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Abstract

Background: Breast cancer survivors are at risk for contralateral breast cancer (CBC), with the consequent burden of
further treatment and potentially less favorable prognosis. We aimed to develop and validate a CBC risk prediction
model and evaluate its applicability for clinical decision-making.

Methods: We included data of 132,756 invasive non-metastatic breast cancer patients from 20 studies with 4682
CBC events and a median follow-up of 8.8 years. We developed a multivariable Fine and Gray prediction model
(PredictCBC-1A) including patient, primary tumor, and treatment characteristics and BRCA1/2 germline mutation
status, accounting for the competing risks of death and distant metastasis. We also developed a model without
BRCA1/2 mutation status (PredictCBC-1B) since this information was available for only 6% of patients and is routinely
unavailable in the general breast cancer population. Prediction performance was evaluated using calibration and
discrimination, calculated by a time-dependent area under the curve (AUC) at 5 and 10 years after diagnosis of
primary breast cancer, and an internal-external cross-validation procedure. Decision curve analysis was performed to
evaluate the net benefit of the model to quantify clinical utility.
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Results: In the multivariable model, BRCA1/2 germline mutation status, family history, and systemic adjuvant
treatment showed the strongest associations with CBC risk. The AUC of PredictCBC-1A was 0.63 (95% prediction
interval (PI) at 5 years, 0.52–0.74; at 10 years, 0.53–0.72). Calibration-in-the-large was -0.13 (95% PI: -1.62–1.37), and the
calibration slope was 0.90 (95% PI: 0.73–1.08). The AUC of Predict-1B at 10 years was 0.59 (95% PI: 0.52–0.66);
calibration was slightly lower. Decision curve analysis for preventive contralateral mastectomy showed potential
clinical utility of PredictCBC-1A between thresholds of 4–10% 10-year CBC risk for BRCA1/2 mutation carriers and
non-carriers.

Conclusions: We developed a reasonably calibrated model to predict the risk of CBC in women of European-
descent; however, prediction accuracy was moderate. Our model shows potential for improved risk counseling, but
decision-making regarding contralateral preventive mastectomy, especially in the general breast cancer population
where limited information of the mutation status in BRCA1/2 is available, remains challenging.

Keywords: Contralateral breast cancer, Risk prediction model, Clinical decision-making, BRCA mutation carriers

Introduction
Breast cancer (BC) is a major burden for women’s
health [1]. Survival has improved substantially over
the past half century due to earlier detection and ad-
vanced treatment modalities, for example in the
Netherlands, 10-year survival of a first primary BC
improved from 40% in 1961–1970 to 79% in 2006–
2010 [2]. Consequently, increasing numbers of BC
survivors are at risk to develop a new primary tumor
in the opposite (contralateral) breast, with subsequent
treatment and potentially less favorable prognosis [3].
BC survivors are more likely to develop contralateral
breast cancer (CBC) compared to healthy women to
develop a first primary BC [4].
Women at elevated CBC risk have been identified to

be BRCA1/2 and CHEK2 c.1100del mutation carriers
and to have a BC family history, particularly a family his-
tory of bilateral BC [5–10]. For BRCA1/2 mutation car-
riers, in whom CBC risk is high, contralateral preventive
mastectomy (CPM) is often offered [11]. However, the
average risk of CBC among all first BC survivors is still
relatively low, with an incidence of ~ 0.4% per year [12–
14]. Despite this, in recent years, CPM frequency has in-
creased among women in whom CBC risk is low [15].
For these reasons, there is an urgent need for improved
individualized prediction of CBC risk, both to facilitate
shared decision-making of physicians and women re-
garding treatment and prevention strategies for those at
high CBC risk and to avoid unnecessary CPM or surveil-
lance mammography after first primary BC when CBC
risk is low.
To our knowledge, only one specific CBC risk predic-

tion model (CBCrisk) has been developed to date.
CBCrisk used data on 1921 CBC cases and 5763
matched controls with validation in two independent US
studies containing a mix of invasive and in situ BC [16,
17]. Moreover, the level of prediction performance mea-
sures such as calibration and discrimination needed for

a CBC risk prediction to be clinically useful have not yet
been addressed [18].
Our aim was twofold: first, to develop and validate a

CBC risk prediction model using a large international
series of individual patient data including 132,756 pa-
tients with a first primary invasive BC between 1990 and
2013 from multiple studies in Europe, USA, and
Australia with 4682 incident CBCs, and second, to evalu-
ate the potential clinical utility of the model to support
decision-making.

