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Abstract

Background: Oncotype DX (ODx) is a 12-gene assay assessing the recurrence risk (high, intermediate, and low) of
ductal carcinoma in situ (pre-invasive breast cancer), which guides clinicians regarding prescription of radiotherapy.
However, ODx is expensive, time-consuming, and tissue-destructive. In addition, the actual prognostic meaning for
the intermediate ODx risk category remains unclear.

Methods: In this work, we evaluated the ability of quantitative nuclear histomorphometric features extracted from
hematoxylin and eosin-stained slide images of 62 ductal carcinoma in situ (DCIS) patients to distinguish between
the corresponding ODx risk categories. The prognostic value of the identified image signature was further evaluated
on an independent validation set of 30 DCIS patients in its ability to distinguish those DCIS patients who progressed to
invasive carcinoma versus those who did not. Following nuclear segmentation and feature extraction, feature ranking
strategies were employed to identify the most discriminating features between individual ODx risk categories. The
selected features were then combined with machine learning classifiers to establish models to predict ODx risk
categories. The model performance was evaluated using the average area under the receiver operating characteristic
curve (AUC) using cross validation. In addition, an unsupervised clustering approach was also implemented to evaluate
the ability of nuclear histomorphometric features to discriminate between the ODx risk categories.

Results: Features relating to spatial distribution, orientation disorder, and texture of nuclei were identified as most
discriminating between the high ODx and the intermediate, low ODx risk categories. Additionally, the AUC of the most
discriminating set of features for the different classification tasks was as follows: (1) high vs low ODx (0.68), (2) high vs.
intermediate ODx (0.67), (3) intermediate vs. low ODx (0.57), (4) high and intermediate vs. low ODx (0.63), (5) high vs.
low and intermediate ODx (0.66). Additionally, the unsupervised clustering resulted in intermediate ODx risk category
patients being co-clustered with low ODx patients compared to high ODx.

Conclusion: Our results appear to suggest that nuclear histomorphometric features can distinguish high from low and
intermediate ODx risk category patients. Additionally, our findings suggest that histomorphometric features for
intermediate ODx were more similar to low ODx compared to high ODx risk category.
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Background
Ductal carcinoma in situ (DCIS) of the breast comprises
a morphologically and biologically diverse group of
cancerous lesions restricted to the breast ducts. The
incidence of DCIS has seen a dramatic increase from
5.83 per 100,000 women in 1973 to 34.43 in 2014 [1].
One of the major causes for this increase appears to be
the increasing prevalence of breast screening mammog-
raphy [2], leading in turn to the discovery of these le-
sions at a much earlier time point. Approximately, 25%
of all breast cancers in the USA are DCIS and 83% of all
breast in situ cases diagnosed during 2010–2014 were
DCIS, with the age- specific rate being highest in women
between 65 and 75 years old (108.3 per 100,000 for 65–69
and 103.1 for 70–74) from 2010 to 2014 for carcinoma in
situ [1].
With an estimated 1 out of every 33 women in the

USA expected to suffer from DCIS during her lifetime
[3], it becomes crucial to predict which of these women
with DCIS might recur or progress to invasive breast
cancer. Presently, the gold standard for treatment of
DCIS is breast-conserving therapy, which includes a
lumpectomy followed by adjuvant radiation therapy to
remove the residual tumor. Hormonal therapy is also
offered to patients with estrogen receptor (ER)-positive
cancer. However, studies [4, 5] have found that radio-
therapy (RT) can often be omitted in low-risk DCIS by
demonstrating the RT did not have significant additional
benefits to those patients. Since RT is relatively expensive,
time-consuming, and often carrying significantly deleteri-
ous side effects [6], it is critical to identify DCIS patients
with low recurrence risk to avoid the overtreatment.
Gene expression methods such as Oncotype DX

(ODx) [7] DCIS recurrence score have been validated in
being able to identify those DCIS patients in whom
post-lumpectomy RT can be safely omitted. The ODx
DCIS score leverages a panel of 12 genes including seven
genes purely predictive of recurrence risk along with five
reference genes. The output of the ODx DCIS assay is a
score, scaled between 0 and 100. Three risk categories
are then defined according to the scaled score: (1) low-
risk (< 39), (2) intermediate-risk (39–54), (3) high-risk
(55–100). Women with a low ODx score have a lower
risk of recurrence than those with a high ODx risk score
and may derive a lesser benefit from adjuvant RT. How-
ever, ODx for DCIS is limited by its high cost, limited
availability, and being tissue-destructive. In addition,
although a study [8] involving DCIS patients from multi-
institutions has confirmed that ODx scores for risk
stratification of DCIS patients provided valuable infor-
mation to physicians and has effectively impacted treat-
ment planning for DCIS patients, the actual prognostic
meaning of the intermediate ODx risk category still
remains unclear [7]. In clinical practice, DCIS patients

with intermediate ODx risk scores tend to be considered
high risk of recurrence for the purpose of treatment
planning [9], which may potentially lead to an
overtreatment.
Quantitative histomorphometry (QH) refers to the use

of computerized methods and tools to quantitatively
extract features of disease morphology from digitized
images of tissue slides that may often be too subtle for
visual discernment. QH enables an objective and repro-
ducible measurement of the characteristics of the tumor
at the sub-visual level, which is one of the ways to
minimize the intra- and inter-observer variability that is
often found in visual examination by pathologists [10].
QH features have shown to be independently prognostic
across different cancer types including breast [11, 12],
lung [13, 14], and oral cancer [15].
In this paper, we present a preliminary study to

explore the potential role of quantitative nuclear histo-
morphometric features including nuclear shape, texture,
and spatial arrangement from routine H&E-stained slide
images of DCIS patients to distinguish between the high,
intermediate, and low ODx DCIS risk categories. A total
of N = 75 patients were retrospectively identified as hav-
ing undergone surgical excision for DCIS and with a
corresponding ODx DCIS score available. Using a com-
bination of supervised classification and unsupervised
clustering approaches, we sought to evaluate the ability
of the features to discriminate between these DCIS
patients with (1) high ODx vs. low ODx, (2) high ODx
vs. intermediate ODx, (3) intermediate ODx vs. low
ODx, (4) high and intermediate ODx vs. low ODx, and
(5) high ODx vs. low and intermediate ODx risk cat-
egories. The prognostic value of the identified features
was further evaluated on an independent validation set
of 30 DCIS patients, in their abilities to distinguish the
DCIS patients who progressed to invasive ductal carcin-
oma versus those who did not.

