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Abstract 

Background  The optimal thresholds for the initiation of invasive ventilation in patients with hypoxemic respiratory 
failure are unknown. Using the saturation-to-inspired oxygen ratio (SF), we compared lower versus higher hypoxemia 
severity thresholds for initiating invasive ventilation.

Methods  This target trial emulation included patients from the Medical Information Mart for Intensive Care (MIMIC-
IV, 2008–2019) and the Amsterdam University Medical Centers (AmsterdamUMCdb, 2003–2016) databases admitted 
to intensive care and receiving inspired oxygen fraction ≥ 0.4 via non-rebreather mask, noninvasive ventilation, or 
high-flow nasal cannula. We compared the effect of using invasive ventilation initiation thresholds of SF < 110, < 98, 
and < 88 on 28-day mortality. MIMIC-IV was used for the primary analysis and AmsterdamUMCdb for the secondary 
analysis. We obtained posterior means and 95% credible intervals (CrI) with nonparametric Bayesian G-computation.

Results  We studied 3,357 patients in the primary analysis. For invasive ventilation initiation thresholds SF < 110, 
SF < 98, and SF < 88, the predicted 28-day probabilities of invasive ventilation were 72%, 47%, and 19%. Predicted 
28-day mortality was lowest with threshold SF < 110 (22.2%, CrI 19.2 to 25.0), compared to SF < 98 (absolute risk 
increase 1.6%, CrI 0.6 to 2.6) or SF < 88 (absolute risk increase 3.5%, CrI 1.4 to 5.4). In the secondary analysis (1,279 
patients), the predicted 28-day probability of invasive ventilation was 50% for initiation threshold SF < 110, 28% for 
SF < 98, and 19% for SF < 88. In contrast with the primary analysis, predicted mortality was highest with threshold 
SF < 110 (14.6%, CrI 7.7 to 22.3), compared to SF < 98 (absolute risk decrease 0.5%, CrI 0.0 to 0.9) or SF < 88 (absolute 
risk decrease 1.9%, CrI 0.9 to 2.8).

Conclusion  Initiating invasive ventilation at lower hypoxemia severity will increase the rate of invasive ventilation, 
but this can either increase or decrease the expected mortality, with the direction of effect likely depending on base-
line mortality risk and clinical context.
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Background
Acute hypoxemic respiratory failure affects 20–50% of 
patients admitted to an intensive care unit (ICU) [1–3]. 
Affected patients have a 20–40% mortality risk and sur-
vivors may experience decreased quality of life [1, 4–6]. 
Invasive ventilation is a potentially lifesaving intervention 
that restores compensated gas exchange [7, 8]. However, 
invasive ventilation exposes patients to the risks of peri-
intubation cardiac arrest, ventilator-induced lung injury, 
pneumonia, delirium, and ICU-acquired weakness [9–
13]. The best physiologic thresholds for the initiation of 
invasive ventilation are unknown [8].

Current practice varies. In qualitative research, cli-
nicians factor multiple variables such as the degree of 
hypoxemia, work of breathing, and experience of the 
team into their decision for invasive ventilation [14, 15]. 
Randomized trials use multiple criteria incorporating 
hemodynamics, neurologic function, and respiratory 
status [16]. Observational cohorts show a low incidence 
of invasive ventilation after meeting various physiologic 
thresholds, including those used in trials [17], and pro-
found inter-hospital variation in the use of invasive ven-
tilation [18, 19]. Some of the observed practice patterns 
may cause harm through either overuse or delay in the 
initiation of invasive ventilation.

Relevant potential thresholds include the degree of 
hypoxemia, the criteria used in randomized trials, and 
thresholds that incorporate work of breathing, dura-
tion of respiratory failure, or clinical trajectory [20–23]. 
A randomized controlled trial would be the most robust 
design to compare outcomes according to threshold, 
but this trial is not feasible at present due to disagree-
ment on the region of equipoise and uncertainty about 
which thresholds to test [24]. A target trial emulation is 
an observational study design for causal inference which 
strives to mirror the eligibility criteria and interventions 
of the corresponding randomized trial, when that trial 
cannot be easily performed [25, 26]. Using the satura-
tion-to-inspired oxygen ratio (SF), we performed a target 
trial emulation to compare the effect of using invasive 
ventilation initiation thresholds of SF < 110, < 98, and < 88 
on 28-day mortality.