Material and methods
Study population
We used data from five main sources: three studies from
the Netherlands, 16 studies from the Breast Cancer As-
sociation Consortium (BCAC), and a cohort from the
Netherlands Cancer Registry [19–22]. For details regard-
ing data collection and patient inclusion, see Add-
itional file 1: Data and patient selection and Table S1,
and Additional file 1: Table S2. We included female pa-
tients with invasive non-metastatic first primary BC with
no prior history of cancer (except for non-melanoma
skin cancer). The studies were either population- or
hospital-based series; most women were of European-
descent. We only included women diagnosed after 1990
to have a population with diagnostic and treatment pro-
cedures likely close to modern practice and at the same
time sufficient follow-up to study CBC incidence; in
total 132,756 women from 20 studies were included. All
studies were approved by the appropriate ethics and sci-
entific review boards. All women provided written in-
formed consent or did not object to secondary use of
clinical data in accordance with Dutch legislation and
codes of conduct [23, 24].

Available data and variable selection
Several factors have been shown or suggested to be asso-
ciated with CBC risk, including age at first BC, family
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history for BC, BRCA1/2 and CHEK2 c.1100del muta-
tions, body mass index (BMI), breast density change,
(neo)adjuvant chemotherapy, endocrine therapy, CPM,
and characteristics of the first BC such as histology
(lobular vs ductal), estrogen receptor (ER) status, lymph
node status, tumor size, and TNM stage [5, 9, 12, 25–
36]. The choice of factors to include in the analyses was
determined by evidence from literature, availability of
data in the cohorts, and current availability in clinical
practice. We extracted the following information:
BRCA1/2 germline mutation, (first degree) family history
of primary BC, and regarding primary BC diagnosis: age,
nodal status, size, grade, morphology, ER status, proges-
terone receptor (PR), human epidermal growth factor re-
ceptor 2 (HER2) status, administration of adjuvant and/
or neoadjuvant chemotherapy, adjuvant endocrine ther-
apy, adjuvant trastuzumab therapy, radiotherapy. We ex-
cluded PR status and TNM stage of the primary BC due
to collinearity with ER status and the size of the primary
tumor, respectively. In the current clinical practice, only
patients with ER-positive tumors receive endocrine ther-
apy and only patients with HER2-positive tumors receive
trastuzumab; these co-occurrences were considered in
the model by using composite categorical variables.
More information is available online about the factors
included in the analyses (Additional file 1: Data patient
selection and Additional file 2: Figure S1), follow-up per
dataset, and study design (Additional file 1: Table S2).

Statistical analyses
All analyses were performed using SAS (SAS Institute
Inc., Cary, NC, USA) and R software [37].

Primary endpoint, follow-up, and predictors
The primary endpoint in the analyses was in situ or in-
vasive metachronous CBC. Follow-up started 3 months
after invasive first primary BC diagnosis, in order to ex-
clude synchronous CBCs, and ended at date of CBC, dis-
tant metastasis (but not at loco-regional relapse), CPM,
or last date of follow-up (due to death, being lost to
follow-up, or end of study), whichever occurred first.
The follow-up of 27,155 (20.4%) women from the BCAC
studies, recruited more than 3months after diagnosis of
the first primary BC (prevalent cases), started at recruit-
ment (left truncation). Distant metastasis and death due
to any cause were considered as competing events.
Patients who underwent CPM during the follow-up were
censored because the CBC risk was almost zero after a
CPM [38]. Missing data were multiply imputed by
chained equations (MICE) to avoid loss of information
due to case-wise deletion [39, 40]. Details about the
imputation model, strategy used, and the complete case
analysis are provided in Additional file 1: Multiple Im-
putation of missing values, complete case analysis, and

model diagnostics and baseline recalibration and Add-
itional file 1: Tables S3 and S4.