Methods
Figure 1 illustrates the overall workflow of the model
construction and analysis.

Data description
An IRB (institutional review board)-approved, retro-
spective chart review of women involved in a large DCIS
retrospective study at the Indiana University from 2012
to 2016 yielded 75 patients who were diagnosed with
pathologically confirmed DCIS and with a corresponding
Oncotype DX DCIS score available in the final pathology
report. Associated clinical information was also col-
lected, following complete de-identification and anon-
ymization of the patient studies. All protected health
information (PHI) was scrubbed from the corresponding
slides by an honest broker. The age group for these
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patients was 40–86. Out of the 75 patients, 8 were ex-
cluded because of non-salvageable biopsy tissue. We
then digitized the H&E-stained biopsy of the surgical
resected samples for the remaining 67 patients via whole
slide scanners. Additionally, one slide image was subse-
quently excluded on account of digital slide scanning ar-
tifacts, one was excluded for having no stain, and three
were excluded due to the limited tumor region found on
the digitized tissue slide images (two corresponding to
the low ODx risk category and one corresponding to the
intermediate ODx risk category), leaving us with 62
analyzable tissue slide images (corresponding ODx
scores included in Additional file 1: section S1) which
formed the initial training/cross-validation set (D1 in
Fig. 3). All the images were resized to × 20 to maintain a
consistent magnification across all the slide images. The
details on the tumor tissue slide preparation and scan-
ning procedure are included in Additional file 2: section
S2 under the heading “Digital Slide Acquisition Proced-
ure”. Four tissue images for each of the three ODx risk
categories are included in Additional file 3: section S3.
The distribution plots for H&E staining intensity for
each patient are included in S.2 as Fig. 1. In order to
evaluate the prognostic ability of the QH features identi-
fied from D1, additionally, an external validation set of

n = 30 (D2 in Fig. 3) from the UK/ANZ DCIS clinical trial,
was retrieved and collected from Queen Mary University
of London. The dataset comprised 15 DCIS patients who
progressed to invasive ductal carcinoma and 15 DCIS pa-
tients without local recurrence or progression. The tissue
slides in the validation set were scanned by Histech3D
scanners at × 43 magnification, the images were then sub-
sequently downsized to × 20 in order to keep the magnifi-
cation consistent with the training set (D1).
The available clinical variables on patients in D1 in-

cluding age, ER, and progesterone receptor (PR) status
(the percentage of positively stained cells) determined by
immunohistochemistry staining were collected. Accord-
ing to the Wilcoxon rank sum test (WRST) [17], ER
status for DCIS patients in low/intermediate ODx cat-
egories was significantly (p = 4.5e−05/p = 0.05) higher
than the high ODx category, but no significant differ-
ence was observed between low versus intermediate
ODx risk category. PR status however showed significant
statistical differences between the different ODx risk
categories (p = 0.03 for high vs. intermediate, p = 0.02 for
low vs. intermediate, p = 1.3e−06 for high vs. low). This
seems intuitive given that PR gene expression itself
contributes to the DCIS ODx score calculation. The age
spread for each risk group was comparable among the

Fig. 1 Illustration of the overall workflow: (1) Regions of DCIS were annotated on the whole slide image (WSI) by an experienced breast
pathologist. (2) Nuclei were segmented from the annotated tumor region via a deep learning model [16]. (3) Nuclear histomorphometric features
were extracted. (4) The features were then evaluated in their ability to distinguish different ODx risk categories via supervised classification and
unsupervised clustering approaches
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three ODx risk categories. The boxplots of ER status
(low: 43, intermediate: 7, high: 12), PR status (low: 43,
intermediate: 7, high: 11), and age (low: 42, intermediate:
7, high: 12) across the three ODx risk categories are
shown in Fig. 2.
A multivariate analysis based on the three clinical

variables with the ODx risk categories was also per-
formed on D1 with the results included in S.2 as Table 1;
no clinical variable was found to be significantly associ-
ated with the ODx risk categories in multivariate
analysis.

Nuclei segmentation
The individual cancer cell nuclei within the noninvasive
cancerous ducts were segmented from the whole slide
image (WSI) at × 20 magnification using a deep learning
model described in the work by Janowczyk et al. [16].
The deep learning model was trained on a dataset con-
sisting of 141 breast cancer tissue images with individual
nuclei manually annotated. The model with a nine-layer
convolutional neural network structure was executed in
Caffe framework using 32 × 32 sized patches on a Titan
XGPU running CUDA 7.5. The deep learning model
assigned each image pixel a likelihood of belonging to a
nucleus, in turn resulting in a nuclei probability map. By
selecting an appropriate threshold, the nuclei probability
map images were converted into binary masks of the
nuclei, using which the subsequent feature extraction
was carried out. The quality of the nuclear segmentation
approach was confirmed by selecting 10 images and
visually inspecting the corresponding deep learning
segmentation-derived contours against the correspond-
ing manual contours.