Methods
Study design, setting, and oversight
This retrospective cohort study was structured as a tar-
get trial emulation (Additional file  1: Table  e1). The 
study incorporated two deidentified patient-level data-
bases of intensive care unit admissions: Medical Infor-
mation Mart for Intensive Care IV (MIMIC-IV) [27, 29] 
and the Amsterdam University Medical Centers data-
base (AmsterdamUMCdb) [30, 31]. MIMIC-IV includes 

76,540 ICU admissions from Beth Israel Deaconess 
Medical Centre (BIDMC) in Boston, USA (2008–2019), 
and AmsterdamUMCdb includes 23,106 ICU admis-
sions from Amsterdam University Medical Centers 
(Amsterdam UMC) in Amsterdam, The Netherlands 
(2003–2016). MIMIC-IV included more patients and a 
more comprehensive set of potential confounders, so it 
was used for the primary analysis while AmsterdamUM-
Cdb was used for the secondary analysis. The University 
of Toronto research ethics board approved the protocol 
(#42,081). The Strengthening the Reporting of Observa-
tional Studies in Epidemiology (STROBE) checklist is in 
the Additional file 1: (§1) [32].

Cohort
Patients became eligible when they were first docu-
mented to be receiving oxygen with inspired oxygen 
fraction (FiO2) of 0.4 or more via non-rebreather mask, 
noninvasive positive pressure ventilation (NIV), or high-
flow nasal cannula (HFNC), within 24  h of ICU admis-
sion. We excluded patients with prior invasive ventilation 
during the same ICU admission, goals of care precluding 
invasive ventilation, ICU admission from the operating 
room, or a tracheostomy. Patients were also excluded 
when equipoise was less certain at the moment of eli-
gibility, defined as a Glasgow Coma Scale (GCS) motor 
component of less than 4, or a partial pressure of carbon 
dioxide (pCO2) of 60 or more with pH of 7.20 or less [33]. 
Patients were not excluded if these characteristics devel-
oped during the follow-up period, after initial inclusion. 
Wherever oxygen flow was available but FiO2 was not 
(for example, non-rebreather masks), FiO2 was estimated 
using the validated equation: FiO2 = 0.21 + (oxygen flow 
in liters per minute)*0.03 [34]. Further details are avail-
able in Additional file 1: (§4, Table e2).

Variables
Baseline variables were demographics (age, sex, race/eth-
nicity), ICU admission information (type of ICU, year of 
ICU admission), comorbidities, and baseline laboratory, 
clinical, and procedural data (Additional file  1: Figure 
e1) Time-varying covariates included heart rate, systolic 
blood pressure, vasopressor use, respiratory rate, periph-
eral oxygen saturation, inspired oxygen fraction (FiO2), 
oxygen device, GCS, abnormal work of breathing, pH, 
lactate, and partial pressure of carbon dioxide. HFNC 
was not used at Amsterdam UMC during the years of 
available data. AmsterdamUMCdb also lacked patient 
race/ethnicity, comorbidities, and work of breathing. 
Cohort extraction used Google BigQuery and R (https://​
doi.​org/​10.​5281/​zenodo.​73141​32).​(35).

https://doi.org/10.5281/zenodo.7314132).(35
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Thresholds
The main analysis compared three thresholds for initia-
tion of invasive ventilation: saturation-to-inspired oxygen 
ratio (SF) of < 110, < 98, and < 88. We chose the SF ratio 
because it is a simple yet accurate measure of hypox-
emia that is applicable to acute care settings worldwide, 
and can be measured without causing pain or discom-
fort to patients [36, 37]. Lower SF values indicate more 
severe hypoxemia. The three target values correspond to 
steeper parts of the oxyhemoglobin dissociation curve at 
high inspired oxygen fractions: SF < 88 reflects a patient 
unable to maintain oxygen saturation 88% on FiO2 1.0; 
SF < 98 reflects a patient unable to maintain saturation 
88% on FiO2 0.9 or saturation 98% on FiO2 1.0, and 
SF < 110 reflects a patient unable to maintain saturation 
88% on FiO2 0.8 or saturation 98% on FiO2 0.9.

As an exploratory analysis, we included six physiologic 
thresholds from four other measures of hypoxemic res-
piratory failure: respiratory rate, work of breathing, 
hypoxemia duration, and hypoxemia trajectory (Addi-
tional file 1). Based on the thresholds used in randomized 
trials, we included two thresholds requiring multi-organ 
involvement. We also included a usual care threshold, 
where treatment was assigned using the time-varying 

probability of invasive ventilation from the confounder 
model (Additional file 1: §8.1).

We reported invasive ventilation use for all thresh-
olds. Invasive ventilation occurred either after meet-
ing a threshold during the 96-h target trial period, or in 
the course of usual care following the 96-h period. This 
meant that all thresholds were evaluated on all patients, 
and we anticipated higher rates of invasive ventilation 
for lower severity thresholds (such as SF < 110) because 
whenever a patient attained SF < 88 or SF < 98 (higher 
degrees of hypoxemia severity), they also had SF < 110.

