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Abstract

Background: Inflammatory breast cancer (IBC) is a rare but aggressive carcinoma characterized by severe erythema
and edema of the breast, with many patients presenting in advanced metastatic disease. The “inflammatory” nature
is not due to classic immune-mediated inflammation, but instead results from tumor-mediated blockage of dermal
lymphatic ducts. Previous work has shown that expression of PD-L1 on tumor cells can suppress T cell activation in
triple-negative (TN) non-IBC breast cancer. In the present work, we investigated immune parameters in peripheral
blood of metastatic IBC patients to determine whether cellular components of the immune system are altered,
thereby contributing to pathogenesis of the disease. These immune parameters were also compared to PD-1 and
PD-L1 expression in IBC tumor biopsies.

Methods: Flow cytometry-based immune phenotyping was performed using fresh peripheral blood from 14 stage
IV IBC patients and compared to 11 healthy age-similar control women. Immunohistochemistry for CD20, CD3, PD-
1, and PD-L1 was performed on tumor biopsies of these metastatic IBC patients.

Results: IBC patients with Stage IV disease had lymphopenia with significant reductions in circulating T, B, and NK
cells. Reductions were observed in all subsets of CD4+ T cells, whereas reductions in CD8+ T cells were more
concentrated in memory subsets. Immature cytokine-producing CD56bright NK cells expressed higher levels of
FcγRIIIa and cytolytic granule components, suggesting accelerated maturation to cytolytic CD56dim cells.
Immunohistochemical analysis of tumor biopsies demonstrated moderate to high expression of PD-1 in 18.2% of
patients and of PD-L1 in 36.4% of patients. Interestingly, a positive correlation was observed between co-expression
levels of PD-L1 and PD-1 in tumor biopsies, and higher expression of PD-L1 in tumor biopsies correlated with
higher expression of cytolytic granule components in blood CD4+ T cells and CD56dim NK cells, and higher
numbers of CD8+ effector memory T cells in peripheral blood. PD-1 expression in tumor also correlated with
increased infiltration of CD20+ B cells in the tumor.
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Conclusions: Our results suggest that while lymphocyte populations are severely compromised in stage IV IBC
patients, an immune response toward the tumor had occurred in some patients, providing biological rationale to
evaluate PD-1/PD-L1 immunotherapies for IBC.

Keywords: Inflammatory breast cancer (IBC), Stage IV IBC, Metastatic IBC, Lymphopenia, PD-1, PD-L1,
Immunotherapy, Checkpoint inhibitors, T cells, NK cells, Tumor-infiltrating lymphocytes, Tumor microenvironment

Background
Inflammatory breast cancer (IBC) is a rare and aggressive
malignancy. In the United States (US), IBC accounts for 2–
6% of all patients with breast cancer [1, 2]. Although IBC is
a relatively rare clinical subtype of locally advanced breast
cancer, it is responsible for approximately 10% of breast
cancer-associated deaths annually in the US, which trans-
lates into about 4000 deaths per year [3, 4]. Approximately
20–30% of IBC patients present with distant metastasis
(stage IV disease) at diagnosis, compared to 6–10% of pa-
tients with breast cancer that is not inflammatory (non-
IBC) [5]. Although recent trends indicate an improvement
in survival in IBC patients, the prognosis remains worse
than non-IBC cases. The median overall survival (OS) for
patients with stage III IBC is 4.75 years, compared to 13.40
years in those with non-IBC, and for stage IV disease OS is
2.27 years in IBC patients versus 3.40 years in non-IBC pa-
tients [6, 7]. IBC patients tend to be younger compared to
other breast cancer patients, with a median age at diagnosis
of 52 years compared to 57 for non-IBC patients [8].
The principal clinical symptoms of IBC are breast ery-

thema, edema, peau d’orange, and dermal lymphatic inva-
sion [9]. Despite its name, IBC is not associated with a
profuse inflammatory response. Rather, the characteristic
redness and swelling of the breast are due to obstruction
of lymphatic channels in the dermis by tumor cells [4, 10].
The current consensus regarding clinical management of

IBC includes neoadjuvant systemic therapy (chemotherapy
or chemotherapy plus targeted therapy), modified radical
mastectomy and level I and II ipsilateral axillary node dissec-
tion, post-mastectomy radiotherapy of the chest wall and
nodal basin, and adjuvant targeted therapy and hormonal
therapy [11]. In the case of stage IV de novo IBC, primary
systemic therapy is also recommended, but the decision to
use surgery and radiation therapy should be evaluated using
a multidisciplinary approach, particularly in those patients
who have significant clinical response to systemic therapy
[11]. Taxane, doxorubicin, and cyclophosphamide in neoad-
juvant systemic therapies have been recommended for stage
III primary breast cancer, but there is a clear lack of clinical
trials specifically for IBC [11]. For HER2+ disease, dual anti-
HER2 therapy (pertuzumab and trastuzumab) combined
with chemotherapy is recommended [11].
Data on risk factors for IBC are limited, and the con-

