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Abstract 

Background:  Delirium is a frequent manifestation of acute brain dysfunction and is associated with cognitive impair-
ment. The hypothesized mechanism of brain dysfunction during critical illness is centered on neuroinflammation, 
regulated in part by the cholinergic system. Point-of-care serum cholinesterase enzyme activity measurements serve 
as a real-time index of cholinergic activity. We hypothesized that cholinesterase activity during critical illness would be 
associated with delirium in the intensive care unit (ICU) and cognitive impairment after discharge.

Methods:  We enrolled adults with respiratory failure and/or shock and measured plasma acetylcholinesterase (AChE) 
and butyrylcholinesterase (BChE) activity on days 1, 3, 5, and 7 after enrollment. AChE values were also normalized per 
gram of hemoglobin (AChE/Hgb). We assessed for coma and delirium twice daily using the Richmond Agitation Seda-
tion Scale and the Confusion Assessment Method for the ICU to evaluate daily mental status (delirium, coma, normal) 
and days alive without delirium or coma. Cognitive impairment, disability, and health-related quality of life were 
assessed at up to 6 months post-discharge. We used multivariable regression to determine whether AChE, AChE/Hgb, 
and BChE activity were associated with outcomes after adjusting for relevant covariates.

Results:  We included 272 critically ill patients who were a median (IQR) age 56 (39–67) years and had a median 
Sequential Organ Failure Assessment score at enrollment of 8 (5–11). Higher daily AChE levels were associated with 
increased odds of being delirious versus normal mental status on the same day (Odds Ratio [95% Confidence Interval] 
1.64 [1.11, 2.43]; P = 0.045). AChE/Hgb and BChE activity levels were not associated with delirious mental status. Lower 
enrollment BChE was associated with fewer days alive without delirium or coma (P = 0.048). AChE, AChE/Hgb, and 
BChE levels were not significantly associated with cognitive impairment, disability, or quality of life after discharge.

Conclusion:  Cholinesterase activity during critical illness is associated with delirium but not with outcomes after 
discharge, findings that may reflect mechanisms of acute brain organ dysfunction.

Trial Registration: NCT03098472. Registered 31 March 2017.
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Background
Delirium is a manifestation of acute brain dysfunction 
involving impairments in attention and cognition that 
affects up to half of older hospitalized patients[1, 2] and 
50%-75% of critically ill patients [3], such that millions of 
patients worldwide experience this acute threat to their 
health and wellbeing every year. Delirium in ICU patients 
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results in enormous financial and societal burdens due 
to its relationship with longer ICU and hospital stays [4], 
increased health care costs [5], higher short- and long-
term mortality [6–8], and increased risk of long-term 
cognitive impairment [9, 10], an acquired disorder that 
for many patients is akin to dementia.

Proinflammatory markers are elevated during ICU 
delirium [11, 12], but the nature of the relationship 
between inflammation—which is present in the major-
ity of critically ill patients—and delirium remains poorly 
understand. Acute neuroinflammatory changes may lead 
to delirium in the acute setting and chronic neuronal 
alterations manifesting as cognitive impairment in the 
long-term [13–15]. A widely held hypothesis proposes 
that inflammation is regulated by the cholinergic system, 
and that this interaction plays a pivotal role in whether 
delirium develops in the setting of acute illness [14, 16]. 
Thus, the ability to measure cholinergic system activity 
may provide insight into critically ill patients at particu-
larly high risk for acute and long-term brain dysfunction.

The primary neurotransmitter of the cholinergic sys-
tem is acetylcholine, which can’t be measured directly in 
clinical settings. The activity of acetylcholine is regulated 
by the enzymes acetylcholinesterase (AChE), primarily 
found in synapses and red blood cell membranes, and 
butyrylcholinesterase (BChE), primarily found in plasma. 
Changes in the activity of these enzymes, which can be 
measured in whole blood using point-of-care testing, may 
reflect altered regulation of circulating acetylcholine and 
inflammation. Increased AChE activity has been associ-
ated with increased risk of postoperative delirium [17] 
and with major neurocognitive disorder [18]. Decreased 
BChE activity has been associated with increased inflam-
mation [19–21], increased risk of postoperative delirium 
[17, 22–24], and dementia [25, 26]. Nevertheless, the 
activity of these enzymes has not been evaluated in larger 
multidisciplinary critically ill cohorts where delirium and 
cognitive impairment after discharge are common.