Feature extraction
A total of 241 nuclei features (all the feature names
listed in Additional file 4: section S4) were extracted
from each of the WSIs. These corresponded to five
feature families including Global Graph, Shape, Cell

Cluster Graph (CCG) [18], Cell Orientation Entropy
(CORE) [19], and Haralick Texture feature family (Fig. 4).
A more detailed description of the features correspond-
ing to each feature family are included in S.2 under the
heading “Feature Description”.

Model construction
Supervised classification
Four different supervised feature ranking methods were
employed to identify the most discriminated features
between the different ODx risk categories in D1. Those
feature ranking methods were implemented in conjunc-
tion with three different supervised machine learning
classifiers to build classification models capable of distin-
guishing the different ODx risk categories via a random
sub-sampling-based cross validation (referred to as cross
validation below).
The feature ranking methods include (1) covariance,

(2) WRST [17], (3) minimum redundancy maximum
relevance based on Mutual Information Difference
(MRMR-mid) [20], and (4) minimum redundancy max-
imum relevance based on Mutual Information Quotient
(MRMR-miq) [20]. The supervised machine learning
classifiers (referred to as classifier below) include (1)
support vector machine (SVM) [21], (2) linear discrimin-
ation analysis (LDA) [22], and (3) quadratic discriminant
analysis (QDA) [23].
Specifically, in each cross validation, a training set was

randomly subsampled from the whole dataset (D1), leav-
ing the remaining subset as the testing set. Then each of
the classifiers would be trained based on the top features
identified from the training set by one of the four feature
ranking methods and was validated on the testing set.
Additionally, in each round, a Bhattacharyya (BC) dis-
tance between the top identified feature set in the testing
set corresponding to the two classes was calculated by
averaging the BC distances for the individual top fea-
tures. The cross validation was repeated for 100 rounds
for each combination of feature ranking method and

Fig. 2 Distribution of clinical variables (ER status, PR status, and age) across the three ODx risk categories for patients in D1. Abbreviation:
inter: intermediate
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classifier with the area under the receiver operating
characteristic curve (AUC) calculated to evaluate the
model performance in each round. The overall model
performance was represented by the averaged AUC
value over 100 repetitions of cross validation. The BC
distance array comprising 100 distance values from each
run of cross validation were also averaged across the 100
repetitions.

Unsupervised clustering
Principal component analysis (PCA) [24] was employed
to identify the principal components from the PCA fea-
ture space and worked in conjunction of an unsuper-
vised clustering approach to distinguish between DCIS
patients corresponding to different ODx risk categories.

Statistical analysis
For the supervised classification strategy, we employed
four different feature selection methods. (1) Covariance
was used to identify the most correlated features with
the ODx risk category based on the corresponding
correlation coefficient value. (2) WRST ranks features
based on their corresponding p value associated with the
null hypothesis, the null hypothesis being that the fea-
ture distribution in one class has an equal median value
as in the other class [17]. (3) MRMR-mid and (4)
MRMR-miq approaches identify features that not only
are highly discriminatory between the two classes of
interest, but also are minimally correlated with each
other [20]. In addition, we used BC distance [25] to
measure separation of the top identified feature set

Table 1 Summary of features examined. Feature family names (column 1), number of extracted features (column 2), and feature
descriptions (column 3)

Feature family Quantity Feature description

Global Graph 51 Descriptors from Delaunay, Voronoi, and minimum spanning tree diagram

Shape 100 Nuclei area, smoothness, invariant moments and Fourier descriptors

Cell Orientation Entropy (CORE) 39 Disorder of neighbor nuclei polarity

Cell Cluster Graph (CCG) 25 Local subgraph connectivity

Haralick Texture 26 Relative pixel intensity, contrast entropy, and energy

Fig. 3 Inclusion and exclusion criteria for the patient slides selected for this study and the data distribution across the ODx risk categories for
training set (D1). Patient distribution between the recurrence groups for the independent validation set (D2)
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between two defined classes. The BC distance reflects
the relative similarity between two statistical samples,
which is in turn derived from the Bhattacharyya coeffi-
cient assessing the overlap between the two probability
distributions.
For unsupervised clustering, PCA was employed for

feature selection. PCA converted original features into
uncorrelated variables via an orthogonal transformation
[24]. The top principal components, which in turn rep-
resent the majority of the feature variance in the original
feature space, could be identified from the transformed
PCA space.
For supervised classification, three different classifiers

were utilized including LDA, QDA, and SVM. LDA and
QDA model the distribution of the top QH features for
each of the two classes, and then Bayes’ optimal solution
was used to predict the class label for each patient given
the corresponding top feature set [22, 23]. LDA add-
itionally assumes equal covariance among the top identi-
fied features between the two output classes [22]. SVM
is a discriminative classifier which outputs an optimal
hyperplane representing the largest separation of the top
identified features between the two classes [21].

Apart from the supervised classifiers, we also
employed an unsupervised consensus clustering ap-
proach [26], which employed hierarchical clustering on
the top two principal components from the PCA trans-
formed feature space. The distance metric employed in
hierarchical clustering was measured by the Pearson cor-
relation coefficient. The clustering is performed in con-
junction with a patient resampling rate of 0.8 over 50
runs to validate the stability of the principal components
and their distinguishability between the defined classes
for different classification tasks. After the 50 repeated
clusterings, each patient is assigned a cluster group
index (cluster 1 or cluster 2).