tributions of hereditary versus environmental or life-

style factors remain poorly understood [12]. Although
IBC, like non-IBC breast cancers, is a heterogeneous dis-
ease and can occur as any of the five molecular subtypes,
the disease is most commonly either HER2 overexpress-
ing or triple-negative (TN) [13]. TN breast cancer, which
is defined by absence of estrogen and progesterone re-
ceptors, and a lack of HER2 overexpression, has a poorer
prognosis than other subtypes [14]. Importantly, the TN
phenotype breast cancer (non-IBC) has been associated
with higher expression of PD-L1 on tumor cells [15].
The interaction of the PD-1 receptor on T cells with its
ligand, PD-L1 on tumor- and immune-infiltrating cells,
suppresses T cell-mediated immune responses and may
play a role in immune escape by human tumors [16].
The extensive accumulation of tumor emboli in the
lymphatic vessels of IBC patients supports the notion
that the host immune surveillance system is suboptimal
or that the tumor cells have adopted immune escape
mechanisms to avoid detection by the host. Several re-
cent studies have provided evidence for immune re-
sponses toward IBC, suggesting that patients may
benefit from immunotherapies, such as PD-1/PD-L1
blocking antibodies [17–22]. Nonetheless, there is insuf-
ficient information on peripheral blood leukocyte
immune-phenotypes in IBC patients. In the present
work, we utilized flow cytometry and immunohisto-
chemistry analysis to investigate immune parameters of
metastatic IBC patients and compared them to healthy
female volunteer donors. In addition, we studied the ex-
pression of PD-L1 and PD-1 in tumor biopsies of these
patients with metastatic IBC. Our study aims to deter-
mine whether cellular components of the immune sys-
tem are altered in IBC patients, thereby contributing to
the pathogenesis of the disease.

Methods
Human subjects and blood sample preparation
The blood samples used in this study were collected
from 14 IBC patients with stage IV disease, who were
treated at Fox Chase Cancer Center (FCCC) between
2010 and 2012. Control blood samples were collected
and anonymized through the FCCC Biosample Reposi-
tory from 11 age-similar female healthy volunteers. This
study was approved by both the research review com-
mittee (RRC) and the institutional review board (IRB) at
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FCCC. All patients and healthy controls signed IRB-
approved informed consent and HIPAA certification
prior to sample collection. Retrospective chart reviews
were performed in order to collect patient data, which
included age at diagnosis, hormone receptor subtype,
and treatment history, as summarized in Table 1. Per-
ipheral blood was collected from IBC patients prior to
starting a new line of chemotherapy and was processed
within 6 h of collection. The blood was used to deter-
mine total and differential counts of leukocytes and to
identify frequencies of lymphocyte subpopulations (T, B,
and NK cells) according to standardized protocols of im-
mune phenotyping by flow cytometry, as previously de-
scribed [23, 24]. Whole blood (20 ml) was drawn into
heparinized tubes and subsequently mixed in equal pro-
portions with complete RPMI 1640 medium (supple-
mented with 10% fetal bovine serum, 100 μg/ml
penicillin/streptomycin, 2 mM L-glutamine, 10 mM
HEPES, 1 mM sodium pyruvate, and 50 μM 2-

mercaptoethanol), layered over Lymphoprep (Axix-
shield POC AS, Oslo, Norway), and centrifuged at 500g
for 30 min. The buffy coat was removed and suspended
with staining buffer (RPMI1640 without biotin or phe-
nol red, and supplemented with 2.0 g/L NaHCO3 and
2.4 g/L HEPES, pH 7.0).

Antibodies and cell staining for flow cytometry
The staining panel, monoclonal antibody clones, and
sources are shown in Supplementary Table S1. Antibodies
in direct surface staining tubes were directly conjugated
with fluorophores. Staining for perforin and granzyme B
was done after samples were fixed with 2% paraformalde-
hyde and permeabilized with PBS containing 0.1% sap-
onin, 1% BSA, and 0.1% sodium azide. Staining for FoxP3
was performed after cells were fixed and permeabilized
with the Biolegend FOXP3 Fix/Perm Buffer Set (#421403).
One million cells were stained in each sample on ice for
20min in approximately 200 μl of staining buffer and

Table 1 Demographics of stage IV IBC patients

Patient
ID

Age at
diagnosis

Race IBC Subtype at diagnosis Months after diagnosis of blood collection and
treatment status

Overall Survival (OS)

Patient 1 42 H ER−PR−Her2+ Month 18
Treated

67 months

Patient 2 47 C TN
Secondary IBC

Month 12
Treated

27 months

Patient 3 55 C TN Month 20
Treated

38 months

Patient 5 49 C ER−PR−Her2+ Month 30
Treated

44 months*

Patient 6 66 C (J) ER+PR−Her2− (became TN at
month 8)

Month 8
Treated

10 months (cardiac
disease)

Patient 7 48 C TN Month 21
Treated

27 months

Patient 8 32 C ER+PR−Her2− Month 50
Treated

105months

Patient 9 55 A ER−PR−Her2+ Month 4
Treatment naive

16 months

Patient
10

62 C TN Month 32
Treated

37 months

Patient
11

61 C TN Month 13
Treated

31 months

Patient
13

43 C ER+PR+Her2+ Month 1
Treatment naive

87 months

Patient
14†

44 C ER−PR−Her2+ Month 13
Treated

115months

Patient
15

30 C ER+PR−Her2+ Month 22
Treated

39 months

Patient
16

69 A ER−PR−Her2+ Month 26
Treated

37 months

Age at disease onset, race, IBC subtype, time in which blood samples were collected since disease onset, and survival is indicated for each patient. All the patients
had metastatic disease at the time of the blood collection and received multiple therapies with the exception of patients 9 and 13
C Caucasian, TN triple-negative, A Asian, H Hispanic, J Jewish heritage
*Last record available
†Patient was breast feeding her baby when she was diagnosed with IBC
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rinsed twice. Staining tubes that were not fixed/perme-
abilized were subjected to 100 ng/ml propidium iodide
(Invitrogen) in the second rinsing step to mark dead cells.
The BD IMK kit (Catalog # 340503) was used to deter-
mine the percentages and absolute counts in whole blood
of the following mature lymphocytes: T lymphocytes
(CD3+), B lymphocytes (CD19+), helper/inducer T lym-
phocytes (CD3+CD4+), cytotoxic T lymphocytes
(CD3+CD8+), and natural killer (NK) lymphocytes
(CD3−CD16+ and/or CD3−CD56+). BD Trucount™ tubes
were used for determining absolute counts.