Model development and validation
For model development, we used a multivariable Fine
and Gray model regression to account for death and dis-
tant metastases as competing events [41, 42]. Heterogen-
eity of baseline risks between studies was taken into
account using the study as a stratification term. A strati-
fied model allows the baseline subdistribution hazard to
be different across the studies, and parameter estimation
is performed by maximization of the partial likelihood
per study. A Breslow-type estimator was used to esti-
mate the baseline cumulative subdistribution hazard per
study. The assumption of proportional subdistribution
hazards was graphically checked using Schoenfield resid-
uals [43]. The resulting subdistributional hazard ratios
(sHRs) and corresponding 95% confidence intervals (CI)
were pooled from the 10 imputed data sets using Rubin’s
rules [44]. We built a nomogram for estimating the 5-
and 10-year cumulative incidence of CBC as a graphical
representation of the multivariable risk prediction model
[45].
The validity of the model was investigated by leave-

one-study-out cross-validation, i.e., in each validation
step, all studies are used except one in which the validity
of the model is evaluated [46, 47]. Since the ABCS study
and some studies from BCAC had insufficient CBC
events required for reliable validation, we used the geo-
graphic area as unit of splitting. We had 20 studies in
five main sources: 17 out of 20 studies that were com-
bined in 4 geographic areas. In total, 3 studies and 4
geographic areas were used to assess the prediction
performance of the model (see Additional file 1: Leave-
one-study-out cross-validation and Additional file 1:
Table S5, [47, 48].
The performance of the model was assessed by dis-

crimination ability to differentiate between patients who
experienced CBC and those who did not, and by calibra-
tion, which measures the agreement between observed
and predicted CBC risk. Discrimination was quantified
by time-dependent area under the ROC curves (AUCs)
based on Inverse Censoring Probability Weighting at 5
and 10 years [49, 50]. In the presence of competing risks,
the R package timeROC provides two types of AUC ac-
cording to a different definition of time-dependent cases
and controls. AUCs were calculated considering a pa-
tient who developed a CBC as a case and a patient free
of any event as a control at 5 and 10 years [50]. Values
of AUCs close to 1 indicate good discriminative ability,
while values close to 0.5 indicated poor discriminative
ability. Calibration was assessed by the calibration-in-
the-large and slope statistic [51]. Calibration-in-the-large
lower or higher than 0 indicates that prediction is
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systematically too high or low, respectively. A calibration
slope of 1.0 indicates good overall calibration; slopes
below (above) 1.0 indicate over (under) estimation of
risk by the model.
To allow for heterogeneity among studies, a random-

effect meta-analysis was performed to provide summar-
ies of discrimination and calibration performance. The
95% prediction intervals (PI) indicated the likely range
for the prediction performances of the model in a new
dataset. Further details about the validation process are
provided in Additional file 1: Leave-one-study-out cross-
validation.

Clinical utility
The clinical utility of the prediction model was evaluated
using decision curve analysis (DCA) [52, 53]. Such a de-
cision may apply to more or less intensive screening and
follow-up or to decision of a CPM. The key part of the
DCA is the net benefit, which is the number of true-
positive classifications (in this example: the benefit of
CPM to a patient who would have developed a CBC)
minus the number of false-positive classifications (in this
example: the harm of unnecessary CPM in a patient who

would not have developed a CBC). The false positives
are weighted by a factor related to the relative harm of a
missed CBC versus an unnecessary CPM. The weighting
is derived from the threshold probability to develop a
CBC using a defined landmark time point (e.g., CBC risk
at 5 or 10 years) [54]. For example, a threshold of 10%
implies that CPM in 10 patients, of whom one would de-
velop CBC if untreated, is acceptable (thus performing 9
unnecessary CPMs). The net benefit of a prediction
model is traditionally compared with the strategies of
treat all or treat none. Since the use of CPM is generally
only suggested among BRCA1/2 mutation carriers, for a
more realistic illustration, the decision curve analysis
was reported among BRCA1/2 mutation carriers and
non-carriers [55]. See Additional file 1: Clinical utility
for details.