Note that the choice of threshold does not impact each 
patient’s SF ratios. Instead, each patient is modeled to 
either (1) receive invasive ventilation at the moment at 
which their SF ratio drops below the threshold under 
evaluation or (2) not receive invasive ventilation during 
the target trial period, if they get to the end of the 96-h 
target trial period without having an SF ratio below the 
threshold in question (Fig. 1).

Observation schedule and follow‑up
The thresholds were active until the earliest of invasive 
ventilation, ICU discharge, death, or 96  h from eligibil-
ity. During the 96-h target trial period, patients were 

Fig. 1  Oxygenation thresholds for initiating invasive ventilation. This figure explains how the saturation-to-inspired oxygen ratio (SF) threshold 
work. We begin with a patient on non-invasive oxygen support (left). Every threshold is tested on this patient (three gray arrows). The patient has 
the same underlying progression of SF ratios, independent of the choice of threshold (each line graph of SF versus time is identical). Top (SF < 110): 
At the first observation of SF < 110 (hour 4, red), the patient is intubated. Subsequent SF are not observed (grey), Middle (SF < 98 ): SF ≥98 until 
hour 12 (red), at which point the patient is intubated. Subsequent SF are not observed (grey). Bottom (SF < 88): SF ratio remains 88 or greater, so the 
patient remains on non-invasive oxygen support. All SF are observed
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evaluated every 2 hours for meeting thresholds for inva-
sive ventilation. Patients were followed until the earliest 
of death, hospital discharge, or 28 days from eligibility.

Outcomes and subgroup analyses
The primary outcome was 28-day mortality. We incorpo-
rated subgroup analyses according to sex, race/ethnicity, 
age, admission year, weight, initial oxygen device, and ini-
tial inspired oxygen fraction.

Statistical analysis
We used nonparametric Bayesian G-computation to 
predict the causal effect of each threshold on outcomes 
[38–40]. G-computation is an established method to cal-
culate unbiased treatment effects in observational study 
designs with time-varying confounding [41]. It uses two-
component models, known as the confounder model 
and the conditional outcome model. Like all models for 
causal inference from observational data, the validity of 
the results depends on meeting the assumptions of posi-
tivity (every patient could potentially receive invasive 
ventilation), no interference (one patient’s use of invasive 
ventilation does not affect another patient’s use), consist-
ency (well-defined intervention), and no unmeasured 
confounding [41].

The confounder model estimated the relationship 
between previously observed and future values of time-
varying confounding variables, for patients not inva-
sively ventilated. For this model, we used a Hilbert space 
Gaussian process approximation (Additional file  1: §6) 
[42–45]. A Gaussian process is a nonparametric Bayes-
ian model that allows covariance across time (the past 
can influence the future) and between variables (differ-
ent variables, such as heart rate or respiratory rate, can 
influence each other). Modeling the data as a Gaussian 
process amounts to assuming that there is an underlying 
smooth process (disease trajectory) that is observed over 
time through each of the continuous and discrete clinical 
variables. This approach is desirable because it can model 
complex confounding relationships and account for the 
associations between covariates. We assessed the valid-
ity of the confounder model through the measurement of 
prediction error (continuous variables) and discrimina-
tion/precision (binary variables) on data not used to fit 
the model.

The conditional outcome model estimated the prob-
ability of 28-day mortality, conditional on observing a 
sequence of confounder variables and invasive ventila-
tion status. We used Bayesian additive regression trees 
(BART), a nonparametric model that sums results from 
multiple classification trees. Prior distributions encour-
age small, simple trees with regularized leaf weights. 
BART can effectively describe nonlinear relationships 

and interactions between outcomes and confounders and 
has demonstrated success compared to other models in 
estimating confounded treatment effects [46–50]. We 
calculated the model’s discrimination, precision, and cali-
bration using fivefold cross-validation.

The nonparametric G-formula combined the two mod-
els and treatment thresholds to generate predictions of 
the effects of the thresholds on mortality (Additional 
file 1). While in a true randomized trial, each participant 
is randomized to only one treatment, in this target trial 
emulation we predict outcomes for every threshold on 
every patient. For each threshold, we reported the prob-
ability of each outcome and an odds ratio for mortality 
in comparison with modeled usual care, all summarized 
by their means and 95% credible intervals (CrI). We cal-
culated e-values to quantify the strength of unmeasured 
confounding required to negate the findings [51, 52]. We 
used 400 samples from the posterior distribution. Pro-
gramming was done in R v4.0.3 [35] and Stan [53] using 
the Niagara computer cluster from the Digital Research 
Alliance Canada [54]. All code is available at https://​doi.​
org/​10.​5281/​zenodo.​73141​32.

