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Dead space ventilation‑related indices: 
bedside tools to evaluate the ventilation 
and perfusion relationship in patients 
with acute respiratory distress syndrome
Mingjia Zheng* 

Abstract 

Cumulative evidence has demonstrated that the ventilatory ratio closely correlates with mortality in acute respira-
tory distress syndrome (ARDS), and a primary feature in coronavirus disease 2019 (COVID-19)-ARDS is increased dead 
space that has been reported recently. Thus, new attention has been given to this group of dead space ventilation-
related indices, such as physiological dead space fraction, ventilatory ratio, and end-tidal-to-arterial PCO2 ratio, which, 
albeit distinctive, are all global indices with which to assess the relationship between ventilation and perfusion. These 
parameters have already been applied to positive end expiratory pressure titration, prediction of responses to the 
prone position and the field of extracorporeal life support for patients suffering from ARDS. Dead space ventilation-
related indices remain hampered by several deflects; notwithstanding, for this catastrophic syndrome, they may facili-
tate better stratifications and identifications of subphenotypes, thereby providing therapy tailored to individual needs.

Keywords  Acute respiratory distress syndrome, Dead space, Physiological dead space fraction, Ventilatory ratio, End-
tidal-to-arterial PCO2 ratio, Ventilation and perfusion mismatch
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Introduction
A hallmark of classical ARDS is an increased shunt 
caused by alveolar collapse and/or alveolar flood-
ing from a physiological viewpoint [1]. Over the past 
two decades, there has been increasing interest in dead 
space since the publication by Nuckton et al. in the early 
twenty-first century [2]. Indeed, the Berlin definition was 
based on PaO2/FiO2(i.e., arterial partial pressure of O2 
to fraction of inspired O2 ) to classify patients into three 
categories, but its predictive power for mortality was 

far from perfect [3, 4]. Given that increased dead space 
was not uncommon in patients with ARDS and its asso-
ciation with reduced survival [2], V̇ECORR (i.e., the cor-
rected minute ventilation) (Tables  1 and 2) serving as a 
substitute for dead space, was used to define the severe 
ARDS subgroup in the draft Berlin definition; never-
theless, this failed. Thus, the final Berlin definition did 
not incorporate V̇ECORR [3]. Moreover, dead space has 
been suggested to be predominant in COVID-19-ARDS 
[5]. Finally, a growing number of intuitive dead space 
ventilation-related indices with prognostic value have 
emerged [6, 7]. Therefore, attention has been redirected 
to these parameters that reflect ventilation and perfusion 
mismatch.

This review covers three dead space ventilation-related 
indices that have attracted a great deal of attention. 
After a brief introduction, their current applications 
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are described, and possible physiological rationales are 
unveiled. Despite several inevitable drawbacks, perhaps 
in the next decade, these parameters might be used in 
the subclassifications of ARDS based on severity and 
help to divide this heterogeneous syndrome into different 
subphenotypes to better guide personalized treatment 
management.

Dead space ventilation‑related indices
Physiological dead space fraction
Dead space or physiological dead space (i.e., VDphys ) is 
part of the volume that is ventilated but does not par-
ticipate in gas exchange. VDphys can be divided into two 
components: airway dead space (i.e., VDaw ) and alveo-
lar dead space (i.e., VDalv ). In mechanically ventilated 
patients, instrumental dead space (i.e., VDinst ) which 
is the volume related to artificial airway could increase 
VDaw . VDphys and its subcomponents are commonly 
expressed as the fraction of tidal volume to allow inter-
patient comparisons [12, 13]. Christian Bohr proposed 
a formula in 1891 to calculate dead space. Bohr’s dead 
space fraction (i.e., VDBohr/VT ) was calculated in the 
following manner: VDBohr/VT =

PACO2−PECO2
PACO2

 (Table 2) 
[8]. In an ideal lung assuming all units with perfect V̇A/Q̇ 
matching, PACO2 is identical to PaCO2 [14]. Thus, in 
1938, Enghoff used PaCO2 instead of PACO2 to modify 
Bohr’s formula as follows: VDB−E/VT =

PACO2−PECO2
PACO2

 
(Table 2) [9]. Enghoff’s modification of Bohr’s dead space 
fraction (i.e., VDB−E/VT ) represents the physiological 
dead space fraction ( VDphys/VT ). However, on the one 
hand, the blood from Q̇VA/Q̇T which consists of true 
shunt units (i.e., V̇A/Q̇ = 0) and low V̇A/Q̇ units could 
raise PaCO2 [15]; thus, this substitution could increase 
error of calculating true dead space (i.e., V̇A/Q̇ = ∞ ) and 
high V̇A/Q̇ units, on the other hand, using PACO2−PECO2

PACO2
 

considers all forms of V̇A/Q̇ mismatch [16]. Therefore, 

VDphys/VT (i.e., VDB−E/VT ) is a global index with which 
to assess V̇A/Q̇ mismatch [12]. In 2002, Nuckton et  al. 
first demonstrated that a high VDphys/VT was indepen-
dently associated with an increased risk of death among 
patients with ARDS [2].