Results
A total of 132,756 invasive primary BC women diag-
nosed between 1990 and 2013, with 4682 CBC events,
from 20 studies, were used to derive the model for CBC
risk (Additional file 1: Table S2). Median follow-up time
was 8.8 years, and CBC cumulative incidences at 5 and

Table 1 Multivariable subdistribution hazard model for contralateral breast cancer risk

Factor (category) at primary breast cancer Multivariable analysis

sHR 95% CI

Age, years 0.68* 0.62–0.74*

Family history (yes versus no) 1.35 1.27–1.45

BRCA mutation

BRCA1 versus non-carrier 3.68 3.34–4.07

BRCA2 versus non-carrier 2.56 2.36–2.78

Nodal status (positive versus negative) 0.87 0.80–0.93

Tumor size, cm

2.5 versus ≤ 2 0.95 0.89–1.02

> 5 versus ≤ 2 1.14 0.99–1.31

Morphology (lobular including mixed versus ductal including others) 1.23 1.14–1.34

Grade

Moderately differentiated versus well differentiated 0.89 0.82–0.96

Poorly differentiated versus well differentiated 0.75 0.70–0.82

Chemotherapy (yes versus no) 0.77 0.70–0.84

Radiotherapy to the breast (yes versus no) 1.01 0.95–1.08

ER (positive or negative)/endocrine therapy (yes or no)

Negative/no versus positive/yes 1.43 1.30–1.57

Positive/no versus positive/yes 1.75 1.61–1.90

HER2 (positive or negative)/trastuzumab therapy (yes or no)

Negative/no versus positive/yes 1.08 0.93–1.27

Positive/no versus positive/yes 0.99 0.83–1.18

sHR subdistributional hazard ratio, CI confidence interval, ER estrogen receptor, HER2 human epidermal growth factor receptor 2. *Age was parameterized as a
linear spline with one interior knot at 50 years. For representation purposes, we here provide the sHR for the 75th versus the 25th percentile. For more details
about age parameterization, see also Additional file 3: Supplementary Methods
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10 years were 2.1% and 4.1%, respectively. Details of the
studies and patient, tumor, and treatment characteristics
are provided in Additional file 1: Table S6. The multivar-
iable model with estimates for all included factors is
shown in Table 1 and Additional file 3. BRCA1/2 germ-
line mutation status, family history, and systemic adju-
vant treatment showed the strongest associations with
CBC risk.
The prediction performance of the main model (Pre-

dictCBC, version 1A) based on the leave-one-study-out
cross-validation method is shown in Fig. 1. The AUC at
5 years was 0.63 (95% confidence interval (CI): 0.58–
0.67; 95% prediction interval (PI): 0.52–0.74)); the AUC
at 10 years was also 0.63 (95% CI: 0.59–0.66; 95% PI:
0.53–0.72). Calibrations showed some indications of
overestimation of risk. The calibration-in-the-large was
− 0.13 (95% CI: -0.66–0.40; 95% PI: -1.62–1.37). The
calibration slope was 0.90 (95% CI: 0.79–1.02; 95% PI:
0.73–1.08) in the cross-validation. Calibration plots are
provided in Additional file 2: Figure S2 and S3.

The nomogram representing a graphical tool for esti-
mating the CBC cumulative incidence at 5 and 10 years
based on our model and the estimated baseline of the
Dutch Cancer Registry is shown in Fig. 2. In the nomo-
gram, the categories of each factor are assigned a score
using the topmost “Points” scale, then all scores are
summed up to obtain the “Total points”, which relate to
the cumulative incidence of CBC. The formulae of the
models (PredictCBC-1A and 1B) providing the predicted
cumulative incidence are given in Additional file 1: For-
mula to estimate the CBC risk and formula to estimate
CBC risk in patients not tested for BRCA.
The DCAs for preventive contralateral mastectomy

showed the potential clinical utility of PredictCBC-1A
between thresholds of 4–10% 10-year CBC risk for
BRCA1/2 mutation carriers and non-carriers (Table 2
and Additional file 3). For example, if we find it accept-
able that one in 10 patients for whom a CPM is recom-
mended develops a CBC, a risk threshold of 10% may be
used to define high and low risk BRCA1/2 mutation