Flow cytometry instrumentation and data analysis
Stained cells were analyzed on a Beckman Dickinson
(BD) ARIA II flow cytometer with 4 lasers at 633 nm,
488 nm, 405 nm, and 365 nm wavelengths. Absolute
lymphocyte counts were analyzed on a BD FACS Calibur
flow cytometer. Data were collected with BD FACS Diva
software version 6 and analyzed with Flowjo v9.2 (Tree
Star Inc., Ashland, OR), Microsoft Excel (v12), GraphPad
Prism v5.0d or later (GraphPad Software Inc., La Jolla,
CA), and Matlab R2016b (The Mathworks). Single cell
events were first gated by a forward scatter height vs.
forward scatter area plot and viable cells were then gated
by lack of propidium iodide staining. Viable CD45+ cells
were split into myeloid and lymphocyte populations by
applying a side scatter gate and then divided into sub-
populations based on the expression of CD3, CD14,
CD16, CD19, CD20, CD27, CD62L, CD45RA, and
CD56. Regulatory T (Treg) cells were quantified as a
percent of CD4+ T cells that were CD25high and
FOXP3+. Immune parameters measured are shown in
Supplementary Table S2.

Analysis of PD-1 and PD-L1 expression in tumor biopsies
Surgically obtained tumor samples were placed in 10%
formalin buffer, processed and embedded in paraffin
(FFPE), and underwent pathological examination for
diagnosis. Whole tissue sections cut from FFPE tissue
blocks were deparaffinized and rehydrated with serial
passage through changes of xylene and graded ethanol.
All slides were subjected to heat-induced epitope re-
trieval in Envision FLEX Target Retrieval Solution, High
pH (Dako, Carpinteria, CA). Endogenous peroxidase in
tissues was blocked by incubation of slides in 3% hydro-
gen peroxide solution prior to incubation with primary
antibody (anti-PD-L1, clone 22C3, Merck & Co. Inc.,
Palo Alto CA, USA, or anti-PD-1 clone NAT105, Cell
Marque, Rocklin, CA, for 60 min). Antigen-antibody
binding was visualized via application of the FLEX+
polymer system (Dako, Carpinteria, CA) for PD-1 and
PD-L1, and application of 3, 3′ diaminobenzidine (DAB)
chromogen (Dako, Carpinteria, CA). Stained slides were
counterstained with hematoxylin and cover slipped for

review. Stained sections then underwent semi-
quantitative evaluation of positive cell frequency (0 =
none, 1 = rare, 2 = low, 3 =moderate, 4 = high, 5 = very
high), as previously described [25]. Scoring was
conducted by a pathologist, with scores incorporating
prevalence of both tumor cells and non-tumor cell
labeling. PD-1 and PD-L1 expression scores of > 2 were
considered positive in combined tumor and non-tumor
cells on the 0–5 scale.

Measuring tumor-infiltrating lymphocytes (TIL)
Immunohistochemistry was used to differentiate TIL in
the FFPE tumor samples, by staining for CD3 (T cells)
and CD20 (B cells). The antibodies and staining proce-
dures used were anti-CD3 prediluted (clone 2GV6; Ven-
tana/Roche, US) and incubated 32 min at 37 °C; anti-
CD20 (clone L26; Dako) prediluted (1:1280 in Ventana
antibody dilution buffer), incubation 32 min at 37 °C.
The specimens were then counterstained with
hematoxylin. For each analysis, evaluation was con-
ducted in the tumor and immediately peri-tumoral areas
with quantitation output as the percentage of positive
cells relative to total nucleated cells.

Statistical methods
Flow cytometry data for distinct parameters were quanti-
fied either as geometric mean fluorescence intensity
(GMFI) or percentage of cells that express a cell surface
receptor. Comparisons between immune cell parameters
from healthy donors and IBC stage IV patients were per-
formed with a Wilcoxon rank-sum test. P and R values
for the significance of correlations between immune pa-
rameters were determined using a Spearman test. False
discovery rate (FDR) analysis was further performed for
comparisons within flow cytometry data using the
Benjamini-Hochberg method and significance was de-
fined as an FDR of < 20% [26].

Results
Population studied
Fourteen female patients with metastatic IBC (stage IV)
and 11 healthy female age-similar volunteers were in-
cluded in the study (characteristics summarized in
Table 1). The median age of the IBC patient population
at disease onset was 49.5 years old (range 30–69 years
old) and the median age at the time of blood drawn was
50.5 years old (range 31–72). The median age of healthy
donors was 54 (range 34–70). From the 14 metastatic
IBC patients, 2 patients were treatment naïve at the time
of blood collection (patients 9 and 13 in Table 1). Of the
12 patients that were treated, 5 patients had ER−PR−-

Her2− (triple-negative, TN) IBC subtype; 4 patients had
ER−PR−Her2+ IBC; 1 patient had ER+PR−Her2+ IBC; and
2 patients had ER+PR−Her2− IBC at the time of blood
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collection (Table 1). From patients without treatment at
the time of enrollment in the study, 1 patient had
ER−PR−Her2+ disease and another had ER+PR+Her2+

IBC. The median overall survival for the 5 TN and 9
non-TN patients was 31months and 44 months, respect-
ively (Table 1).