Ventilatory ratio
It is widely accepted that the presence of true dead space 
units (i.e., V̇A/Q̇ = ∞ ) and high V̇A/Q̇ units could cause 
hypercapnia, and an increase in V̇E could facilitate CO2 
elimination to maintain an unchanged PaCO2 , which 
implies an association between V̇E and PaCO2 . There-
fore, the ventilatory ratio (VR) was developed to better 
evaluate ventilatory efficiency. VR is described as 
VR =

V̇Emeasured×PaCO2measured

V̇Epredicted×PaCO2predicted
 (Table  2). Likewise, VR 

reflects a continuous spectrum of V̇A/Q̇ mismatch in the 
lung [6]. Not surprisingly, authors have also validated 
that there is an intimate correlation between VR and 
VDphys/VT [17–21], and most studies have concluded 
that a higher VR is a reliable indicator of mortality 
[17–22].

End‑tidal‑to‑arterial PCO2 ratio
In the last century, authors calculated the ratio of  
alveolar dead space to alveolar tidal volume (i.e., VDalv

VTalv
 ), 

which equals P(a−ET)CO2
PaCO2

 and can be restated as 
1− PETCO2/PaCO2 [23]. Recently, Gattinoni et al. sug-
gested that the end-tidal-to-arterial PCO2 ratio PETCO2

PaCO2
 

(Table 2) deriving from VDalv
VTalv

 could be used as a bedside 
tool to monitor gas exchanges of patients with COVID-
19-ARDS. PETCO2

PaCO2
 is also a global index with which to 

assess V̇A/Q̇ mismatch, with a maximum value of 1. 
When this ratio approaches 1, it reflects an ameliorated 
gas exchange; conversely, deviation from 1 reflects gas 

Table 1  Glossary of gas variables and notations

Variables Definitions Possible compartment X Example of gas Y Possible subcompartment Z

PXY Partial pressure of gas Y in a 
compartment X

E = mixed expired CO2

ET = end-tidal O2

A = mean alveolar

a = arterial

VXZ Volume in a compartment X 
and a subcompartment Z

T = tidal phys = physiological

D = dead space aw = airway

anat = anatomic

inst = instrumental

alv = alveolar
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exchange disturbance [7]. Later, authors established that 
there was a good correlation between PETCO2

PaCO2
 and 

VDphys/VT ; in addition, a reduction in PETCO2
PaCO2

 was asso-
ciated with a higher mortality risk in the non-COVID-
19-ARDS and COVID-19-ARDS populations [24, 25].

Current applications
PEEP titration
Regarding PEEP titration, intensivists have gradually real-
ized that it is not sufficient to target anatomical recruit-
ment and/or improved oxygenation [26, 27], whereas 
targeting V̇A/Q̇ matching may represent a promising 
approach. The gold standard to evaluate V̇A/Q̇ matching 
is the multiple inert gas elimination technique (MIGET), 
which is complex [28]. Recently, authors using the auto-
matic lung parameter estimator (ALPE) method found that 
after increases in PEEP, V̇A/Q̇ matching exhibited hetero-
geneous responses [29]. Furthermore, based on electrical 
impedance tomography (EIT), Spinelli et al. reported that 
measurements of V̇A/Q̇ mismatch allowed the identifica-
tion of patients with a higher risk of death [30]. Thus, eval-
uation of V̇A/Q̇ matching likely outperforms the methods 
that concentrate on anatomic recruitment (i.e., the meth-
ods based on respiratory mechanics and morphology) and 
the method according to oxygenation, thereby playing an 
important role in determining optimal PEEP.