Fig. 1 Analysis of predictive performance in leave-one-study-out cross-validation. a, b The discrimination assessed by a time-dependent AUC at 5
and 10 years, respectively. c The calibration accuracy measured with calibration-in-the-large. d The calibration accuracy measured with calibration
slope. The black squares indicate the estimated accuracy of a model built using all remaining studies or geographic areas. The black horizontal
lines indicate the corresponding 95% confidence intervals of the estimated accuracy (interval whiskers). The black diamonds indicate the mean
with the corresponding 95% confidence intervals of the predictive accuracy, and the dashed horizontal lines indicate the corresponding 95%
prediction intervals
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carriers based on the absolute 10-year CBC risk predic-
tion estimated by the model. Compared with a strategy
recommending CPM to all carriers of a mutation in
BRCA1/2, this strategy avoids 161 CPMs per 1000 pa-
tients. In contrast, almost no non BRCA1/2 mutation
carriers reach the 10% threshold (the general BC

population, Fig. 3). The decision curves provide a com-
prehensive overview of the net benefit for a range of
harm-benefit thresholds at 10-year CBC risk (Fig. 4).
Decision curves for CBC risk at 5 year and the corre-

sponding clinical utility are provided in Additional file 2:
Figure S4 and Additional file 1: Table S7, respectively.

Fig. 2 Nomogram for the prediction of 5- and 10-year contralateral breast cancer cumulative incidence. The 5- and 10-year contralateral breast
cancer cumulative incidence is calculated by taking the sum of the risk points, according to patient, first primary breast cancer tumor, and
treatment characteristics. For each factor, the number of associated risk points can be determined by drawing a vertical line straight up from the
factor’s corresponding value to the axis with risk points (0–100). The total points axis (0–350) is the sum of the factor’s corresponding values
determined by every individual patient’s characteristics. Draw a line straight down from the total points axis to find the 5- and 10-year
cumulative incidence.PBC primary breast cancer, ER estrogen receptor status, HER2 human epidermal growth factor receptor 2, yr year

Table 2 Clinical utility of the 10-year contralateral breast cancer risk prediction model. At the same probability threshold, the net
benefit is exemplified in BRCA1/2 mutation carriers (for avoiding unnecessary CPM) and non-carriers (performing necessary CPM)

Probability
threshold,
pt (%)

Unnecessary
CPMs
needed to
prevent one
CBC*

BRCA1/2 mutation carriers Non-carriers

Net benefit versus treat all patients
with CPM (per 1000)

Avoided unnecessary CPMs
per 1000 patients

Net benefit versus treat
none (per 1000)

Performed necessary CPMs
per 1000 patients

4 24.0 0.0 0.0 3.9 93.6

5 19.0 0.0 0.0 2.1 39.9

6 15.7 0.1 1.6 0.5 7.8

7 13.3 1.9 25.2 0.1 1.3

8 11.5 5.5 63.3 0.0 0.0

9 10.1 10.7 108.2 0.0 0.0

10 9.0 17.9 161.1 0.0 0.0

CPM contralateral preventive mastectomy, CBC contralateral breast cancer. *The number of unnecessary contralateral mastectomies needed to prevent a CBC is
calculated by (1 − pt)/pt. See also Additional file 3: Methods
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We also derived a risk prediction model (Pre-
dictCBC, version 1B) omitting BRCA status to pro-
vide CBC risk estimates for first BC patients not
tested for BRCA1/2 mutations. This model has
slightly lower prediction performance; AUC at 5 and
10 years was both 0.59 (at 5 years: 95% CI: 0.54–0.63,
95% PI: 0.46–0.71; at 10 years: 95% CI: 0.56–0.62,
95% PI: 0.52–0.66), calibration-in-the-large was −
0.17 (95% CI: -0.72–0.38; 95% PI: -1.70–1.36), and
calibration slope was 0.81 (95% CI 0.63–0.99; 95%
PI: 0.50–1.12) (Additional file 1: Results of the pre-
diction model without BRCA mutation). Details of
development, validation, and clinical utility are pro-
vided in Additional file 1: Tables S8–S10 and Figure
S5–S10.
In a sensitivity analysis (see Additional file 1: Assess-

ment of limited information of CPM), we studied the
impact of CPM on our results using two studies, in
which CPM information was (almost) completely avail-
able. The lack of CPM information on cumulative inci-
dence estimation hardly affected the results of our
analyses (Additional file 2: Figure S11).