Experimental design
Experiment 1: Evaluating the ability of nuclear
histomorphometric features in distinguishing different ODx
risk categories for DCIS
This experiment comprised the following classification
tasks performed on D1 dataset, evaluating the ability of
nuclear histomorphometric features in distinguishing (1)
high ODx vs. low ODx, (2) high ODx vs. intermediate

Fig. 4 Illustration of the feature maps corresponding to global graph (Voronoi (a), Delaunay (b), and Minimum Spanning Tree (c)), Shape (d),
CORE (d), CCG (e), and Haralick Texture (f) features, capturing respectively spatial arrangement, shape, orientation, local arrangement, and
heterogeneity of nuclei within a tissue image of a DCIS patient corresponding to the high ODx risk category the feature maps corresponding to
the intermediate- and low-risk categories were included in S.3 as Figure 2 (II) and Figure 2 (III) respectively
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ODx, and (3) intermediate ODx vs. low ODx risk
categories.
For each of the classification tasks, three top features

were identified via each of the four different feature
ranking methods (covariance, WRST, MRMR-mid,
MRMR-miq) on the subsampled training set in the cross
validation. Only three top features were used in order to
prevent overfitting of the classifier on the training set
[27]. The selected top feature set was then employed to
train each of the three classifiers (LDA, QDA, SVM),
and each of the trained classifiers was subsequently eval-
uated via AUC on the remaining testing set during each
run of cross validation. The cross validation was re-
peated across 100 iterations to yield an average AUC for
each of the 12 combinations of feature ranking methods
and classifiers. In order to avoid the model biasing to-
wards the majority class due to imbalanced class distri-
butions [28] across the three ODx risk categories in D1,
we subsampled the training set with an equal number of
instances from each of the two defined classes. This class
balance was maintained during all rounds of cross valid-
ation. Additionally, we utilized AUC to evaluate the
model performance via cross validation, an approach
that is less susceptible to testing set imbalance [29]. The
training and testing set split during cross validation for
each of the three classification tasks is listed in Table 2
(columns 2–4).
Additionally, for each of the three classification tasks,

the averaged BC distance [25] of the identified top fea-
ture sets between the two ODx risk categories was cal-
culated across the repeated runs of cross validation, the
approach was described in the “Model construction” sec-
tion. Following the distance calculation, we utilized
WRST to assess whether there was a statistically signifi-
cant difference between the BC distance arrays for the
three classification tasks.
Besides the cross validations with supervised feature

ranking methods and classifiers, for each of the three
classification tasks, we also performed PCA on the whole
feature space of all involved patients to identify the first
two principal components, which in turn represent the
maximum information present in the original feature
space [24]. An unsupervised clustering method we have
described in “Statistical analysis” section was then

implemented with the identified principal components
on the patients for each of classification tasks to evaluate
the clustering of ODx risk categories.

Experiment 2: Evaluating difference between nuclear
histomorphometric features for intermediate versus low and
high ODx risk categories
In this experiment, we sought to evaluate the similarity
between nuclear histomorphometric features for two su-
pervised classification tasks, which were also performed
on D1 dataset, namely (1) high + intermediate ODx vs.
low ODx and (2) high ODx vs. intermediate ODx + low
ODx risk categories. We also employed unsupervised
clustering to evaluate the relative proximity between the
patients corresponding to high, intermediate, and low
ODx risk categories.
Experiment 2 followed a similar design to Experiment

1 in terms of feature selection, supervised-, and
unsupervised-based evaluation of the identified top
features. In the supervised setting, the training and
testing set split in cross validation for each of the two
classification tasks is listed in Table 2 (columns 5–6).
Additionally, in Experiment 2, the extracted nuclear his-
tomorphometric features from all the patients in D1
were transformed into their corresponding PCA space.
Subsequently, the unsupervised clustering was per-
formed with the first two components in the PCA-
transformed space on the whole D1 dataset.

Experiment 3: Validate the prognostic ability of the
identified nuclear histomorphometric features on an
independent validation set
In this experiment, we evaluated the prognostic value of
the image features that were identified as being associ-
ated with ODx risk categories for the high vs. low ODx,
high vs. intermediate ODx risk categories in Experiment
1, and for the high vs. intermediate + low ODx risk cat-
egories in Experiment 2 on D2 (n = 30; 15 DCIS patients
who progressed to invasive cancer and 15 DCIS patients
without any recurrence/progression). Unsupervised clus-
tering was also performed on the set of image features
to evaluate its ability to differentiate between DCIS pa-
tients who are and are not at risk for recurrence.

Table 2 Training and testing split in the cross validation for each of the five different classification tasks performed on the patients
in D1

Classification tasks High vs. low High vs. inter Inter vs. low High + inter vs. low High vs. low + inter

ODx risk category High Low High Inter Inter Low High/inter Low High Low/inter

# of train/# of test 7/5 7/36 4/8 4/3 4/3 4/39 10/9 10/33 7/5 7/43

Total # of patients 55 19 50 62 62

Abbreviation: inter intermediate, # number
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Results
Experiment 1: Evaluating the ability of nuclear
histomorphometric features in distinguishing different
ODx risk categories for DCIS
Experiment 1A: High ODx vs. low ODx
The highest average AUC across different combinations
of feature ranking methods and classifiers was 0.68 for
the combination of MRMR-mid and SVM (Table 3
(italics in column 3)). The top three identified features,
which most frequently appeared in the top feature sets
over the 100 repetitions of cross validation, corre-
sponded to disorder in the polarity of the individual nu-
clei (CORE: mean information measure 1), variation in
spatial arrangement of locally clustered nuclei (CCG:
skewness of edge length connecting among the locally
clustered nuclei), range in the global arrangement of nu-
clei across the pathology slide image (ratio of minimal to
maximal edge length within global Voronoi graphs). The
corresponding boxplots for these features are illustrated
in Fig. 5. The average values of BC distance between the
top discriminating feature set corresponding to the high
and that corresponding to low ODx risk categories are
listed in Table 4 (column 2). Figure 8a illustrates the re-
sults of the unsupervised clustering with the first two
PCA components from the PCA transformed feature
space for the low and high ODx risk category patients.
Three out of 12 patients corresponding to the high ODx
risk category were embedded within cluster 2, and 11
out of 43 patients corresponding to the low ODx risk
categories were embedded within cluster 1.