Results
The primary analysis included 3,357 patients from 
MIMIC-IV (Additional file 1: Figure e9). The median age 
was 65 (interquartile range (IQR) 58 to 79) years and 45% 
(1,500) were women (Table  1). Most (63%) were admit-
ted to a medical or surgical ICU. At eligibility, 16% (536) 
were using HFNC, 14% (483) NIV, and 70% (2,338) non-
rebreather masks. The median baseline SF was 148 (IQR 
136 to 174). Within 28 days, 896 patients (26.7%) received 
invasive ventilation and 745 patients (22.2%) died. Mor-
tality was 17.7% in patients who did not receive invasive 
ventilation and 34.5% in patients who received invasive 
ventilation.

Predicted probabilities of invasive ventilation by threshold
The predicted probabilities of invasive ventilation and 
mortality at 28  days were calculated using G-computa-
tion for all thresholds in all patients, and model diagnos-
tics and cross-validation are available in Additional file 1. 
The mean predicted probability of invasive ventilation 
at 28 days was 71.8% with a threshold of SF < 110, 47.0% 
with a threshold of SF < 98, and 19.4% with a threshold of 
SF < 88.

Mortality by threshold
The mean predicted 28-day mortality according to 
invasive ventilation threshold was 22.2% with a thresh-
old of SF < 110, 24.1% with a threshold of SF < 98, and 
25.8% with a threshold of SF < 88 (Fig. 2). Compared to 
a threshold of SF < 110, the absolute risk increases were 

https://doi.org/10.5281/zenodo.7314132
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1.6% (CrI 0.6 to 2.6) with a threshold of SF < 98 and 
3.5% (CrI 1.4 to 5.4) with a threshold of SF < 88. Using 
a threshold of SF < 110 instead of a threshold of SF < 88 
was associated with 1 additional survivor for every 15 
(CrI 10 to 39) additional patients invasively ventilated.

Comparison with usual care
The threshold based on usual care resulted in predicted 
28-day probabilities of 31.5% for invasive ventilation 
and 25.1% for mortality. Compared to usual care, the 

Table 1  Primary analysis cohort (MIMIC-IV) characteristics

This table shows the baseline characteristics for the cohort used in the primary analysis (MIMIC-IV cohort), grouped by oxygen device in use at time of initial eligibility. 

ICU Intensive care unit, IQR Interquartile range

Total (N (%)) Oxygen device in use at eligibility (N (%))

High-flow nasal cannula Noninvasive ventilation Non-rebreather mask

Total 3,357 536 (16) 483 (14) 2,338 (70)

Age-group (years)

 18–39 220 (7) 39 (7) 27 (6) 154 (7)

 40–49 259 (8) 41 (8) 32 (7) 186 (8)

 50–59 575 (17) 100 (19) 89 (18) 386 (17)

 60–69 745 (22) 128 (24) 121 (25) 496 (21)

 70–79 742 (22) 127 (24) 120 (25) 495 (21)

 80 or more 816 (24) 101 (19) 94 (20) 621 (27)

Sex

 Female 1,500 (45) 223 (42) 232 (48) 1,045 (45)

 Male 1,857 (55) 313 (58) 251 (52) 1,293 (55)

Race/ethnicity

 White 2,396 (71) 395 (74) 326 (68) 1,675 (72)

 Black 342 (10) 29 (5) 71 (15) 242 (10)

 Hispanic 117 (4) 17 (3) 19 (4) 81 (4)

 Asian 93 (3) 14 (3) 5 (1) 74 (3)

 Other / unknown 409 (12) 81 (15) 62 (13) 266 (11)

Year of ICU admission

 2008 – 2010 1,409 (42) 106 (20) 166 (34) 1,137 (49)

 2011 – 2013 740 (22) 66 (12) 90 (19) 584 (25)

 2014 – 2016 635 (19) 126 (24) 113 (23) 396 (17)

 2017 – 2019 573 (17) 238 (44) 114 (24) 221 (10)

Intensive care unit type

 Cardiac 807 (24) 85 (16) 135 (28) 587 (25)

 Medical-surgical 2,117 (63) 396 (74) 304 (63) 1,417 (61)

 Neuro-trauma 433 (13) 55 (10) 44 (9) 334 (14)

Comorbidities

 Chronic obstructive pulmonary disease 696 (21) 148 (28) 175 (36) 373 (16)

 Congestive heart failure 1,435 (43) 198 (37) 285 (59) 952 (41)

Baseline clinical variables (median [IQR])

 Peripheral oxygen saturation 96 [93, 99] 94 [92, 97] 95 [92, 98] 96 [93, 99]