Lymphocytes in metastatic IBC
We performed comprehensive immune phenotyping by
multi-parameter flow cytometry on fresh peripheral
blood samples from each of the IBC patients and healthy
controls. Seventy-two immune parameters (Supplemen-
tary Table S2) were compared between IBC and healthy
donors by Wilcoxon rank-sum test. The absolute counts
of T cells (CD3+), B cells (CD19+ CD3−), helper T cells
(CD3+ CD4+), cytotoxic T cells (CD3+ CD8+), and nat-
ural killer (NK) cells (CD3− CD56+) in blood were also
determined, and median values are shown in Table 2.
IBC patients with metastatic disease had a significantly
lower absolute lymphocyte count than healthy female
donors (median 897 ± 413 versus 1976 ± 855; Fig. 1a).
The absolute number of total NK cells in the peripheral
blood of IBC patients was also lower than in healthy
donors (117 ± 80 versus 296 ± 142; Fig. 1b), which paral-
leled reductions in absolute numbers of B cells (137 ±
101 versus 223 ± 96; Fig. 1c) and T cells (646 ± 350

versus 1496 ± 763; Fig. 1d). The five IBC patients with
TN disease exhibited some of the most extreme lympho-
penia with particularly low levels of T cells (Fig. 1a, d;
TN IBC patients are shown as shaded triangles in Figs. 1,
2, and 3). It is also worth noting that lymphocyte counts
from the two patients that did not receive chemotherapy
treatment were similar to other IBC patients (especially
comparable to the non-TN treated patients; shown as
filled squares in Figs. 1, 2, and 3).

Different subpopulations of T lymphocytes
The absolute number of CD4+ T helper lymphocytes in
the peripheral blood of metastatic IBC patients was sig-
nificantly lower than in healthy donors (372 ± 236 versus
873 ± 701, respectively; Fig. 1e), with the lowest numbers
in the TN patients. Significant reductions were also
noted in the absolute numbers of CD8+ cytotoxic T
lymphocytes (222 ± 117 versus 458 ± 215, respectively;
Fig. 1f and Table 2). The median CD4/CD8 ratio was
also lower at 1.7 ± 0.7 for metastatic IBC patients and
2.6 ± 1.6 for healthy donors (Fig. 1g and Table 2). In
addition, the numbers of CD4+CD8+ T lymphocytes
were lower in the IBC patients (6 ± 5 versus 14 ± 104;
Fig. 1h and Table 2).
T cell subsets were further delineated by differential

staining for CD45RA and CD62L. Lymphopenia was

Table 2 The median number ± standard deviation of lymphocytes per μl is indicated for 14 stage IV metastatic IBC patients and 11
healthy donors as assessed using BD Trucount™ assays

IBC patients Healthy donors p values

Total lymphocytes per μl 897 ± 413 1976 ± 855 0.00018

CD3+ T cells per μl 646 ± 350 1496 ± 762 0.00051

CD8+ T cells per μl 222 ± 117 458 ± 215 0.015

CD4+ T cells per μl 372 ± 236 873 ± 701 0.00093

CD4+CD8+ cells per μl 6 ± 5 14 ± 104 0.0030

NK cells per μl 117 ± 80 296 ± 142 0.00076

B cells per μl 137 ± 101 223 ± 96 0.017

CD4/CD8 ratio 1.7 ± 0.7 2.6 ± 1.6 0.023

CD4+ central memory cells per μl 165 ± 88 335 ± 296 0.00051

CD4+ effector cells per μl 1 ± 29 12 ± 13 0.0034

CD4+ effector memory cells per μl 68 ± 39 136 ± 91 0.0016

CD4+ naïve cells per μl 125 ± 126 382 ± 330 0.00093

CD8+ central memory cells per μl 20 ± 32 49 ± 32 0.0048

CD8+ effector cells per μl 43 ± 39 87 ± 56 0.37

CD8+ effector memory cells per μl 46 ± 54 112 ± 77 0.035

CD8+ naïve cells per μl 89 ± 68 168 ± 131 0.052

CD16 GMFI on CD56bright NK cells 4896 ± 3883 3224 ± 1361 0.023

Granzyme B GMFI on CD56bright NK cells 1257 ± 1064 578 ± 474 0.049

Perforin GMFI on CD56bright NK cells 9412 ± 18,059 4564 ± 4717 0.049

All comparisons with significant p values < 0.05 also passed false discovery rate testing
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evident in all naive, effector, and memory subsets of
CD4+ and CD8+ T cells, but fell short of statistical sig-
nificance in the naive and effector CD8+ T cell subsets
(Fig. 2a–h and Table 2). The more significant reduction
of CD4+ T cells in TN patients was particularly evident
in CD4+ naïve and central memory subsets (Fig. 2a, d).

Natural killer cells
NK cells provide important innate anti-tumor responses
in early and metastatic cancers [27]. Most NK cells in
the peripheral circulation are highly cytolytic toward cer-
tain tumor target cells and express high levels of per-
forin and granzyme B in cytolytic granules, low levels of
the surface marker CD56 (neural cell adhesion molecule
1; CD56dim), and high levels of CD16 (FcγRIIIA, low-
affinity receptor for the Fc portion of IgG), which can
mediate potent antibody-dependent cellular cytotoxicity
(ADCC). A less mature, but minor subset of NK cells in

human blood expresses high levels of CD56 (CD56bright),
mediates more cytokine production than cytotoxicity,
and generally lacks expression of perforin, granzyme B,
and CD16. The amount of CD16 expressed on the
surface of immature CD56bright NK cells in IBC stage
IV patients was higher than in healthy donors (me-
dian 4896 ± 3883 vs. 3224 ± 1361 GMFI; Fig. 3a and
Table 2), although the expression was not different in
the CD56dim NK cells (data not shown). CD56bright

NK cells in metastatic IBC patients also tended to
have higher expression of granzyme B (1257 ± 1064
vs. 578 ± 474 GMFI; Fig. 3b and Table 2) and perforin
(9412 ± 18,059 vs. 4564 ± 4717 GMFI; Fig. 3c and
Table 2) than in healthy donors. All of these changes
suggest that the CD56bright NK cells may be express-
ing markers characteristic of more mature CD56dim

cells because they are rapidly maturing to replenish
the depleted pool of NK cells.