We, therefore, conducted a prospective cohort study to 
investigate whether AChE, AChE normalized per gram 
of hemoglobin (AChE/Hgb), and BChE activities meas-
ured using point-of-care testing are associated with acute 
brain dysfunction (i.e., delirium and coma) during critical 
illness and whether they are predictive of long-term cog-
nitive impairment, disability, and health-related quality 
of life in survivors of critical illness.

Methods
Study design and population
We conducted the Cholinesterase Activity and Delir-
iUm during Critical illness Study (CADUCeuS) 
(NCT03098472) at Vanderbilt University Medical Center 
from May 2017 until January 2020. The study protocol 

was approved by the Vanderbilt Institutional Review 
Board. We included adult patients enrolled in prospec-
tive studies within the Critical Illness, Brain Dysfunc-
tion, and Survivorship Center who were admitted to the 
medical, surgical, or trauma ICU with respiratory failure 
(mechanical ventilation or non-invasive positive pressure 
ventilation) and/or shock requiring vasopressors unless 
they met the following exclusion criteria: expected death 
within 24  h or planned transition to comfort measures; 
active substance abuse, psychotic disorder, or homeless-
ness without a secondary contact which would make 
long-term follow-up difficult; blindness or deafness 
which prevents assessments; inability to obtain informed 
consent from the patient or surrogate.

Exposures
We collected 10 µL of whole blood in the mornings of 
days 1 (study enrollment), 3, 5, and 7 while in the hospital 
to measure AChE and BChE activities using the validated 
ChE Check device (LISA-CHE, Dr. F. Köhler Chemie 
[DFKC] Bensheim, Germany), a point-of-care device that 
reliably measures AChE and BChE activities in whole 
blood. These collection intervals were chosen to capture 
trends in enzyme activity from presentation of critical 
illness through resolution based on historical cohorts 
within our institution. Enzyme activity was measured in 
U/L. In addition to measuring and assessing relationships 
for AChE activity, we also normalized the AChE activity 
per gram of hemoglobin (AChE/Hgb) as AChE is found 
in synapses and on red blood cell membranes.

Outcomes
We assessed patients for delirium and/or coma twice 
daily until ICU discharge and once daily after ICU dis-
charge. To determine the level of arousal, we used the 
Richmond Agitation-Sedation Scale (RASS) [27], and to 
assess for delirium, we used the Confusion Assessment 
Method for the ICU (CAM-ICU) [28]. We considered 
coma present if the RASS was − 4 (responsive to physi-
cal stimulus only) or − 5 (completely unresponsive). We 
considered delirium present if the patient was not coma-
tose (i.e., had a RASS of − 3 or more) and was CAM-ICU 
positive. We considered a patient to have a ‘normal’ men-
tal assessment if neither coma nor delirium were present.

Neuropsychology professionals blinded to each partici-
pant’s hospital course and biomarker data assessed par-
ticipants for cognitive impairment, disability, and quality 
of life 3–6 months after hospital discharge. We assessed 
cognitive function with the Repeatable Battery for the 
Assessment of Neuropsychological Status (RBANS) [29] 
and Trail Making Test Part B (Trails B) [30] or with the 
Telephone Interview for Cognitive Status (TICS) [31] and 
a validated telephone cognitive battery [32] depending on 
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the co-enrolled study. We defined cognitive impairment 
present if scores were ≥ 2 standard deviations below nor-
mal in one test or ≥ 1.5 standard deviations below nor-
mal in any two tests, similar to prior publications [9, 33, 
34]. We assessed disability status with the Katz Activities 
of Daily Living (ADLs) [35] and the Functional Activi-
ties Questionnaire (FAQ) [36] and defined presence 
of disability as ADL score ≥ 1 or FAQ ≥ 2. Finally, we 
assessed health-related quality of life with the EQ-5D 
questionnaire [37]. For additional information on these 
assessments, please see Additional file  1: Supplemental 
Appendix.