Experiment 1B: High ODx vs. intermediate ODx
The highest average AUC across different combinations
of feature ranking methods and classifiers was 0.67 for

combination of MRMR-mid and SVM (Table 3 (italics
in column 4)). The top three identified features corre-
sponded to disorder in the polarity of the individual nu-
clei (CORE: mean information measure 1), variation in
the global arrangement of nuclei (deviation in area of
polygons within global nuclear Voronoi graphs), and
range in the global arrangement of nuclei across the
pathology slide image (ratio of minimal to maximal area
of polygons within global nuclear Voronoi graphs). The
corresponding boxplots for these features are illustrated
in Fig. 6. Again, the average values of BC distance be-
tween the top feature set corresponding to the high
ODx and that corresponding to intermediate ODx risk
categories are listed in Table 4 (column 3). The results
of the unsupervised clustering with the first two PCA
components are illustrated in Fig. 8b with 5 out of 7 pa-
tients corresponding to the intermediate ODx risk cat-
egory embedded within cluster 2 and 9 out of 12
patients corresponding to the high ODx risk category
embedded within cluster 1.

Experiment 1C: Intermediate ODx vs. low ODx
The highest average AUC across different combinations
of feature ranking methods and classifiers was 0.57, for
the combination of Covariance and LDA (Table 3 (italics
in column 5)). The average values of BC distance be-
tween the top discriminating feature set corresponding
to the intermediate and that corresponding to the low
ODx risk categories are listed in Table 4 (column 4).
Figure 8c illustrates the unsupervised clustering results
with the first two principal components from the PCA
transformed feature space for the low and intermediate
ODx risk category patients. The patients corresponding
to the intermediate ODx risk category are nearly evenly

Table 3 Average AUCs (+ standard deviation) across 100 repetitions of cross validation from the models corresponding to different
combinations of three classifiers (column 1) and four feature ranking methods (column 2) for five different classification tasks
(columns 3–6: Experiment 1A, 1B, 1C, 2A, and 2B)

Classifiers Feature ranking
methods

High
vs. low

High vs.
intermediate

Intermediate
vs. low

High + intermediate
vs. low

High vs. low +
intermediate

SVM Covariance 0.66 ± 0.11 0.64 ± 0.19 0.56 ± 0.15 0.62 ± 0.08 0.65 ± 0.12

WRST 0.64 ± 0.11 0.61 ± 0.16 0.55 ± 0.14 0.61 ± 0.08 0.66 ± 0.12

MRMR-mid 0.68 ± 0.12 0.67 ± 0.18 0.53 ± 0.17 0.61 ± 0.10 0.63 ± 0.13

MRMR-miq 0.67 ± 0.13 0.65 ± 0.17 0.54 ± 0.17 0.62 ± 0.10 0.64 ± 0.12

LDA Covariance 0.65 ± 0.11 0.62 ± 0.19 0.57 ± 0.15 0.63 ± 0.09 0.65 ± 0.09

WRST 0.63 ± 0.12 0.61 ± 0.18 0.53 ± 0.16 0.62 ± 0.08 0.64 ± 0.12

MRMR-mid 0.65 ± 0.13 0.66 ± 0.19 0.54 ± 0.15 0.61 ± 0.09 0.64 ± 0.12

MRMR-miq 0.64 ± 0.13 0.64 ± 0.21 0.55 ± 0.15 0.61 ± 0.09 0.66 ± 0.12

QDA Covariance 0.62 ± 0.13 0.60 ± 0.18 0.54 ± 0.15 0.61 ± 0.09 0.64 ± 0.12

WRST 0.59 ± 0.13 0.59 ± 0.15 0.52 ± 0.16 0.62 ± 0.09 0.63 ± 0.11

MRMR-mid 0.61 ± 0.14 0.61 ± 0.17 0.51 ± 0.15 0.58 ± 0.11 0.62 ± 0.14

MRMR-miq 0.63 ± 0.12 0.62 ± 0.18 0.53 ± 0.16 0.60 ± 0.10 0.63 ± 0.12
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embedded in the two clusters with 3 in cluster 1 and 4
in cluster 2.
WRST was implemented to evaluate the statistical dif-

ference between the BC distance arrays obtained from
the three supervised classification tasks (Experiments
1A, 1B, and 1C) with p values listed in Table 5 (columns
2–3).

Experiment 2: Evaluating difference between nuclear
histomorphometric features for intermediate versus low
and high ODx risk categories
Experiment 2A: High + intermediate ODx vs. low ODx
The highest average AUC across different combinations
of feature ranking methods and classifiers was 0.63, for
the combination of covariance and LDA (Table 3 (italics
in column 6)). The average values of BC distance be-
tween the top discriminating feature set corresponding
to the high plus intermediate ODx and that correspond-
ing to low ODx risk categories are listed in Table 4 (col-
umn 5).

Experiment 2B: High ODx vs. intermediate + low ODx
The highest average AUC across different combinations
of feature ranking methods and classifiers was 0.66, for
the combination of WRST and SVM and the combin-
ation of MRMR-miq and LDA (Table 3 (italics in col-
umn 7)). The top three identified features corresponded
to disorder in the polarity of the individual nuclei

(CORE: mean information measure 1), connectivity in
local nuclei neighborhood (CCG: average number of nu-
clei in locally clustered nuclei neighborhood), range in
the global arrangement of nuclei across the pathology
slide image (ratio of minimal to maximal area of poly-
gons within global nuclear Voronoi graphs). The corre-
sponding boxplots for these features are illustrated in
Fig. 7. The average values of the BC distance between
the top discriminating feature set corresponding to the
high and that corresponding to intermediate plus low
ODx risk categories are listed in Table 4 (column 6).
WRST was implemented to evaluate the difference be-

tween the BC distance arrays obtained from the two su-
pervised classification tasks (experiment 2A, experiment
2B) with p values listed in Table 5 (column 4).