Fig. 1 Frequencies of major lymphocyte types in peripheral blood of IBC patients compared to healthy controls. Absolute counts per μl of
peripheral blood were determined for a total lymphocytes, b CD3−CD56+ NK cells, c CD19+ B cells, d CD3+ T cells, e CD3+CD4+ T cells, f
CD3+CD8+ T cells, g CD4+ to CD8+ ratio of CD3+ T cells, and h CD3+CD4+CD8+ T cells. Healthy donors are shown as open circles, triple-negative
IBC patients as shaded triangles, untreated IBC patients as filled squares, and chemotherapy-treated IBC patients as open squares. Horizontal lines
indicate median values and statistical significance was determined by a Wilcoxon rank-sum test
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PD-1 and PD-L1 expression in IBC tumors
We were able to evaluate PD-1 and PD-L1 expression
levels by immunohistochemistry (IHC) analysis in tumor
biopsies from 11 of the 14 stage IV IBC patients. Biopsy
details are provided in Supplementary Table S3, and rep-
resentative IHC staining is shown in Fig. 4a. PD-1 ex-
pression with this assay was observed only on TIL, and
while PD-L1 expression may be observed on a variety of
cell types, it was observed exclusively on infiltrating im-
mune cells in this particular cohort of samples. A 0–5
point system was used to score expression patterns with
“5” being the highest level, as described in the “Methods”
section. Since more than one tumor sample was evalu-
ated for some patients, we report the highest score from
repeat samples as the value for a particular patient in
Fig. 4b, but values for all samples are reported in Supple-
mentary Table S3. As shown in Fig. 4c, the highest level
of PD-1 expression was scored as “3” (moderate) in only
two patients (18.2%). PD-L1 expression levels were more

diverse with expression scored as “4” (high) in four pa-
tients (36.4%) (Fig. 4b). Interestingly, a positive correl-
ation was observed between co-expression of PD-1 and
PD-L1 in the tumor samples from the IBC patients
(Fig. 4c).

Correlations of parameters in blood to PD-L1 in tumor
samples
We next explored whether expression levels of PD-L1 in
tumor biopsies correlated with immune biomarkers on
T and NK cells in peripheral blood. Eight of the biopsy
samples were obtained within 1 month of the blood ana-
lyzed by flow cytometry (Fig. 4b and Supplementary Fig-
ure S3), and these were used for correlation analysis
between tumor and blood samples. A significant positive
correlation was observed between PD-L1 in the tumor
biopsies and granzyme B expression level in CD56dim

NK cells in peripheral blood, as shown in Fig. 5a. A posi-
tive correlation was also noted for PD-L1 expression in

Fig. 2 Frequencies of T cell subsets in peripheral blood of IBC patients compared to healthy controls. Absolute counts per μl of peripheral blood
were determined for a CD4+ naive (CD62L+ CD45RA+) T cells, b CD4+ effector (CD62L− CD45RA+) T cells, c CD4+ effector memory (CD62L−

CD45RA−) T cells, d CD4+ central memory (CD62L+ CD45RA-) T cells, e CD8+ naive T cells, f CD8+ effector T cells, g CD8+ effector memory T cells,
and h CD8+ central memory T cells. Healthy donors are shown as open circles, triple-negative IBC patients as shaded triangles, untreated IBC
patients as filled squares, and chemotherapy-treated IBC patients as open squares. Horizontal lines indicate median values and statistical
significance was determined by a Wilcoxon rank-sum test
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tumor biopsies and both granzyme B and perforin in
CD4+ helper T cells in peripheral blood, which charac-
teristically express very low levels of these cytolytic
granule-associated proteins (Fig. 5b, c). As shown in
Fig. 5d, a higher PD-L1 IHC score in tumor samples was
also found to correlate significantly with higher numbers
of CD8+ effector memory cytotoxic T cells in peripheral
blood. A higher PD-L1 score in tumor biopsies was also
significantly correlated with a reduced percentage of
naïve CD8+ T cells in the blood (Fig. 5e). Therefore, our
data demonstrate that higher expression of PD-L1 in the
stage IV IBC tumor microenvironment (TME) increases
cytolytic granule components in blood NK and CD4+ T
cells and appears to shift the CD8+ T cell pool from
naïve toward an effector memory phenotype in periph-
eral blood, suggesting that an immune response had oc-
curred in many of these patients, presumably toward the
IBC tumor.

Correlations of TIL and PD-1 and PD-L1 in tumor samples
Given the correlations of PD-L1 expression in the tu-
mors and immune parameters in the blood, we also
assessed whether PD-1 and PD-L1 in these tumors cor-
related with tumor-infiltrating lymphocytes (TIL). The
tumors were stained by IHC for CD3 to quantify infil-
trating T cells and CD20 to quantify B cells, and exam-
ples of staining are shown in Fig. 6a. The infiltrating T
and B cells were quantified as percentage of positive
cells relative to the nucleated cells within each tumor
and immediate peri-tumoral space. The percentage of

infiltrating T and B cells did not correlate with any of
the immune parameters in the blood. On the other
hand, the B cell infiltration correlated significantly with
expression of both PD-1 and PD-L1 in tumor, as shown
in Fig. 6b, c, although only the correlation with PD-1
passed FDR analysis. A trend was also noted for a correl-
ation between T cell infiltration and expression of PD-1,
which was statistically significant by Wilcoxon analysis,
but did not pass FDR analysis, as shown in Fig. 6d.