Almost 50 years ago, Suter et al. first defined the opti-
mal PEEP as that giving rise to the lowest VDphys/VT 
[31]. Furthermore, other studies demonstrated that indi-
ces such as the arterial minus end-tidal CO2 gradient (i.e., 
P(a− ET)CO2 ) and the ratio of alveolar dead space to 
alveolar tidal volume (i.e., VDalv

VTalv
 ) were also helpful in PEEP 

titration [32–36]. These two indices are analogous to 
PETCO2
PaCO2

 ; thus, both are associated with dead space, or 
more specifically V̇A/Q̇ matching. Altogether, employing 
these dead space ventilation-related parameters may help 
to titrate the optimal PEEP.

Prediction of response to the prone position
The PP can exert its impact even without ventilatory sup-
port, but the related risks cannot be ignored [37]. Thus, 
it is crucial to predict which patients with ARDS would 
benefit from the PP. Traditionally, PaO2/FiO2 was con-
ceived of as a better indicator of a positive response to 
the PP [38]. In the landmark PROSEVA trial, Guerin and 
colleagues reported that prone positioning for an aver-
age of 16  h/d improved oxygenation and reduced the 
mortality of patients with ARDS by 50% [39]. Nonethe-
less, the correlation between enhanced survival and 
improved oxygenation was not significant [40]. Prior to 
this renowned clinical trial, two study groups reported 

that positive responses to the PP were better predicted by 
changes in PaCO2 rather than PaO2/FiO2 [41, 42]. How-
ever, lately, using PaO2/FiO2 to determine PP respond-
ers was showed to be a reliable indicator of patients who 
would survive, especially in the literature that focused on 
selective patients with COVID-19-ARDS [43–45].

Can this contradiction be explained? Enlightened by 
the findings from Gattinoni et  al. [7, 41, 46], the most 
rational explanation for this contradiction may be as fol-
lows: Provided that hemodynamics do not change [47], 
for a large proportion of COVID-19-ARDS and a lower 
percentage of classical ARDS patients, an improved PaO2 
caused by redistributed blood flow indicates success in 
the PP; in regard to most classical ARDS and remaining 
COVID-19 ARDS patients, after the PP recruits collapsed 
or flooded lung units, a fall in PaCO2 occurs, albeit in 
combination with an increased PaO2 . However, consid-
ering the low resistance to diffusion of CO2 , a change in 
PaCO2 is a more sensitive marker than PaO2 [42]. Thus, 
once a patient exhibits a decreased PaCO2 , clinicians can 
identify this patient as a PP responder.

Admittedly, whether PaO2 or PaCO2 is the best pre-
dictor of PP responses is phenotype dependent, and PP 
responders must correspond to enhanced V̇A/Q̇ homo-
geneity. Furthermore, using EIT, recent studies con-
firmed that the PP could improve V̇A/Q̇ matching not 
only in patients with COVID-19-ARDS but also in non-
COVID-19-ARDS patients [48, 49]. Recently, two study 
groups used VR to determine PP responders [45, 50]. 
Overall, dead space ventilation-related parameters may 
be used to predict positive responses during the PP.

Identifications of candidates for extracorporeal CO2 
removal (ECCO2R)
In the recent REST trial, in contrast to lung protective 
ventilation, ECCO2R-facillitated ultraprotective venti-
lation did not significantly reduce 90-day mortality, but 
a higher incidence of complications was observed [51]. 
Thus, weighing the benefits against adverse events and 
identifying the best candidates for ECCO2R are issues 
that remain to be addressed [27, 52–54]. Goligher et al. 
found that an increased VDalv/VT could be used to pre-
dict a reduced driving pressure and a fall in VT after 
ECCO2R [55, 56]. The implication of this observation 
is that for patients with V̇A/Q̇ mismatch resulting from 
an elevated VDalv/VT , using ECCO2R to promote CO2 
removal would be more beneficial.

Guide to weaning from venovenous extracorporeal 
membrane oxygenation (vv‑ECMO)
The standardized weaning protocol of vv-ECMO for 
patients with ARDS remains undetermined. Currently, 
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the decision regarding liberation from vv-ECMO is 
mainly based on oxygenation [57, 58]. However, Al-Fares 
et al. suggested that VR (i.e., VR > 2.3, sensitivity = 100%, 
specificity = 81%) could be employed to predict the like-
lihood of safe liberation from vv-ECMO [59]. More 
recently, a negative impact of lower baseline PETCO2

PaCO2
 on 

weaning outcome was demonstrated by Lazzari and col-
leagues. The cutoff value of this parameter was 0.84 (sen-
sitivity = 92%, specificity = 80%) [60]. Hence, the optimal 
time to safely disconnect a patient from vv-ECMO is 
when the gas exchange in native lungs is improved, which 
is signified by dead space ventilation-related indices.