Covariates
Through medical record review and patient and sur-
rogate interview, we collected demographic data upon 
enrollment and hospital course data from admission 
until discharge, death, or a maximum of 30  days after 
enrollment. We chose the following covariates a priori 
based on clinical judgment and prior research: age; dis-
ability on enrollment; education level (below bachelor’s 
degree, bachelor’s degree and above); comorbid disease 
burden per the Charlson comorbidity index; severity of 
illness per the modified Sequential Organ Failure Assess-
ment Score (which excluded Glasgow Coma Scale since 
we accounted for coma and delirium separately); sepsis 
on enrollment; ICU type (medical, surgical, trauma); and 
mechanical ventilation.

Statistical analysis
We used separate multivariable regression models to 
determine whether AChE, AChE/Hgb, and BChE activity 
were independently associated with outcomes. To assess 
the association of daily enzyme activities with acute 
brain dysfunction, we performed multinomial logistic 
regressions to analyze the association between the daily 
enzyme activity levels (i.e., day 1, 3, 5, 7) and the same 
day’s mental status categorized as normal, delirium (if 
one or more assessment was CAM-ICU positive), or 
coma (if both assessments were RASS −4 of −5), adjust-
ing for the aforementioned covariates (using the same 
day SOFA score, ICU type, and mechanical ventilation 
status) and the prior day’s mental status (i.e., normal, 
delirium, coma). We fit a multinomial logistic regression 
model given the nominal outcomes (i.e., normal brain 
function, delirium, coma). Similar to a logistic regression 
model, the results from this model can be presented both 
as an odds ratio and the predicted probability of an event 
happening. We choose to present the results as predicted 
probabilities to clearly visualize the relationship between 
enzyme activity levels and mental status in Fig.  1. The 
odds ratios from these models comparing enzyme activ-
ity level and outcomes are also provided in Additional 

file 1:  Figs. S7 (odds of coma vs. normal) and S8 (odds 
of delirium vs. normal). We also performed proportional 
odds logistic regressions to analyze the association of the 
enzyme activity level on day 1 with the number of cal-
endar days alive without delirium or coma over 14 days. 
This accounts for bias due to death, and higher numbers 
equate to less acute brain dysfunction (i.e., more days 
alive and free of delirium or coma). We considered days 
after the day of hospital discharge as without delirium or 
coma until the end of 14-day period or death, whichever 
came first.

To assess the association of enzyme activities with 
long-term cognitive impairment, we performed sepa-
rate multivariable logistic regressions analyzing each 
enzyme’s day 1 value and mean value during the hospital 
stay and the presence of cognitive impairment (yes/no), 
adjusting for the aforementioned covariates (using mean 
SOFA score) except for ICU type and mechanical ventila-
tion to avoid overfitting. We performed similar multivari-
able logistic regressions analyzing each enzyme’s day 1 
value and mean value and the presence of disability (yes/
no). Finally, we performed separate multivariable propor-
tional odds logistic regressions analyzing each enzyme’s 
day 1 value and mean value and the EQ-5D index score, 
adjusting for the aforementioned covariates (using mean 
SOFA score and mechanical ventilation duration) with 
the addition of delirium duration.

We incorporated restricted cubic splines for continu-
ous variables into the models based on the distribution. 
Prior to modeling, we performed redundancy analyses 
to detect multicollinearity of covariates. We used R soft-
ware version 3.6.3 for all the analyses.

Role of the funding source
For this investigator-initiated study, the sponsor provided 
a research grant and the ChE Check device. The sponsor 
had no role in study design, data collection, data analysis, 
data interpretation, or writing of the report.

