSE32222) [23]. Three patient samples
have two sections sequenced separately in the original study
to detect tumor heterogeneity [23]. The genomic
coordinates of ER binding sites were lifted from hg18 to
hg19 to be consistent with the mutation coordinate
(https://genome.ucsc.edu/cgi-bin/hgLiftOver). Both MACS
[24] and SWEMBL (https://www.ebi.ac.uk/~swilder/
SWEMBL/) identified ER binding events from the original
study [23] were used in this study to derive ERBS shared in
different numbers of patients. BEDTools multiIntersect
[54] was used to carry out this operation. For all analysis
except for Fig. 1c, ERBS shared by at least two patients
were used. One thousand one hundred ninety-two genomic
regions that had significantly stronger ER binding in the pa-
tients with poor outcome or metastasis compared to the
good outcome patients, 599 ERBS with stronger ER binding
in the good outcome patients when compared to the poor/
met patients, and a core set of 484 ERBS that were identi-
fied in at least 75% of all the tumors, but not in either of
the ER- tumors were obtained from the original study
(www.carroll-lab.org.uk/data) [23]. Alignment files (bam
files) for each sample were downloaded for potential som-
atic mutation identification from GEO.

DNase-seq data
The genomic coordinates of DNase I hypersensitivity
sites (DHS) in MCF-7 cells were obtained from EN-
CODE (GSE29692) [28]. DHS with more than 50% over-
lap between the two replicates of samples either with
(GSM1024784 and GSM1024783) or without
(GSM1024764 and GSM1024767) estradiol treatment
were used in our analysis. Since DHS in MCF-7 cells
with and without hormone treatment were highly corre-
lated with each other (minimum pearson correlation co-
efficient of 0.93), and both sets of DHS provided the
same analysis results, we only showed the results using
DHS with estradiol treatment in Fig. 1a.

RNA-seq data
Whole transcriptome data of 1093 breast cancer patients
identified by The Cancer Genome Atlas (TCGA) were
obtained using the TCGAbiolinks R package [33, 55].
RSEM normalized results of gene expression were used,
which divide the raw counts by the 75th percentile of
read counts for each sample and then multiply by 1000.
For each gene, its median expression value among the
1093 samples was calculated for downstream analysis.
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ChIA-PET, Hi-C, and other ChIP-seq data
Pol2 ChIA-PET and Hi-C data in MCF-7 cells were ob-
tained from ENCODE (GSE39495) [28] and GEO
(GSE66733), respectively. Relevant ChIP-seq data sets
for H3K27ac, Pol2, MAX, and ZBTB7A in MCF-7 or
other cell lines were located on the ENCODE website
(https://www.encodeproject.org) and visualized through
the UCSC genome browser (https://genome.ucsc.edu).

Mutation rates estimation
Observed rate
For each analysis, the included ER binding sites or DHS
were extended 1 kb on both sides from their peak sum-
mit positions (5 kb for insertions and deletions) to com-
pare the mutation rate in the intervals we are interested
in to their flanking regions. We excluded any regions
overlapping coding sequences and UCSC Browser black-
listed regions, often misaligned to sites in the reference
assembly (Duke and DAC), and with low unique mapp-
ability of sequencing reads. For analysis centered on ER
binding sites, regions that overlap other TF binding sites
within flanking regions were also excluded. All TF bind-
ing sites from ENCODE were obtained from the UCSC
genome browser (https://genome.ucsc.edu). After the fil-
tering step, mutation data were mapped to ER binding
or DHS intervals, and mutation rate at the nucleotide
resolution was computed and plotted.

Expected rate
For each analyzed interval sets, we calculated the prob-
abilities of occurrence of all possible 96 tri-nucleotide
changes (similar to computing mutation signatures) [13].
And then the mean expected mutation rate, after 1000
times random sampling, based on sequence context
(tri-nucleotide compositions) at each nucleotide position
was plotted against the observed rate for comparison.
For each time of random sampling, the number of differ-
ent 96 tri-nucleotide changes was kept the same. Ex-
pected mutation rate was not calculated for insertions
and deletions, due to unavailability of robust methods to
predict their occurrence based on sequence context.