Limitations
Although dead space ventilation-related indices are 
promising bedside tools to assess V̇A/Q̇ mismatch, sev-
eral limitations must be highlighted. In general, these 
parameters merely indicate overall V̇A/Q̇ mismatch and 
therefore are not perfect substitutes for more precise 
techniques, such as EIT [61].

Physiological dead space fraction
Direct measurements of VDphys/VT still rely on volumet-
ric capnography (Vcap), and some technical difficulties 
limit its widespread use in the clinical setting [62]. Thus, 
some researchers have already developed several meth-
ods to indirectly estimate VDphys/VT without using Vcap 
(Table 2) [10, 11]. However, the accuracy of these meth-
ods is still under debate [11, 42].

Ventilatory ratio
According to the other form of its equation (Table 2), VR 
is influenced by V̇CO2 [17–19, 21]. In the early 1990s, 
authors found that V̇CO2 was a less influential contributor 
to excess V̇E compared with dead space in early ARDS [63]; 
nevertheless, in the era when ECLS is increasingly preva-
lent, changes in V̇CO2 can be encountered in ECLS-treated 
patients. Hence, VR is a parameter of great value to patients 
receiving ECLS; moreover, when making interpatient com-
parisons, alterations in V̇CO2 caused by ECLS should also 
be considered. This could account for the results obtained 
from two recent studies: (a) Morales-Quinteros et al. found 
that VR cannot be used as an indicator of mortality [25] 
and (b) Langer et al. employed VR to predict PP respond-
ers; however, this attempt failed as well [45].

End‑tidal‑to‑arterial PCO2 ratio
Limitations of this index include the following: (a) The 
premise of this index is that PETCO2 serves as a surro-
gate for PACO2 , In ARDS lungs, because the units with 
different V̇A/Q̇ values empty sequentially, PETCO2 is 
greater than PACO2 [16]. (b) This parameter does not 

take VDaw into account. Previous studies have shown 
that in mechanically ventilated patients, VDinst which is 
an unfixed component of VDaw heavily influences ven-
tilatory efficiency [64]. (c) Variations in V̇CO2 and V̇E 
receive no attention in this index. For patients treated 
with ECLS, different extracorporeal blood flow val-
ues would induce disparities in V̇CO2 . Additionally, V̇E 
would rise in proportion to increased V̇CO2.

Future outlook
Optimization of the subclassifications of ARDS
Although V̇ECORR failed to identify a subgroup of 
patients with more dismal outcomes, emerging clinical 
studies have revealed that a group of dead space ventila-
tion-related indices can provide prognostic information 
for patients with ARDS [2, 17–22, 24, 25]. Furthermore, 
adding these indices to the Berlin definition has been 
demonstrated to improve predictive validity [11, 21]. If 
their prognostic value could later be confirmed in large-
scale randomized controlled trials, dead space ventila-
tion-related indices may be reconsidered when experts 
update the definition of ARDS to optimize subclassifica-
tions in the future.

Identifications of ARDS subphenotypes to achieve 
precision medicine
Before the outbreak of COVID-19, to enhance person-
alized therapy, several approaches for identifying sub-
phenotypes were proposed [65]. After Gattinoni et  al. 
recommended that COVID-19-ARDS be divided into 
phenotype L (i.e., high Crs) and phenotype H (i.e., low Crs) 
[7, 46], one study group found that this atypical subpheno-
type with preserved Crs existed in non-COVID-19-ARDS 
[66]. Recently, Wendel Garcia et al.identified two subphe-
notypes characterized by different VDalv/VT ratios that 
responded differently to standardized recruitment maneu-
vers and had disparate clinical outcomes [67]. Therefore, 
identifying subphenotypes based on these dead space ven-
tilation-related indices makes it possible for the treatment 
strategies of ARDS to move from a one-size-fits-all pattern 
toward a more effective and individualized pattern.

Conclusion
Over the past decades, since the significance of dead 
space was emphasized, a large number of innovative dead 
space ventilation-related indices have emerged. These 
parameters inform intensivists about V̇A/Q̇ mismatch, 
thus assuming a pivotal role in PEEP titration, PP andE-
CLS. With the advent of precision medicine, the man-
agement of ARDS is rapidly changing, and dead space 
ventilation-related indices will return to the forefront of 
research and clinical practice.
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