Discussion
In the present work, we studied the immune profile of
14 IBC patients with stage IV disease and compared to
11 age-similar healthy controls. The analysis of fresh
peripheral blood showed that the most notable param-
eter that differed in the immune cells of the patients
with metastatic IBC was lymphopenia. Our data showed
significant deficits in numbers of T, NK, and B lympho-
cytes in peripheral blood of stage IV IBC patients. Al-
though we cannot rule out that some of the
lymphopenia in our patient population may have re-
sulted from prior chemotherapy, we show that lympho-
cyte subset counts from our two treatment naïve IBC
patients were generally consistent with treated non-TN
IBC patients and nearly always below the medians of our
healthy controls, indicating a disease-related impact. A
previous study by Reuben and Lee also demonstrated
that patients with metastatic IBC had lymphopenia asso-
ciated with significantly lower CD4+ T and B cells, but
higher counts of monocytes in peripheral blood as

Fig. 3 Expression levels of CD16, granzyme B, and perforin in NK cell subsets from IBC patients compared to healthy controls. Expression levels
CD56bright NK cells as measured by geometric mean fluorescence intensity (GMFI) for expression levels of a CD16 (FcγRIIIA), b granzyme B, and c
perforin. Healthy donors are shown as open circles, triple-negative IBC patients as shaded triangles, untreated IBC patients as filled squares, and
chemotherapy-treated IBC patients as open squares. Horizontal lines indicate median values and statistical significance was determined by a
Wilcoxon rank-sum test
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Fig. 4 Analysis of PD-1 and PD-L1 expression in tumor biopsies from stage IV IBC patients. Sixteen tumor biopsy samples from 11 patients were
stained by immunohistochemistry for PD-1 and PD-L1. Biopsies from patients #1, 5, and 8 were not available for evaluation. Details on biopsies
are provided in Supplementary Table S3. a PD-1 and PD-L1 staining in brown is shown in samples from a representative patient. Magnification is
× 600 in each image and bars designate 40 μm. b The expression scores for PD-1 and PD-L1 for tumor biopsy samples from the 11 patients
assayed. Score definitions are provided in the “Methods” section. Values represent the maximum measured PD-1 or PD-L1 values in cases where a
second measurement was made (all values shown in Supplementary Figure S3). Gray shaded patients had blood samples acquired within
1 month of tumor biopsies and were utilized for blood to tumor comparisons in Fig. 5. c Positive correlation between PD-L1 score (y-axis) and
PD-1 score (x-axis) from the 11 patients evaluated using maximum values from panel b. Open squares designate overlapping datapoints from
two patients. P and R values were computed from a Spearman test. The line is a least-squares fit to the data that is provided for visual purposes
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Fig. 5 Correlations between PD-L1 expression in tumor samples by IHC and various immune parameters in peripheral blood by flow cytometry.
Flow cytometry data from the eight patients that provided blood samples within 1 month of tumor biopsies (Fig. 4b) were correlated with PD-L1
scores in their tumors. Scores for PD-L1 staining from tumor biopsies in individual patients are shown on the x-axis in each panel with y-axes
showing values for significantly correlated flow cytometry parameters from the same patients: a Granzyme B GMFI in CD56dim NK cells, b
granzyme B GMFI in CD4+ T cells, c perforin GMFI in CD4+ T cells, d numbers of CD8+ effector memory T cells/μl of peripheral blood, e % of total
CD8+ T cells with the naïve phenotype. Datapoints represent the maximum measured PD-L1 values in cases where a second measurement was
made, as in Fig. 4. P and R values were computed from a Spearman test. The lines are least-squares fits to the data that are provided for
visual purposes
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compared to healthy controls, whereas these cell
counts were similar to healthy controls in IBC pa-
tients with non-metastatic disease [28]. Mego et al.

also reported more severe decreases in absolute
lymphocyte count of IBC patients with metastatic dis-
ease [29].

Fig. 6 Correlations between PD-1 and PD-L1 expression in tumor samples and infiltrating T and B cells by IHC. The eight tumor samples analyzed
in Fig. 5 were stained for CD3 to mark infiltrating T cells, CD20 to mark infiltrating B cells, and hematoxylin. The sample from patient 10 had
limited available tissue, so this was excluded from the CD3 staining analysis. a CD3 and CD20 staining in brown is shown in samples from a
representative patient. Magnification is × 100 in each image and bars designate 200 μm. Percentages of CD3+ or CD20+ TIL were assessed by a
pathologist as percentage of positive cells relative to total nucleated cells in tumor and immediately peri-tumoral areas. Percentage scores for
staining of TIL (x-axis) were correlated to scores for PD-1 and PD-L1 (y-axis) from the same tumor biopsies in individual patients are shown as: b
% CD20+ TIL vs. PD-1, c % CD20+ TIL vs. PD-L1, and d % CD3+ TIL vs. PD-1. Numbers next to square icons designate the number of multiple
superimposed data points at that position
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Our results expand upon previous studies by showing
that the numbers of all subpopulations of CD4+ helper
T cells (naïve, central memory, effector memory, and ef-
fector) were significantly lower in stage IV IBC patients,
whereas reductions within CD8+ cytotoxic T lympho-
cytes were more concentrated in the memory subsets.
CD4+ T lymphocytes enhance tumor antigen-specific
immune responses by producing cytokines, and CD8+ T
cells provide key adaptive anti-tumor immunity through
their production of IFN-γ and cytolytic activity [30].
While naïve T cells have not yet been activated and exist
in a resting state, effector T cells are short-lived and ex-
hibit low proliferative capacity, but elicit potent func-
tional responses toward an antigenic target [31]. The
memory subsets provide more rapid and robust second-
ary responses upon re-exposure to antigens, whereupon
they differentiate to an effector state. Central memory T
cells have the most potent proliferative capability and
longevity, but weakest functional responsiveness, while
effector memory cells have intermediate properties be-
tween central memory and effector T cells [31].
It should be noted that lymphopenia is more common