 Fraction of inspired oxygen 0.66 [0.57, 0.68] 0.70 [0.60, 1.0] 0.51 [0.48, 0.66] 0.66 [0.57, 0.66]

 Saturation-to-inspired oxygen (SF) ratio 148 [136, 174] 131 [98, 165] 186 [145, 200] 147 [139, 164]

 Respiratory rate 23 [19, 28] 23 [20, 28] 23 [19, 29] 23 [19, 27]

Oxygen device used at any point

 High-flow nasal cannula 818 (24) 536 (100) 75 (16) 207 (9)

 Noninvasive ventilation 729 (22) 57 (11) 483 (100) 189 (8)

 Non-rebreather 2,741 (82) 210 (39) 195 (40) 2,338 (100)
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odds ratio for 28-day mortality was 0.85 (0.78 to 0.95) 
with a threshold of SF < 110, 0.95 (CrI 0.91 to 0.99) with 
a threshold of SF < 98, and 1.04 (CrI 1.01 to 1.08) with 
a threshold of SF < 88 (Fig. 3). For all thresholds, it was 
very unlikely (probability 7% or less) that the odds ratio 
for mortality was less than 0.8 (Table 2).

Additional thresholds
Across four additional dimensions of hypoxemic respiratory 
failure (respiratory rate, work of breathing, duration, trajec-
tory), thresholds triggering invasive ventilation at a lower 
severity resulted in more predicted invasive ventilation and 
less predicted mortality (Table  3). The randomized trial 

Fig. 2  Predicted 28-day probabilities of invasive ventilation and mortality by SF ratio threshold for initiating invasive ventilation. This figure 
shows the predicted 28-day probability (y-axis) of invasive ventilation (top) and mortality (bottom), for the primary (MIMIC-IV, left) and secondary 
(AmsterdamUMCdb, right) analyses, according to each threshold trigger for invasive ventilation (x-axis). The mean predicted probability is in black, 
95% credible interval in white, and red lines show the mean predicted probability for each of the 3,357 (MIMIC-IV) or 1,279 (AmsterdamUMCdb) 
individual patients, allowing for inspection of results across thresholds for each patient. The predicted probability of invasive ventilation increases 
dramatically with higher SF ratio thresholds for invasive ventilation, while the predicted probability of mortality decreases slightly for MIMIC-IV and 
increases slightly for AmsterdamUMCdb. The variation between patients is greater than the variation between thresholds, especially for mortality
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criteria threshold requiring any respiratory, hemodynamic, 
or neurologic dysfunction resulted in predicted 28-day 
probabilities of 65.5% for invasive ventilation and 22.5% for 
mortality, while a threshold of respiratory dysfunction in 
combination with either hemodynamic or neurologic dys-
function resulted in predicted 28-day probabilities of 16.1% 
for invasive ventilation and 25.9% for mortality.

Subgroup analyses
Results for the primary analysis showed consistency 
between the SF thresholds across the subgroups of age, 
sex, race/ethnicity, admission year, weight, baseline 
inspired oxygen fraction, and baseline oxygen device 
(Fig. 4). In all subgroups, predicted probability of invasive 
ventilation was lowest with threshold SF < 88, and pre-
dicted mortality was lowest with threshold SF < 110.

Secondary analysis
The AmsterdamUMCdb cohort included 1,279 patients 
(Additional file 1: Figure e9); 39% (493) were women and 

the median age-group was 60–69 years (Table 3). Nonin-
vasive ventilation was in use for 23% (296) at eligibility, 
while the remainder used non-rebreather masks. Within 
28 days from eligibility, 470 patients (36.8%) received inva-
sive ventilation and 222 patients (17.4%) died. Mortality 
was 14.6% in patients who did not receive invasive venti-
lation and 22.1% in patients who received invasive venti-
lation. Compared to the primary analysis, the secondary 
analysis incorporated fewer measured confounders and 
had worse discrimination, precision, and calibration 
(Additional file 1: Tables e3–e5, Figures e2–se8).

The mean predicted probability of 28-day invasive 
ventilation was 50.9% with a threshold of SF < 110, 
27.7% with a threshold of SF < 98, and 19.0% with a 
threshold of SF < 110 (Table  2). The corresponding 
probabilities of 28-day mortality were 14.6%, 13.2%, 
and 12.7% (Fig. 2). Compared to a threshold of SF < 110, 
the absolute risk decrease was 0.5% (CrI 0.0 to 0.9) with 
a threshold of SF < 98 and 1.9% (CrI 0.9 to 2.8) with a 
threshold of SF < 88.