Experiment 2C: High vs. intermediate vs. low ODx
Results of the unsupervised clustering with the first two
principal components from the PCA-transformed fea-
ture space for the low, intermediate, and high ODx risk
category patients are illustrated in Fig. 8d. Thirty-two
out of 43 patients corresponding to the low ODx risk
category were embedded within cluster 2, and 9 out of
12 patients corresponding to the high ODx risk category
were embedded within cluster 1. For the patients corre-
sponding to the intermediate ODx risk category, 4 out
of 7 patients were embedded within cluster 2, together

Fig. 5 Value distribution of features most frequently appearing in top feature sets from classification task of high versus low ODx. The red lines in
the plots represent the median of each population, and the upper and lower box bounds correspond to the 25th and 75th percentiles of the
feature value distribution

Table 4 Average BC distance between the top feature sets identified by four different feature ranking methods for each of the five
classification tasks (Experiment 1A, 1B, 1C, 2A, and 2B) across 100 iterations of cross validation

Feature ranking
methods

High
vs. low

High vs.
intermediate

Intermediate
vs. low

High + intermediate
vs. low

High vs. low +
intermediate

Covariance 0.50 0.62 0.45 0.38 0.47

WRST 0.48 0.55 0.41 0.38 0.47

MRMR-mid 0.47 0.54 0.40 0.36 0.45

MRMR-miq 0.49 0.63 0.42 0.37 0.48
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with a majority of patients corresponding to the low
ODx risk category (Fig. 9).
WRST was implemented to select the most distin-

guishable features between high and low ODx risk
categories from each of the five feature families. The
names of identified top features and p values from
WRST implemented for different comparisons (high vs.
low ODx, high vs. intermediate OD, low vs. intermediate
ODx) are listed in Table 6. The features (in italics) iden-
tified to distinguish between high and low ODx risk cat-
egories were also found to discriminate between patients
corresponding to the high and intermediate ODx risk
category (p < 0.1). However, these features were unable
to discriminate between patients corresponding to the
low and intermediate ODx risk categories.
From Table 3, we are able to observe that, independ-

ent of the combination of feature ranking method and
classifier, significantly better discrimination between
high and low/intermediate ODx risk categories was
observed as compared to between low and intermediate
ODx risk categories (based on the AUC value). This
trend was observed across different combinations of
feature ranking methods and classifiers.
The results in Table 4 and Table 5 suggested that the

BC distance between high and low ODx risk category and
between high and intermediate ODx risk category were
significantly higher as compared to the corresponding dis-
tance between the intermediate and low ODx risk

categories across all four feature ranking methods. Add-
itionally, the BC distance between high and low + inter-
mediate ODx risk categories was significantly higher
compared to the separation observed between high +
intermediate ODx and low ODx risk categories. The visual
representation for two of the distinguishable features be-
tween high and low ODx risk categories was illustrated in
Fig. 9.

Experiment 3: Validate the prognostic ability of the
identified nuclear histomorphometric features on an
independent validation set (D2)
The cluster plot derived using the histomorphometric
signature learnt based on Experiments 1 and 2 (distin-
guishing low from high ODx risk categories, distinguish-
ing intermediate from high ODx risk categories and
distinguishing low + intermediate from high ODx risk
categories) is presented in Fig. 10a and the correspond-
ing patient distribution across the progression to
invasive cancer and non-recurrence/non-progression
categories for each cluster identified from unsupervised
clustering is shown in Fig. 10b. Eleven out of 15 DCIS
patients who progressed to invasive ductal carcinoma
and 6 out of 15 patients with non-recurrent/non-pro-
gressive cancer were grouped into one cluster (65% pro-
gressed to invasive cancer), while 4 out of 15 cases with
progression to invasive cancer and 9 out of 15 non-
recurrent/non-progressive cases were distributed in the

Fig. 6 Value distribution of features most frequently appearing in top feature sets from classification task of high versus intermediate ODx. The
red lines in the plots represent the median of each population, and the upper and lower box bounds correspond to the 25th and 75th
percentiles of the feature value distribution

Table 5 p values from WRST implemented to compare the BC distance arrays obtained from classification task of Experiments 1A
with 1C (column 2), classification task of Experiments 1B with 1C (column 3), and the classification task of Experiments 2A with 2B
(column 4)

Feature ranking
methods

High vs. low versus Low
vs. intermediate

High vs. inter versus Low
vs. intermediate

High + intermediate vs.
low versus High vs.
intermediate + low

Covariance 0.026 0.0003 0.001

WRST 0.011 0.0005 0.002

MRMR-mid 0.017 1.9e−05 0.0005

MRMR-miq 0.022 5.6e−8 1.2e−05
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other cluster (69% non-recurrent/non-progressive). Also
as shown in Fig. 10c, feature values of average informa-
tion measure 1 are higher in DCIS patients with progres-
sion compared to patients without recurrence/
progression. This trend is consistent with the feature
values observed in the high ODx risk category as com-
pared to the low and intermediate ODx risk categories.
Specifically, the image signature consists of mean in-

formation measure 1 in CORE feature family; skewness
of edge length connecting among the locally clustered
nuclei in CCG feature family; ratio of minimal to max-
imal edge length within global Voronoi graphs in Global
Graph feature family; deviation in area of polygons
within global nuclear Voronoi graphs in Global Graph
feature family; ratio of minimal to maximal area of poly-
gons within global nuclear Voronoi graphs in Global
Graph feature family; and average number of nuclei in
locally clustered nuclei neighborhood in CCG feature
family.