in patients with a variety of advanced tumors, as com-
pared to those with localized disease [32]. In particular,
reductions in peripheral CD4+ T lymphocytes are com-
monly observed in advanced cases of pancreatic cancer,
melanoma, non-Hodgkin lymphoma, sarcoma, hepato-
cellular carcinoma, and breast cancer [32]. Lymphope-
nia, particularly the low frequency of CD4+ T cells, in
patients with advanced cancer has also been shown to
correlate with performance status, unfavorable prognos-
tic factors, and worse survival [32, 33].
Our data support the findings of Reuben and Lee,

which reported that the CD4/CD8 ratio of non-
metastatic IBC patients was significantly higher than in
metastatic IBC patients, because the non-metastatic IBC
patients had a significantly greater reduction in CD4+

helper T lymphocytes than healthy controls [28]. In con-
trast, Mego et al. did not observe any alterations in
CD4/CD8 T cell ratio between patients with metastatic
or non-metastatic IBC and healthy normal donors [29].
Of note, the percentage of CD4+ T cells that were
FoxP3+ and CD25high (regulatory T cells; Treg) did not
differ between our IBC patient and healthy control co-
horts (data not shown), in contrast to the Mego et al. re-
port of decreased numbers of Tregs in metastatic IBC
patients compared to non-metastatic IBC patients and
healthy controls [28].
While our study showed reduced numbers of periph-

eral NK cells in metastatic IBC, Reuben and Lee found
no significant reductions in NK cells of metastatic or
non-metastatic IBC patients, as compared to healthy
controls [28]. NK cells constitute approximately 5% of
the lymphocytes in healthy human peripheral blood and

are involved in controlling tumor progression and me-
tastases in a variety of contexts [34]. Two major NK cell
subsets are found in human subjects that can be distin-
guished by their levels of CD56 expression, namely
CD56dim and CD56bright [35]. CD56bright NK cells make
up approximately 2–10% of total NK cells in peripheral
blood, are less mature, more apt to leave the vasculature,
more efficient at producing cytokines, and less cytolytic
than CD56dim cells. The predominant cytolytic targets of
NK cells are rare cells that have downregulated expres-
sion of class I MHC (MHC-I), which is normally
expressed on healthy nucleated cells of the body [36].
MHC-I loss is a common mechanism by which tumors
and virus-infected cells can evade recognition by cyto-
lytic T cells, and NK cells can thereby overcome this po-
tential immunologic evasion mechanism [27]. A
counterbalance of signals from activating and MHC-I-
binding inhibitory receptors on NK cells regulate their
responsiveness [37]. Non-IBC tumors commonly express
ligands for the NK cell activating receptors, DNAM-1
and NKG2D, which can increase their susceptibility to
attack [38]. CD56dim NK cells express the activating re-
ceptor CD16 (low-affinity FcγRIIIA) and mediate cyto-
toxicity by the directed exocytosis of perforins and
granzymes from cytolytic granules, which perforate the
target cell plasma cell membrane and trigger apoptosis,
respectively [39]. A previous report described increased
frequencies of immature and non-cytolytic NK cells in
advanced non-IBC patients [40], although such a shift
was not evident in our study. Instead, our data showed
that IBC patients had higher expression levels of CD16,
granzyme B, and perforin on their CD56bright NK cells,
suggesting that these immature cells are undergoing ac-
celerated maturation to replenish the diminished mature
CD56dim population. In contrast to our observed in-
crease in CD16 expression in stage IV IBC, a previous
report showed decreased expression of activating NK
cell receptors, including CD16, during progression of
non-IBC, while inhibitory receptors increased and this
correlated with decreased NK cell function, at least par-
tially due to TGF-β1 in the TME [41].
Our study also provides further evidence that the im-

mune system in some metastatic IBC patients has
responded to the tumor at some stage of cancer develop-
ment. We showed that IBC tumors from a subset of
stage IV patients expressed moderate to high levels of
PD-1 (18.2% of patients) and PD-L1 (36.4% of patients)
on infiltrating immune cells by IHC analysis. In addition,
we found a positive correlation between PD-L1 expres-
sion and PD-1 expression in our IBC tumor biopsies.
Our results are consistent with Bertucci et al., who re-
ported overexpression of PD-L1 mRNA in 38% of IBC
patient tumors that were associated with increased B
and CD8+ T cell gene expression signatures [18].
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Similarly, two groups recently found that expression of
PD-L1 in IBC tumor samples correlated with higher
stromal tumor-infiltrating lymphocytes (sTIL) that were
highly enriched in CD20+ B cells, and their combined
presence was associated with better response to neoadju-
vant therapy [17, 22]. We have expanded upon these re-
sults by further showing that expression of PD-1 and
PD-L1 in our stage IV IBC samples correlated signifi-
cantly with infiltration of CD20+ B cells and a trending
correlation was noted for infiltration of CD3+ T cells.
The invasion of the tumor stroma by sTIL is often asso-
ciated with a better prognosis in ER-negative non-IBC
[42]. Although breast cancer is considered moderately
immunogenic, the presence of neoantigens seems to
elicit an immune response, and infiltrating immune cells
play an essential role in the host-defense mechanism
against ER-negative non-IBC in both adjuvant and neo-
adjuvant studies [43, 44]. Van Berckelaer et al. recently
showed that PD-L1 expression on sTIL was more fre-
quently observed in IBC than non-IBC except in the
Her2+ subtype [22]. PD-L1 expression on immune cells
was seen in 38.6–42.9% of the IBC patients, and it was
significantly higher than in non-IBC patients [22].
Hamm et al. also showed that some IBC tumors had
high infiltration of CD8+ cells expressing PD-L1, and
these had genetic profiles predictive of greater incidence
of potential neoantigens [21].
As an extension of the previous studies, we also found

correlations between PD-L1 expression in the stage IV
IBC tumors and immune parameters in peripheral
blood. Our results showed that the expression levels of
PD-L1 in tumor tissues correlated positively with expres-
sion levels of cytolytic granule components (perforin and
granzyme B) in peripheral blood CD4+ T and CD56dim