Fig. 3  Odds ratios for mortality of each threshold in comparison with usual care. For both primary analysis (MIMIC-IV) and secondary analysis 
(AmsterdamUMCdb), this figure shows the posterior odds ratios (mean and 95% credible interval) for 28-day mortality alongside the probabilities 
that the posterior odds ratio (OR) is less than 1 (P(OR < 1.0)), less than 0.9 (P(OR < 0.9)), and less than 0.8 (P(OR < 0.8)). The reference threshold is usual 
care (OR = 1). SF = saturation-to-inspired oxygen fraction ratio, RR = respiratory rate. Respiratory trial criteria were 2 of RR > 40, saturation < 90 on 
inspired oxygen 0.90 or higher, abnormal work of breathing, or pH < 7.35; hemodynamic criterion was use of vasopressors; neurologic criterion 
was Glasgow Coma Scale < 9. Predicted SF was calculated using linear extrapolation between the current and previous SF measurements 
(measurements occurred every 2 h)
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Modeled usual care resulted in a predicted 28-day 
invasive ventilation probability of 45.7% and a predicted 
28-day mortality probability of 14.1%. The odds ratios of 
28-day mortality for each threshold relative to usual care 
were 1.05 (CrI 0.99 to 1.15) with a threshold of SF < 110, 
0.92 (CrI 0.88 to 0.98) with a threshold of SF < 98, and 
0.88 (CrI 0.82 to 0.94) with a threshold of SF < 88 (Fig. 3).

Discussion
This target trial emulation of thresholds for initiating 
invasive ventilation in hypoxemic respiratory failure 
showed that using a threshold of SF < 110 as a trigger to 
initiate invasive ventilation resulted in more predicted 
28-day invasive ventilation than thresholds of SF < 98 
or SF < 88. In the primary analysis, the predicted 28-day 
mortality was lowest with a threshold of SF < 110. Across 
additional thresholds focused on respiratory rate, work 
of breathing, duration of hypoxemia, trajectory of hypox-
emia, and multi-organ criteria from randomized trials, 

thresholds met at lower as opposed to higher severity 
led to lower predicted mortality. By contrast, in the sec-
ondary analysis, predicted mortality was highest with a 
threshold of SF < 110, and across the additional thresh-
olds, those met at lower severity were associated with 
higher predicted mortality.

The different relationship between invasive ventilation 
thresholds and mortality comparing primary and second-
ary analyses might be explained by differences in internal 
validity or clinical context. Compared to the secondary 
analysis, the primary analysis had more patients, more 
measured confounding variables, better discrimination, 
better precision, and better calibration. The direction 
of residual bias was harder to predict because the tar-
get trial construction did not permit death before inva-
sive ventilation during the 96-h target trial period, which 
favored higher severity thresholds, but the possible inclu-
sion of patients with care limitations favored lower sever-
ity thresholds.

Table 2  Secondary analysis cohort (AmsterdamUMCdb) characteristics

This table shows the baseline characteristics for the cohort used in the secondary analysis (AmsterdamUMCdb cohort), grouped by oxygen device in use at time of 
initial eligibility. 

ICU Intensive care unit, IQR Interquartile range

Total (N (%)) Oxygen device in use at eligibility (N (%))

All Noninvasive ventilation Non-rebreather mask

Total 1,279 296 983

Age-group

 18–39 131 (10) 19 (6) 112 (11)

 40–49 103 (8) 15 (5) 88 (9)

 50–59 213 (17) 46 (16) 167 (17)

 60–69 312 (24) 84 (28) 228 (23)

 70–79 342 (27) 89 (30) 253 (26)

 80 +  178 (14) 43 (15) 135 (14)

Sex

 Female 493 (39) 123 (42) 370 (38)

 Male 786 (61) 173 (58) 613 (62)

Year of ICU admission

 2003–2009 801 (63) 204 (69) 597 (61)

 2010–2016 478 (37) 92 (31) 386 (39)

Type of care unit

 Intensive care (Level 3) 908 (71) 236 (80) 672 (68)

 Medium care (Level 2) 145 (11) 42 (14) 103 (11)

 Both 210 (16) 17 (6) 193 (20)

Baseline clinical data (median [IQR])

 Peripheral oxygen saturation 96 [93, 98] 95 [92, 98] 96 [93, 98]

 Fraction of inspired oxygen 0.60 [0.51, 0.66] 0.60 [0.42, 0.77] 0.66 [0.51, 0.66]

 Respiratory rate 28 [22, 34] 31 [25, 38] 25 [20, 32]

Oxygen device used at any point

 Noninvasive ventilation 472 (37) 296 (100) 176 (18)