Discussion
Using established risk factors for CBC which are cur-
rently available in clinical practice, we developed Pre-
dictCBC, which can be used to calculate 5- and 10-year
absolute CBC risk. The risk prediction model includes
carriership of BRCA1/2 mutations, an important deter-
minant of CBC risk in the decision-making process [6].
The calibration of the model was reasonable and dis-

crimination moderate within the range of other tools
commonly used for routing counseling and decision-
making in clinical oncology for primary BC risk [56–59].
As expected, the prediction accuracy was lower when we
omitted the BRCA mutation carrier status although the
prevalence of BRCA mutations among BC patients is
quite low (2–4%) [60, 61].
In the breast cancer population, CBC is a relatively un-

common event (~ 0.4% per year) and difficult to predict.
Therefore, physicians should carefully consider which
patients should consider CPM using a prediction model
[62]. The current clinical recommendations of CPM are
essentially based on the presence of a mutation in the
BRCA1/2 genes. Based on the risk distribution defined

Fig. 3 Density distribution of 10-year predicted contralateral breast cancer absolute risk within non-carriers (area with black solid lines) and
BRCA1/2 mutation carriers (area with black dashed lines)
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by the current model (Fig. 3), this is a reasonable ap-
proach: essentially no non-carrier women reach a 10%
risk 10-year threshold. However, more than 50% of car-
riers do not reach this threshold either, suggesting that a

significant proportion of BRCA1/2 carriers might be
spared CPM. Contralateral surveillance mammography
may also be avoided although detection and knowledge
of recurrences may be necessary for better defined

Fig. 4 Decision curve analysis at 10 years for the contralateral breast cancer risk model including BRCA mutation information. a The decision
curve to determine the net benefit of the estimated 10-year predicted contralateral breast cancer (CBC) cumulative incidence for patients without
a BRCA1/2 gene mutation using the prediction model (dotted black line) compared to not treating any patients with contralateral preventive
mastectomy (CPM) (black solid line). b The decision curve to determine the net benefit of the estimated 10-year predicted CBC cumulative
incidence for BRCA1/2 mutation carriers using the prediction model (dotted black line) versus treating (or at least counseling) all patients (gray
solid line). The y-axis measures net benefit, which is calculated by summing the benefits (true positives, i.e., patients with a CBC who needed a
CPM) and subtracting the harms (false positives, i.e., patients with CPM who do not need it). The latter are weighted by a factor related to the
relative harm of a non-prevented CBC versus an unnecessary CPM. The factor is derived from the threshold probability to develop a CBC at 10
years at which a patient would opt for CPM (e.g., 10%). The x-axis represents the threshold probability. Using a threshold probability of 10%
implicitly means that CPM in 10 patients of whom one would develop a CBC if untreated is acceptable (9 unnecessary CPMs, harm to benefit
ratio 1:9)
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individualized follow-up and patient-tailored treatment
strategies [63, 64].
CBC risk patterns and factors were identified previ-

ously in a large population-based study with 10,944 CBC
of 212,630 patients from the Surveillance, Epidemiology
and End Results (SEER) database diagnosed from 1990
to 2013 [65]. However, SEER does not include details of
endocrine treatment and chemotherapy, therapies ad-
ministrated to reduce recurrences and CBCs [13, 66].
Furthermore, in this study, the model was not validated
or evaluated based on prediction accuracy, nor was a
tool provided. Another study provided general guidelines
for CPM by calculating the lifetime risk of CBC based
on a published systematic review of age at first BC,
BRCA1/2 gene mutation, family history of BC, ER status,
ductal carcinoma in situ, and oophorectomy [34, 67].
However, the authors specified that the calculation of
the CBC lifetime risk should be considered only as a
guide for helping clinicians to stratify patients into risk
categories rather than a precise tool for the objective as-
sessment of the risk.
Only one other prediction model (CBCrisk) has been