Results
We enrolled 272 patients into the study who were a 
median (IQR) age 56 (39–67) years and had a median 
Sequential Organ Failure Assessment score at enroll-
ment of 8 (5–11), 176 of whom survived to discharge 
and had follow-up assessments. Patient characteristics 
from the overall cohort are presented in Table 1 and for 
those who participated in follow-up in Additional file 1: 
Table  S1. Overall, there was a balance between trauma, 
medical, and surgical ICU patients with a high severity of 
illness, including 55% with sepsis and 69% on mechanical 
ventilation. Fifteen percent of the cohort died within the 
hospital, and 23% died within 90 days of enrollment. The 
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median days alive and free of delirium or coma was 11 
(2–13) out of 14 days. We found that 47% of the survivors 
had scores indicative of cognitive impairment, and 40% 
had evidence of disability (Table 1). Scores on the cogni-
tive, disability, and health-related quality of life assess-
ments are provided in Additional file 1:  Table S2.

Cholinesterase enzyme activity
Table 2 displays the median (interquartile range) of the 
enzyme activity values throughout the study period 
and on days with normal mental status, comatose 
mental status, and delirium mental status. Enzyme 
activity levels for the cohort are displayed graphically 
in Additional file  1: Figs.  S1–S6. In general, AChE 
and BChE activity levels decreased from initial meas-
urement through the hospital stay, with the largest 
decrease from day 1 to day 3. AChE/Hgb activity lev-
els remained similar from day 1 to 7. Median AChE 
activity levels appeared slightly lower on comatose and 
delirious days compared to days with normal mental 
status, though not when normalized to Hgb. Median 
BChE activity levels were more noticeably lower on 
comatose and delirious days than normal mental 
status.

Acute brain dysfunction
To assess the independent association of enzyme 
activities with acute brain dysfunction, we first ana-
lyzed the association between the daily enzyme activ-
ity value and the same day’s mental status, adjusting 
for covariates. Figure  1 displays the relationships of 
enzyme activity levels and the probability of normal, 
comatose, or delirious mental status. As shown in the 
figure, higher AChE enzyme activity levels were asso-
ciated with a decreased odds of normal mental status 
and a higher odds of delirious status on the same day 

Table 1  Characteristics and outcomes of study population

*Median (interquartile range) or N (percentage)
† Days alive and free of delirium or coma in the 14 days from enrollment

Participant characteristics and outcomes of the cohort, including acute brain 
dysfunction, cognitive impairment, disability, and mortality, are displayed. 
Cognitive impairment was assessed with the Repeatable Battery for the 
Assessment of Neuropsychological Status [29] and Trail Making Test Part B 
[30] or with the Telephone Interview for Cognitive Status [31] and a validated 
telephone cognitive battery [32]. Disability was assessed with the Katz ADL [7] 
and the Functional Activities Questionnaire [8]

ICU intensive care unit, SOFA Sequential Organ Failure Assessment

Characteristic* N = 272

Age at enrollment, years 56 (39–67)

Male sex, N (%) 151 (56%)

Body mass index (kg/m2) 28.7 (24.4–33.7)

Education, N (%)

• Below bachelor’s degree 223 (83%)

• Bachelor’s degree and above 47 (17%)

Charlson Comorbidity Index at enrollment 1 (0–2)

Disability present at enrollment, N (%) 56 (21%)

Sepsis at enrollment, N (%) 149 (55%)

Mechanical ventilation at enrollment, N (%) 187 (69%)

SOFA score at enrollment 8 (5–11)

ICU type, N (%)

• Medical 93 (34%)

• Surgical 63 (23%)

• Trauma 116 (43%)

ICU length of stay (days) 3.8 (1.4–8.8)

Hospital length of stay (days) 9.1 (5.1–16.0)

Days with delirium 1.0 (0.0–4.0)

Days with coma 0.0 (0.0–1.0)

Days alive and free of delirium or coma† 11.0 (2.0–13.0)

In-hospital mortality, N (%) 42 (15%)

90-day mortality, N (%) 63 (23%)

Cognitive impairment present at follow-up (N = 154), 
N (%)

72 (47%)

Disability present at follow-up (N = 176), N (%) 71 (40%)

EQ-5D index score at follow-up (N = 170) 0.7 (0.4–0.8)

Table 2  Median cholinesterase enzyme activity levels

*Median (interquartile range) enzyme activity level in Units/L for AChE and BChE and in Units/gram hemoglobin for AChE/Hgb