 Non-rebreather mask 1,119 (88) 139 (47) 983 (100)
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Differences in the clinical context of the two cohorts 
may also explain the findings. The two sites differed 
in terms of time period, healthcare system, ICU beds, 
patient population, oxygen device availability, and clinical 
practice. The secondary analysis encompasses an older 
observation period where contemporary approaches to 
ventilation, weaning, and sedation may not have been 
employed, potentially increasing the harms associated 
with invasive ventilation. In the secondary analysis, no 
patients used high-flow nasal cannula; however, this 
would be expected to bias results toward finding invasive 
ventilation more beneficial, the opposite direction from 
our findings. At BIDMC patients rely on private medical 
insurance and ICU beds comprise 11% of total hospital 
beds, while at Amsterdam UMC there is universal cover-
age for hospital care and ICU beds comprise only 4.4% 
of hospital beds [55, 56]. The impact of ICU bed avail-
ability on the results is harder to predict, but one poten-
tial impact is that the decision for invasive ventilation 
may be more commonly made prior to ICU admission in 
Amsterdam UMC as compared to BIDMC.

The results support the hypothesis that the benefit 
of invasive ventilation is related to underlying disease 
severity. Mortality was lower in the AmsterdamUMCdb 
cohort, implying a lower disease severity for non-intu-
bated patients in that database. Other research also sup-
ports this hypothesis. In an observational study, ARDS 
patients with arterial-to-inspired oxygen ratio less than 
150 mmHg managed using invasive as opposed to non-
invasive ventilation had lower mortality [21]. In patients 
with COVID-19, higher baseline sequential organ failure 
assessment scores were associated with better outcomes 
when patients were managed with invasive ventilation 
as opposed to noninvasive oxygen strategies [57]. For 
patients with higher predicted mortality, invasive venti-
lation thresholds triggered at a lower severity of illness 
could confer benefits by avoiding catastrophic deterio-
rations, emergency intubations, or patient self-inflicted 
lung injury [58, 59]. By contrast, for patients with lower 
predicted mortality, the benefits of avoiding iatrogenic 
complications associated with intubation and invasive 
ventilation may predominate.

Table 3  Mean predicted 28-day probabilities of invasive ventilation and mortality

This table shows the posterior mean and the 95% credible interval of the mean by threshold for predicted 28-day invasive ventilation and mortality for the primary 
(MIMIC-IV) and secondary (AmsterdamUMCdb) analyses. Note that all thresholds were evaluated in all patients. SF  Saturation-to-fraction of inspired oxygen ratio, 
RR  respiratory rate,     MIMIC-IV = Medical Information Mart for Intensive Care Version IV, AmsterdamUMCdb = Amsterdam University Medical Center database.
* Predicted SF was calculated using linear extrapolation between the current and previous SF measurements (measurements occurred every 2 h).
** Randomized trial criteria: respiratory criteria = 2 of RR > 40, saturation < 90 on inspired oxygen 0.90 or higher, abnormal work of breathing, or pH < 7.35; 
hemodynamic criteria = use of breathing, or pH < 7.35; hemodynamic criteria = use of vasopressors; neurologic criteria = Glasgow Coma Scale < 9. 

Invasive ventilation (28-day) Mortality (28-day)

Threshold MIMIC-IV AmsterdamUMCdb MIMIC-IV AmsterdamUMCdb

Oxygenation thresholds

SF < 110 71.8 (70.4 to 73.0) 50.9 (44.9 to 55.3) 22.2 (19.5 to 25.0) 14.6 (7.7 to 22.3)

SF < 98 47.0 (45.6 to 48.5) 27.7 (19.1 to 34.2) 24.1 (22.0 to 26.9) 13.2 (6.3 to 20.8)

SF < 88 19.4 (18.0 to 20.9) 19.0 (9.2 to 26.2) 25.8 (23.5 to 28.3) 12.7 (6.0 to 20.4)

Usual care

Observed 26.7 (25.2 to 28.2) 36.8 (34.1 to 39.5) 22.2 (20.8 to 23.6) 17.4 (15.3 to 19.6)

Modeled 31.5 (29.7 to 33.5) 45.7 (38.4 to 50.7) 25.1 (22.9 to 27.8) 14.1 (6.7 to 22.3)

Secondary outcomes: respiratory rate

SF < 98 and RR > 25 32.9 (31.4 to 34.4) 24.6 (15.4 to 31.4) 25.0 (22.9 to 27.7) 13.0 (6.3 to 20.7)

SF < 98 and RR > 35 16.3 (15.0 to 17.6) 21.0 (11.3 to 27.9) 25.9 (23.7 to 28.5) 12.8 (6.1 to 20.8)