NK cells. The higher levels of these granule components
are indicative of a previously activated state and consist-
ent with the higher levels in immature CD56bright NK
cells, as compared to healthy controls. Furthermore, we
found that higher expression of PD-L1 in the tumors
also correlated with a shift from reduced percentages of
naïve to increased frequency of effector memory CD8+ T
cells in peripheral blood. Taken together, these results
suggest that the CD4+ T and NK cells have been acti-
vated and effector memory CD8+ T cells have at some
point expanded in response to expression of the im-
munosuppressive ligand in the tumor in a subset of the
metastatic IBC patients. Despite these activation events,
these immune cells have declined in overall numbers
and presumably progressed to the classical exhausted
state after chronic exposure to tumor. T cell exhaustion
is a phenotype defined by poor effector function, such as
reduced secretion of IL-2, IFN-γ, and TNF-α [45]. Reu-
ben and Lee have further found that CD8+ T cells from
the blood of patients with non-metastatic IBC had

enhanced IFN-γ production responses upon T cell re-
ceptor (TCR)-stimulation, while IFN-γ production de-
clined again toward levels of healthy donors in
patients with metastatic IBC [28]. These results sug-
gest that CD8+ T cell responsiveness may be en-
hanced in non-metastatic IBC patients. All of these
observations imply that immunotherapy should be
considered as a potential treatment for those patients
exhibiting increased expression of PD-1 and/or PD-L1
in tumor and/or increased numbers of cytolytic ef-
fector memory T cells in peripheral blood. In such
patients, blockade of the PD-1/PD-L1 inhibitory axis
has the potential to reactivate antigen-experienced,
exhausted T cells toward the tumor and thereby
might improve clinical outcome. In fact, four clinical
trials are currently testing the efficacy of PD-1 or PD-
L1 blockade in IBC patients (NCT03515798,
NCT02411656, NCT03742986, and NCT03202316).
The data reported in our study support the concept of

progressive immune dysfunction as IBC advances to
highly metastatic clinical behavior. In fact, IBC is associ-
ated with early metastatic dissemination as suggested by
higher numbers of circulating tumor cells (CTCs) com-
pared to other forms of breast cancer. It has been shown
that IBC patients with higher numbers of CTCs also
have a more compromised immune status, which is
characterized by reduced percentages of CD4+ helper T
cells, higher percentage of Treg cells, and reduced
cytokine-producing CD8+ T cells [29]. Peripheral blood
immune cells can contribute to an unfavorable environ-
ment for CTC survival, since innate and adaptive im-
mune mechanisms are purportedly responsible for
controlling tumor dissemination and, perturbations in
the immune surveillance could favor an environment
conducive for the survival and dissemination of CTCs,
ultimately leading to cancer progression [46]. We can
hypothesize that the lower level of immune surveillance
in lymphopenic metastatic IBC patients could facilitate
additional metastasis, but the ultimate causes of immune
dysfunction in IBC need to be better defined. To im-
prove mechanistic understanding, Reddy et al. recently
showed greater macrophage infiltration in IBC tumors
than in other breast cancers [47], and they further
showed that IBC tumors with increased infiltration of
mast cells were associated with poorer clinical responses
to neoadjuvant chemotherapy [48]. Also, Valeta-Magara
et al. recently showed that IBC tumors produce chemo-
kines and cytokines that recruit monocytes and polarize
macrophages to the M2 phenotype, which are immuno-
suppressive and tumor-promoting [49]. Thus, the accu-
mulating evidence suggests that M2 macrophages and
the PD-1/PD-L1 axis contribute to the immunosuppres-
sive TME in IBC, although more studies are clearly
needed.
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Conclusions
Through this work, we investigated immune parameters
in peripheral blood of metastatic IBC patients by using
flow cytometry-based immune phenotyping, which is
different from most of the previous studies in IBC that
focused on infiltrating immune cells. We further com-
pared these parameters with PD-1 and PD-L1 expression
and T and B cell infiltration in IBC tumor biopsies by
IHC. A limitation of our work is the small cohort of pa-
tients that were analyzed. Nonetheless, IBC is a rare can-
cer in need of more detailed study, and we provide
comparison between immune parameters in peripheral
blood and within the TME.
Our study provides evidence that the immune system

of a subset of patients with stage IV IBC has responded
to the tumor. IBC tumor biopsies from most patients
expressed clearly detectable levels of PD-1 (18.2% of pa-
tients) and PD-L1 (36.4% of patients), as defined by
staining scores of 3–4 (moderate to high), and expres-
sion levels of this checkpoint receptor/ligand pair were
correlated in the TME. Interestingly, increased PD-L1
expression in tumor also correlated with higher cytolytic
granule components in NK and CD4+ helper T cells
from blood, as well as greater frequency of effector
memory and lower percentage of naïve CD8+ cytotoxic
T cells in the blood. PD-1 expression in tumor also cor-
related with increased CD20+ B cell TIL. These results
provide rationale to consider PD-1/PD-L1 blocking im-
munotherapy as a potential treatment for IBC patients
exhibiting increased expression of PD-1 and/or PD-L1 in
tumor. In such patients, blockade of the PD-1/PD-L1 in-
hibitory axis has the potential to reactivate antigen-
experienced exhausted T cells toward the tumor and
thereby might improve clinical outcome.
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