Mutation enrichment analysis
The fold change and P value between mutation rates within
200 bp of ER binding or DHS peak summits and flanking
regions (> 200 bp and ≤ 1000 bp) were modeled using a
chi-square distribution. The obtained P values were cor-
rected for multiple testing using the Benjamini-Hochberg
procedure [56].

Negative binomial linear regression models
All the regression models were built using the glm.nb
function in R. The final fitted model was determined by
performing ANOVA test for models with different

independent variables included. We also compared the
final negative binomial model with a corresponding
Poisson model. P values for the coefficients of included
independent variables were calculated using Wald test.
To use any model for prediction, 1000 data points for
each independent variable were independently simu-
lated. Then the model was used to predict values for the
response variable. To remove effects of any independent
variable on the response variable, residuals function in R
was applied to obtain the corrected values of the re-
sponse variable.

Gene expression analysis
ChIA-PET based
For ERBS containing different numbers of mutations
within 200 bps of its summit, we grouped them into
ERBS with 0, 1, 2, and ≥ 3 mutations. Then, we ran-
domly sampled 500 regions from each ERBS group and
repeated the sampling for 10 times. Choosing 500 ran-
dom sites was limited by the number of ERBS with at
least 3 mutations. Next, the random sampled ERBS set
was intersected with ChIA-PET data in MCF-7 cells to
obtain their interacting sites. Genes overlap the interact-
ing sites and within the same TADs as the ERBS based
on Hi-C MCF-7 insulation boundaries (40 kb resolution)
were selected for further analysis. To make sure an equal
number of genes were included for each ERBS group, we
randomly sampled 200 genes for 100 times and com-
puted the mean expression levels of the genes sampled
each time. The distributions of gene expression levels
were compared across ERBS groups with different num-
bers of mutations. P values were calculated using
two-sided t test.

Proximity based
For the same ERBS randomly sampled in the above
ChIA-PET based analysis, genes intersected with regions
50 kb or 100 kb flanking the ERBS summits were ob-
tained. Same as above, 200 genes were randomly sam-
pled for 100 times to compute mean expression
distributions for different ERBS groups, which avoids
bias when comparing with the ChIA-PET based analysis
results. P values were calculated using two-sided t test.

Somatic mutation detection from ER Chip-Seq
Since corresponding control tissues are not available for
the ER ChIP-seq data, we used mutation sites that are
identified from the 560 WGS BRCA-EU samples [4, 26]
and are within 200 bps of ERBS summits as potential
somatic mutation sites. Bam files for the 9 ER ChIP-seq
samples with good outcome, and the 12 samples with
poor or metastasis outcome were merged for mutation
discovery [23]. Then, we used bam-readcount (https://
github.com/genome/bam-readcount) to get the counts
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of different alleles covering the potential mutation sites
in the two merged bam files. To increase the credibility
of somatic mutations identified from the ChIP-seq data,
only the sites covered with at least 10 reads and encom-
passing both the reference and alternative alleles in
BRCA-EU were selected as potential somatic mutations.
In the end, the percentage of outcome-associated ERBS
that contain potential somatic mutations was calculated
for samples with corresponding outcomes.

Motif analysis
Nucleotide sequences with and without the mutations
for the LRRC3C and GSDMA intergenic and ZNF143
loci were processed with the PWMEnrich R package, to
detect motifs significantly enriched [57]. Motifs with
scores ≥ 100, roughly equivalent to P value ≤ 10−3 in ei-
ther the reference or mutant sequence were considered
to be confidently identified. Motif score ratios between
mutant and reference sequences were calculated for the
reliably identified motifs. Motifs with large absolute
values of score ratios were presented in Figs. 3b and 4b.

Computational and statistical tools
BEDTools utilities [54] were used to carry out operations
such as extensions or overlaps in the various analyses of
genomic features. Ngs.plot was used to generate heatmaps
for DHS and ER binding intensities [58]. All the statistical
tests were performed in the R (version 3.4.1) and python
3.5.2 environment. Customized bash, R and python scripts
were used to perform all the other analysis.