developed and validated using data of 1921 CBC cases
and 5763 matched controls [16]. External validation of
CBCrisk of two independent datasets using 5185 and
6035 patients with 111 and 117 CBC assessed a discrim-
ination between 0.61 and 0.65 [17]. The discrimination
of our PredictCBC model at 5 and 10 years was similar;
however, the geographic diversity of the studies gave a
more complete overview of external validity [47].
Moreover, we showed the net benefit of our model
using decision curve analysis since standard perform-
ance metrics of discrimination, calibration, sensitivity,
and specificity alone are insufficient to assess the
clinical utility [18, 53].
Some limitations of our study must be recognized.

First, reporting of CBC was not entirely complete in all
studies and information about CPM was limited in most
datasets, which may have underestimated the cumulative
incidence, although the overall 10-year cumulative inci-
dence of 4.1% is in line with other data [5, 34]. Second,
some women included in the Dutch studies (providing
specific information on family history, BRCA mutation,
or CPM) were also present in our selection of the
Netherlands Cancer Registry population. Privacy and
coding issues prevented linkage at the individual patient
level, but based on the hospitals from which the studies
recruited, and the age and period criteria used, we calcu-
lated a maximum potential overlap of 3.4%. Third, in the
US and Australian datasets, the prediction performance
was uncertain due to the limited sample size and missing
values. Moreover, some important predictors such as
family history and especially BRCA mutation status were
only available in a subset of the women (from familial-

and unselected hospital-based studies) and patients with
data on BRCA mutation status might have been insuffi-
ciently represented for tested populations and further
development and validation of PredictCBC-1A will be
necessary. However, although BRCA1/2 mutation infor-
mation was unavailable in 94% of our data, the approach
of the imputation led to consistently good performing
models [68–70]. The remaining factors were quite
complete: ~ 79% of patients had at most one missing
factor, which provided good imputation diagnostic per-
formances. Since most BC patients are not currently
tested in the clinical practice for BRCA1/2 mutations,
we assessed the clinical utility of PredictCBC version 1B
to provide individualized CBC risk estimates for first BC
patients not tested for BRCA1/2 germline mutations [60,
71]. Our PredictCBC version 1B model provides less
precise estimates, but may be useful in providing general
CBC risk estimates, which could steer women away from
CPM or trigger BRCA testing.
Last but not the least, adequate presentation of the

risk estimates from the PredictCBC-1A and PredictCBC-
1B is crucial for effective communication about CBC risk
during doctor-patient consultations [72, 73]. A nomo-
gram is an important component to communicate the
risk of modern medical decision-making, although it
may be difficult to use and might potentially make it
more difficult to interpret the risks for laymen [74] An
online tool is being implemented, and a pilot study will
be conducted among patients and clinicians to assess
how the risk estimates from PredictCBC-1A and 1B can
best be visualized to facilitate communication with pa-
tients. Other factors, which were not available in our
study, predict breast cancer risk and their inclusion may
further improve the discrimination and clinical utility of
our CBC risk model: these factors include CHEK2
c.1100del mutation carriers, polygenic risk scores based
on common genetic variants, breast density, and repro-
ductive and lifestyle factors such as BMI and age at me-
narche [75]. Additional data with complete information
of BRCA1/2 mutation should be also considered in the
model upgrade to reduce uncertainty of CBC risk esti-
mates. External validation in other studies, including pa-
tients of other ethnicities, will also be important. In the
meantime, our model provides a reliable basis for CBC
risk counseling.

Conclusions
In conclusion, we have developed and cross-validated
risk prediction models for CBC (PredictCBC) based on
different European-descent population and hospital-
based studies. The model is reasonably calibrated and
prediction accuracy is moderate. The clinical utility as-
sessment of PredictCBC showed potential for improved
risk counseling, although the decision regarding CPM in
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the general breast cancer population remains challen-
ging. Similar results have been found for PredictCBC
version 1B, a CBC risk prediction model that calculates
individualized CBC risk for first BC patients not tested
for BRCA1/2 germline mutation.
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