Secondary outcomes: work of breathing

SF < 98 and abnormal work of breathing 33.5 (31.9 to 35.2) – 24.9 (22.8 to 27.7) –

Secondary outcomes: duration

SF < 98 for 2 consecutive hours 27.6 (26.0 to 29.0) 19.9 (10.2 to 26.9) 25.3 (23.2 to 28.1) 12.7 (5.9 to 20.7)

SF < 98 for 4 consecutive hours 19.8 (18.4 to 21.2) 18.1 (8.1 to 25.3) 25.8 (23.6 to 28.3) 12.6 (5.9 to 20.4)

Secondary outcomes: trajectory

SF predicted to be less than 88 in 30 min 67.5 (66.2 to 68.8) 51.0 (44.8 to 55.3) 22.6 (20.1 to 25.4) 14.4 (6.7 to 22.9)

SF predicted to be less than 88 in 60 min 43.0 (41.5 to 44.4) 26.2 (17.1 to 32.9) 24.4 (22.3 to 27.2) 13.0 (6.1 to 21.0)

Secondary outcomes: randomized trial criteria

Respiratory, hemodynamic, or neurologic trial criteria 65.5 (64.2 to 66.8) 64.7 (59.8 to 68.3) 22.5 (19.9 to 25.4) 15.7 (9.0 to 22.3)

Respiratory and hemodynamic or neurologic trial criteria 16.1 (14.8 to 17.5) 19.2 (9.2 to 26.5) 25.9 (23.7 to 28.6) 12.7 (6.1 to 20.4)
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However, not all research accords with this conclu-
sion. Two small randomized trials from 1998 and 2005 
suggested benefits with a higher severity threshold for 
invasive ventilation among a population with severe 
hypoxemic respiratory failure [60, 61]. Options for non-
invasive oxygen support, and the use of contemporary 
best practices for ventilation, weaning, and sedation may 
have been reduced in those studies, highlighting that 
the balance of benefit and harm associated with invasive 
ventilation will depend on the use of noninvasive oxygen 
strategies and best practices during invasive ventilation 
[11, 62–65].

This study has important limitations. Unmeasured 
confounding is present because the clinical decision for 
invasive ventilation incorporates information about the 
diagnosis, prognosis, and nuanced respiratory assess-
ment that are not available in the data studied. Unavoid-
ably, the methods involved many modeling decisions 
which may affect the results in unpredictable ways [66]. 

The study does not report functional outcomes, where 
the harms of excess invasive ventilation may be more 
evident [6, 67]. The choice of SF ratio for the primary 
thresholds is problematic for people with darker skin pig-
ment in whom peripheral oximeters can overestimate 
arterial oxygen saturation; we recommend using arterial 
oxygen saturation when a discrepancy is possible [68]. 
The target trial duration of 96  h captures most but not 
all intubations for hypoxemic respiratory failure [20, 69]. 
Some of the data were gathered more than 10–15 years 
ago and may not reflect current clinical practice.

The study also has considerable strengths. The meth-
ods are novel, fully documented, and address many chal-
lenges in correlating treatment decisions with clinical 
outcomes from retrospective data, including immortal 
time bias, indication bias, and time-varying confounding 
[66, 67]. The predictive validity of the component mod-
els has been explicitly assessed and documented. The 
thresholds evaluated are simple and clinically applicable.

Fig. 4  Mean predicted 28-day probabilities of invasive ventilation and mortality by subgroup. This figure shows the posterior probability densities 
of the mean predicted probabilities (x-axis) of invasive ventilation (left column) and mortality (right column) at 28 days according to threshold 
(light, medium, or dark densities) and subgroup (row) for the primary (MIMIC-IV) analysis. The ordering of results by threshold is consistent across 
subgroup for both invasive ventilation and mortality. The predicted probabilities of invasive ventilation by threshold are relatively stable across 
subgroups, except for baseline fraction of inspired oxygen or oxygen device at eligibility. The predicted probabilities of mortality vary according to 
baseline characteristics, including increases with increasing age or decreases with weight 100 kg or more
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These results highlight many areas for future research. 
Optimal thresholds may additional physiologic data such 
as standardized dyspnea assessment, electrical imped-
ance tomography, or esophageal manometry [22, 70, 71]. 
More complex thresholds could be found through rein-
forcement learning [72, 73]. More information is also 
needed to compare thresholds with respect to functional 
outcomes, cost-effectiveness, and patient preferences.

Conclusion
For patients with hypoxemic respiratory failure, initi-
ating invasive ventilation at lower hypoxemia severity 
will increase the rate of invasive ventilation, but this can 
either increase or decrease the expected mortality, with 
the direction of effect likely depending on baseline mor-
tality risk and clinical context.
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