Experimental assays
Electrophoretic mobility shift assay (EMSA)
EMSAs were performed using a ThermoFisher Scientific
LightShift Chemiluminescent EMSA kit following the
manufacturer’s instructions. MCF-7 cell nuclear extracts
were prepared using NE-PER Nuclear and Cytoplasmic
Extraction Reagents (ThermoFisher Scientific) according
to the manufacturer’s protocol. 20 fM biotin-labeled
probes were used for each EMSA reaction. Increasing
amounts of unlabelled WT or mutant competitor oligo-
nucleotides were used to analyze specificity of mobility
shifts. Competitor probe concentration was 8 pM. Reac-
tions were incubated for 20 min at room temperature,
size-separated on a 6% native polyacrylamide gel, and
transferred to a Biodyne B Nylon membrane (Thermo-
Fisher Scientific). Free or protein-bound biotin-labeled
probes were detected using streptavidin-horseradish per-
oxidase conjugates and chemiluminescent substrate ac-
cording to the manufacturer’s instructions. Membranes
were placed in a film cassette and exposed to X-ray for 1–
2 min. Probe sequences for the LRRC3C and GSDMA
intergenic region are WT: CCGCATGACCAGGTCCTGC
TTC, double mutations: CCGCATGACGAGCTCCTGC

TTC, C>G single mutation: CCGCATGACGAGGTCCT
GCTTC, and G>C single mutation: CCGCATGAC
CAGCTCCTGCTTC; for the ZNF143 promoter region are
WT: CCGCCGCCCTCAGCGCGGCGG and mutant:
CCGCCGCCCTTAGCGCGGCGG.

CRISPR/dCas9 interference
Promega FuGene 6 (cat. no. E2691) was used for transi-
ent transfection according to the manufacturer’s proto-
col. 70% confluent MCF-7 cells were used for each
transfection. The same molar ratio of plasmids were
used for dCas9-target and control sgRNAs. We used
6 μg dCas9 and 2 μg sgRNA plasmids per 10 cm plate.
After 36 h, puromycin (2 μg/mL) was added to select
transfected cells. SgRNA sequences used are as follows:
Sg Cont.: GGAGCGCACCATCTTCTTCA, Sg #1:
GCGAGGCAGGAGGATTGCTTG, Sg #2: GCAG
CACTCACCGCATGACC, and Sg #3: GGAAGCAGG
ACCTGGTCATG.

Real-time qRT-PCR
Total RNA from MCF-7 cells was extracted by using the
QIAGEN RNeasy Mini Kit according to the manufacturer’s
protocol. RNA was reverse transcribed using the
High-Capacity RNA-to-cDNA kit (Applied Biosystems), and
cDNA was amplified using the QuantiFast SYBR Green PCR
Kit. CT values of target genes were normalized to GAPDH.

CRISPR base editor
MCF-7 wild-type cells were cultured at 37 °C with 5% CO2

in the DMEM media containing 10% fetal bovine serum
(FBS) and 1% penicillin–streptomycin. For transient trans-
fection, dCas9-APOBEC3 and the target sgRNA were
transfected by Promega FuGene 6 (cat. no. E2691) into 50–
70% confluent MCF-7 cells [37]. After transfection for 2–
3 days, the cells were diluted and then seeded in 15 cm
dishes to grow colonies. Single colonies were picked up,
grown in 96-well plates, and then transferred to 24-well
plates for expansion. The sgRNA sequence used for
CRISPR base editor is GGCCCTCAGCGCGGCGGCGC.

qPCR colony screening
For each colony, genomic DNA was isolated according to
the protocol [37] and qPCR was performed using the
primers that cover the point mutation site of the ZNF143
gene. The qPCR primer sequences are: F: GGTGGTCGG
ACGAAGGAATT; R1: GGCCCGCGCCGCCGCGCTG;
R2: GGCCCGCGCCGCCGCGCTA. For positive col-
onies, their PCR products were submitted for Sanger se-
quencing at Eton Biosciences.