Discussion
Multiple clinical trials including E5194 [4] and
RTOG9804 [5] have shown that low-risk DCIS patients

tend to receive minimal benefit from adjuvant RT. There
is a clear unmet need to identify those DCIS patients
with a relatively low likelihood of recurrence or progres-
sion to avoid the side effect [6] of unnecessary adjuvant
RT for those patients. Oncotype DX (ODx) for DCIS is a
gene expression-based assay to assess the recurrence risk
of DCIS. While the ODx-derived risk category has been
validated against the outcome on a cohort comprising
670 DCIS patients from ECOG E5194, it was not per-
fectly correlated [7]. In addition, the ODx test for DCIS
is expensive, tissue-destructive, and requires specialized
facilities. Another issue with the ODx DCIS test is the
lack of true prognostic meaning and significance associ-
ated with patients assigned to the intermediate-risk cat-
egory [7]. A lot of these intermediate ODx risk category
patients may end up receiving adjuvant therapy and
hence potentially be over-treated [9].
In this paper, we identified a set of image features as-

sociated with the different ODx risk categories. Add-
itionally, the prognostic ability of these image features to
predict DCIS with progression to invasive cancer versus
DCIS without recurrence/progression was evaluated on
a small independent test set (n = 30) of women with

Fig. 7 Value distribution of features most frequently appearing in top feature sets from classification task of high versus intermediate + low ODx.
The red lines in the plots represent the median of each population, and the upper and lower box bounds correspond to the 25th and 75th
percentiles of the feature value distribution

Fig. 8 Unsupervised clustering (k = 2) utilizing the top 2 principal components from PCA-transformed feature space. From left to right are the
plots corresponding to a high versus low ODx, b high versus intermediate ODx, c intermediate versus low ODx, and d high versus intermediate
versus low ODx
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DCIS. Additionally, we sought to elucidate the morpho-
logic attributes of the Oncotype DCIS intermediate cat-
egory, a risk category with somewhat ambivalent
prognostic significance (unlike the low and high ODx
risk categories).
According to the results based on the supervised clas-

sifiers and unsupervised clustering for distinguishing
high ODx vs. low ODx and high ODx vs. intermediate
ODx, high ODx risk category was found to be

distinguishable from low and intermediate ODx risk cat-
egories in terms of nuclear histomorphometric features.
The top features identified as being discriminating of
high ODx from intermediate plus low ODx risk categor-
ies included (1) mean information measure 1 of correl-
ation between neighbor nuclei orientations, which
captures the information pertaining to the disorder in
the polarity of the individual nuclei; (2) the ratio of the
number of existed edges to all possible edges connecting

Fig. 9 Representation of the top features. Left: Low-magnification view of breast ducts. Center left: boxed region brought into focus for greater
magnification. Center right: × 20 magnification with nuclei highlighted with their corresponding top CORE feature value indicated by nuclei color.
Right: × 20 magnification with nuclei highlighted with their corresponding top CCG feature value indicated by nuclei color

Table 6 List of most discriminating features between high and low ODx risk category for each feature family and corresponding p
values from WRST for each of the different comparisons

Feature family Feature name High vs.
low ODx

High vs.
intermediate ODx

Low vs.
intermediate ODx

Global Graph Average number of neighbor nuclei in a distance of
a 50-pixel radius corresponding to each cancer nucleus

0.007 0.08 0.3

Shape Symmetry of nuclei shape 0.005 0.3 0.3

CCG The ratio of the number of existed edges to all possible
edges connecting the nodes in one local cell cluster

0.001 0.08 0.6

CORE Mean information measure1 0.0002 0.005 0.7

Texture Standard deviation of pixel-wise gray-level distribution
across nuclei

0.001 0.05 0.5
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the nodes in one local cell cluster, reflecting the spatial ar-
rangement of nuclei in locally clustered nuclei neighbor-
hood; (3) standard deviation of pixel-wise gray-level
distribution across nuclei, in turn capturing the underlying
chromatin or chromosome patterns in nuclei; and (4) the
average number of neighbor nuclei within a 50-pixel ra-
dius around individual nuclei, in turn reflecting the global
spatial arrangement of nuclei. The top feature has previ-
ously shown to be prognostic or diagnostic for a number
of other solid tumors. For instance, Lu et al. [11] found a
significant association between the nuclei orientation dis-
order and overall survival in early stage estrogen receptor-
positive (ER+) breast cancer. Nuclear polarity has also
been implicated in the diagnosis and prognosis of urothe-
lial [30] and papillary thyroid cancers [31]. The second
feature, relating to spatial architecture of nuclei was found
to over-express in high ODx patients compared to low
and intermediate ODx patients. The patterns appear to
suggest a more chaotic and disordered nuclear morph-
ology in high ODx patients compared to the low and
intermediate ODx patients. Interestingly, Whitney et al.
[12] showed that these features were also discriminating
of early-stage ER+ invasive breast cancer patients corre-
sponding to high and low DCIS risk category patients.

Additionally, a textural pattern within the individual nu-
clei was also found to be discriminating between the high
and intermediate-low ODx risk categories, possibly
reflecting differences in chromatin patterns. Nuclear tex-
ture has been previously found to be discriminating of
malignant and benign breast lesions on histopathology
[32]. Lu et al. [11] similarly found that differences in nu-
clear texture heterogeneity were associated with the over-
all survival for invasive breast cancer patients. Finally, the
feature reflecting nuclei global spatial distribution implies
that a high versus intermediate and low ODx risk category
patients tended to have differences in clustering of nuclei
in the proximity of necrotic regions on the slide. These
findings appear to be aligned with the findings by Lagios
et al. [33], which found that a higher concentration of ne-
crosis was found to be associated with a higher risk of
local recurrence for DCIS patients.
In experiment 3, we showed that the image features

associated with ODx risk categories for DCIS were also
found to independently distinguish between patients
who progressed to invasive ductal carcinoma versus
those who did not.
We envision two primary ways in which the image-