ChIP-qPCR
MCF-7 WT and mutant cells from two 15-cm plates were
subjected to previously published ChIP protocol [59, 60].
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Briefly, cells were cross-linked with 1% formaldehyde for
10 min and neutralized with final 0.125 M glycine for
5 min at 37 °C. Pellets were lysed in SDS lysis buffer and
incubated for 20 min on ice. The chromatin was sonicated
using Branson digital sonifier for 9 min at 40% amplitude
with 0.7 s “on” and 1.3 s “off” pulse cycles. Fragmented
chromatin was diluted with ChIP-dilution buffer (0.01%
SDS, 1.1% Triton X-100, 1.2 mM EDTA and 16.7 mM
Tris-HCl, pH 8.1) and incubated with 1.5 μg ZBTB7A
antibody (abcam # 106592) overnight at 4 °C. After over-
night incubation, 30 μl mixture of protein A-G magnetic
beads (Dynabeads, Life Technologies) were added to ly-
sates and rotated for 2 h at 4 °C. Next, beads were washed
well on the magnetic field with each of these buffers two
times: low-salt immune complex wash buffer (0.1% SDS,
1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.1]
and 150 mM NaCl); LiCl wash buffer (0.25 M LiCl, 1%
NP40, 1% deoxycholate, 1 mM EDTA and 10 mM
Tris-HCl [pH 8.1]); and TE (10 mM Tris-HCl and 1 mM
EDTA [pH 8.0]). The chromatin was recovered from the
beads by 30 min incubation with elution buffer (0.2% SDS
and 0.1 M NaHCO3 supplemented with fresh 5 mM
DTT) at 65 °C. After reverse cross-linking, proteinase K
and RNase digestion, DNA was extracted with ethanol
precipitation method and quantified via Qubit
Fluorometer. Purified DNA from immunoprecipitation
was used to analyze the fold enrichment of ZBTB7A at
the mutation site of ZNF143. Two primer pairs close to
the mutation site were used to analyze the ZBTB7A en-
richment. The two primer pairs are: F1: GGTGGTCGG
ACGAAGGAATT, R1: GCCAGGCGGAGAATAATGCA;
F2: GGCCTTGCCGATTTTATGGG, R2: AAAAAGCTC
CGCCGCCTAG. Fold-enrichment ratios were calculated
by the ΔΔCt method by using IP DNA and WCE (whole
cell extract) DNA as a control input. A primer pair for a
negative control genomic region was used to calculate fold
enrichment. The negative control primers are as follows:
F: AAAAATCAGTTTGTGTGTTTGTGG, R: CCTA
GGCAAC AGTGACACCTATTT.

Chromosome conformation capture (3C) assay
3C experiment was performed as stated in Hagege et al.
[61]. Briefly, 10 million MCF-7 cells were collected and
crosslinked with 1% formaldehyde inside 10% FCS/PBS so-
lution for 10 min at room temperature. Crosslinking was
quenched with ice-cold 0.125 M glycine (final concentra-
tion) for 5 min. Sequentially, cell and nuclear membrane
lysis reactions were performed with appropriate buffers.
NlaIII (NEB R0125) restriction enzyme was used for over-
night digestion of the crosslinked genomic DNA. Ligation
was carried out by using T4 Ligase at 16 °C for 4 h followed
by Proteinase K (300 μg total) and RNase treatment
(200 μg total). DNAs were precipitated by using
phenol-chloroform extraction method. qPCR was

performed by using primer pairs targeting the mutated site
and one of the interacting sites. Normalized crosslinking
frequency was calculated by using Ct value difference be-
tween target and genomic control primer pairs. Primer se-
quences used in this assay are as follows: for the mutated
site: AGCTTCCATTGGGCTGTCAT; for the control site:
GTCAATCTCCAGCCTGGATTCATCC; for the interact-
ing site 1: GAGACTCCTTTAGGGAGGGC; for the inter-
acting site 2: GGGATCATTTGAAGTCAGGAGTTC; for
the interacting site 3: TAACTAGGAGTAGGCCTAAGGG;
for the genomic control site F: GGCATTGTTGATTC
ACGGGTand R: CAACGGGCAGAATGTAGCTC.

Crystal violet assay
Wild-type and mutant MCF-7 cells were plated at a
density of 1,000 cells per well in 12-well plates. The next
day estradiol (E2) and tamoxifen (2 μM) were added to
the growth medium. Fresh media was added after 6–
7 days. After ~ 14 days, the well would be washed twice
with PBS, then stained for 30 min with crystal violet so-
lution (0.4% crystal violet, 10% formaldehyde, 80%
methanol). After staining, the crystal violet solution was
removed, and then the stained cells were washed once
with PBS and 3+ times with water. The plate was
inverted overnight and covered to dry before imaging.
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