based signature developed in this study might be used

Fig. 10 a The unsupervised clustering (k = 2) utilizing the histomorphometric signature learnt based on Experiments 1 and 2 (distinguishing low
from high ODx risk categories, distinguishing intermediate from high ODx risk categories, and distinguishing low plus intermediate from high
ODx risk categories). b Distribution of outcome of patients in cluster 1 and cluster 2 identified from unsupervised clustering. c Feature distribution
(CORE: mean information measure 1) for the patients without recurrence/progression and patients with progression to invasive breast cancer. The
red lines in the plots represent the median of each population, and the upper and lower box bounds correspond to the 25th and 75th
percentiles of the feature value distribution
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clinically. In developing countries or regions, where
molecular-based assays like ODx test might not be easily
affordable or even accessible for most of the DCIS pa-
tients, the imaging signature could potentially be
employed as a surrogate of ODx test to prognosticate out-
come, since the image-based assay is low-cost, non-tissue-
destructive needing only digitized H&E slide images.
Meanwhile, in developed countries, where molecular-
based prognostic and predictive companion diagnostic
tests exist, the image-based test could provide comple-
mentary morphologic cues to molecular and functional
measurements of the tumor. The combination of comput-
erized morphologic image attributes with an ODx risk
score might help more accurately identify patients who
could truly avoid adjuvant radiotherapy. This is in line
with a recent study by Verma et al. [34] in early-stage ER+
invasive breast cancer, where the combination of an
image-based morphologic predictor with the ODx assay
was able to identify an additional 20% more patients who
were truly low risk and could be spared adjuvant chemo-
therapy. Additionally, integrating ODx with our image-
based assay could also provide additional improved
characterization and stratification of those patients cur-
rently identified as intermediate risk by ODx.
Additionally, we also sought to evaluate the relative

similarity in quantitative nuclear histomorphometric fea-
tures between the intermediate ODx compared to low
and high ODx risk categories. A higher AUC and a
lower BC feature was obtained when grouping inter-
mediate ODx together with low ODx as opposed to high
ODx for any of the combinations of feature ranking
methods and classifiers. Additionally, via the unsuper-
vised clustering, the intermediate ODx risk category was
found to be separable from high ODx risk category but
not separable from low ODx risk category.
Taken in tandem, these results appear to suggest the

histomorphometric features for intermediate ODx risk
category patients were more similar compared to low
ODx risk category patients as opposed to the high ODx
risk patients. This is consistent to several recent studies
in the context of invasive breast cancer [12, 35–37] that
suggested that intermediate ODx risk category tumors
appear to be more closely aligned with the low-risk tu-
mors compared to the high ODx risk tumors. Kamal
et al. [35] found that, based on the evaluation of trad-
itional cancer prognosis criteria such as tumor size and
tumor grade, invasive breast cancer in the high ODx risk
category could be identified, but the discrimination
between low and intermediate ODx risk categories could
hardly be found. Also, a phase 3 clinical trial, TAILORx
[36], concluded that for most patients with early-stage
invasive breast cancer in intermediate ODx risk category,
no benefit from receiving adjuvant chemotherapy could
be observed in terms of overall survival as well as

disease-free survival. In a study of the MammaPrint
(MP) test (another widely used assay for invasive breast
cancer), the study investigators found that among the
patients in intermediate ODx risk category, most (65%)
were identified as MP low-risk category [37], which is a
category indicating low risk of recurrence for invasive
breast cancer.
Our findings in light of the related previous studies

[35–37] appear to suggest that intermediate ODx risk
category patients appear to present very much like the
low-risk patients and hence could possibly follow a simi-
lar management strategy.
This study did have some limitations. First, the sample

size was too small to draw the definite conclusion that
the intermediate ODx is comparable to low ODx risk
category in terms of prognosis. Still, this study provides
preliminary evidence that there is a quantifiable histo-
morphometric similarity between low and intermediate
ODx risk category for DCIS. Although the impact of
ODx test for DCIS on the clinical radiotherapy adoption
had been confirmed by a study conducted by Manders
et al. [8], the mismatch between low or high ODx risk
category with the actual cancer aggressiveness still exists
[7]. While we have independently evaluated the image
signature associated with ODx risk categories to discrim-
inate between patients who progressed to invasive ductal
carcinoma as compared to those who did not in D2 (n =
30), clearly a larger multi-site cohort of DCIS patients is
needed for definitive validation. Thirdly, the patients and
image data were originated from a single facility, failing
to take account of the tissue slide variance arisen from
the slide preparation process as well as the differing pa-
tient population characteristics.

Conclusions
In summary, computer-extracted quantitative nuclear
histomorphometric features are able to distinguish be-
tween high ODx vs. low + intermediate DCIS ODx risk
categories. Additionally, our findings suggest that based
on computationally extracted nuclear histomorphometric
features, the intermediate and low ODx risk categories
were more similar compared to the high ODx risk cat-
egory. Future work will involve independent validation of
these findings on multi-site, multi-institutional data and
also evaluating the ability of the histomorphometric
features to identify DCIS patients at risk of progression to
invasive disease.
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Additional file 2: Section S2. The details on the tumor tissue slide
preparation and scanning procedure (under the heading “Digital Slide
Acquisition Procedure”). Normalized intensity distribution of cancer nuclei
in the H&E stained slide images for patients in D1 (Fig. 1); multivariate
(estrogen receptor status, progesterone receptor status and age) Cox
proportional hazards analysis on risk class derived from ODx risk
categories for the different tasks in D1 (Table 1); Detailed description of
the features corresponding to each of the five feature families (under the
heading “Feature Description”); Illustration of the feature maps within a
tissue image of a DCIS patient corresponding to the high (I), intermediate
(II) and low (III) ODx risk category (Fig. 3).

Additional file 3: Section S3. H&E stained slide tissue images for each
of the three ODx risk categories in D1.
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