The median acetylcholinesterase (AChE), acetylcholinesterase per hemoglobin (AChE/Hgb), and butyrylcholinesterase (BChE) activity levels on days 1, 3, 5, and 7 are 
displayed. The median activity levels overall, along with activity levels on days with normal, comatose, and delirious mental status are also displayed

Period N AChE* AChE/Hgb* BChE*

Day 1 253 3382 (2823–4108) 32.2 (29.4–35.2) 1382 (1068–1686)

Day 3 215 3128 (2560–3845) 32.0 (29.6–35.6) 1247 (968–1609)

Day 5 157 3123 (2713–3737) 32.0 (29.4–34.4) 1298 (926–1585)

Day 7 43 3109 (2588–3756) 32.9 (29.8–38.6) 1144 (860–1293)

Sum Day 1–7 668 3237 (2683–3933) 32.1 (29.5–35.4) 1271 (989–1630)

Normal mental status 328 3288 (2732–4076) 32.3 (29.7–35.0) 1368 (1101–1695)

Comatose mental status 123 3026 (2467–3689) 31.4 (28.7–35.1) 1214 (903–1417)

Delirious mental status 212 3237 (2713–3889) 32.1 (29.6–35.8) 1212 (880–1674)
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(P = 0.045), but not comatose mental status (P = 0.13). 
The odds of coma and delirium comparing the 75th 
versus 25th percentile values of the enzyme activ-
ity are displayed in Additional file  1: Figs.  S7 and S8, 
respectively. Patients with AChE activity at the 75th 
percentile, for example, would have on average a 64% 
increased odds of developing delirium compared to 
those with values at the 25th percentile. AChE/Hgb, 
however, and BChE activity levels did not show clear 
relationships with normal mental status and were not 
significantly associated with odds of comatose or delir-
ious mental status.

We next analyzed the association of each enzyme 
activity value on enrollment (day 1) with the number 
of calendar days alive without delirium or coma over 
14 days, adjusting for relevant covariates. Figure 2 dis-
plays these relationships. Enrollment AChE and AChE/
Hgb activity were not significantly associated with 
days alive without delirium or coma. However, lower 
enrollment BChE activity levels were associated with 
fewer days alive without delirium or coma over the 
following 14  days (P = 0.048), indicating worse acute 
brain dysfunction. Additional file  1:  Fig.  S9 displays 
the odds of greater days alive without delirium or coma 
by the 75th versus 25th percentile of enzyme values. 
Patients with BChE activity at the 75th percentile, for 
example, would, on average, have a 44% increased odds 
of having more days alive without delirium or coma 
(favorable outcome, indicating less brain dysfunction) 
compared to those with activity at the 25th percentile, 
supporting that lower BChE values are associated with 
worse acute brain dysfunction.

Cognitive and functional impairments
We assessed the independent associations of enzyme activ-
ity values on enrollment (day 1) and mean activity values 
during the hospital stay with cognitive impairment, disabil-
ity, and quality of life 3–6 months after hospital discharge, 
adjusting for relevant covariates. We did not find any sta-
tistically significant associations between either enroll-
ment or mean AChE, AChE/Hgb, or BChE activity levels 
and outcomes up to 6 months after discharge. Figure 3 dis-
plays the odds of cognitive impairment (panels A and B), 

odds of disability in activities of daily living (panels C and 
D), and the odds of better health-related quality of life on 
the EQ-5D (panels E and F) for the 75th percentile enzyme 
activity level compared to the 25th percentile enzyme level, 
along with listing the P-values of the overall relationships. 
Additional file 1: Figs. S10–S12 display the enzyme activ-
ity levels and probability of cognitive impairment, prob-
ability of disability, and EQ-5D index score at follow-up, 
respectively.

Discussion
In this prospective cohort study that measured AChE, 
AChE/Hgb, and BChE enzyme activity levels using point-
of-care testing in critically ill patients over several days, we 
found that higher AChE activity on a given day was associ-
ated with an increased odds of being delirious, though not 
when normalized to Hgb. Additionally, lower BChE activ-
ity was associated with fewer days alive without delirium or 
coma. We did not find associations between AChE, AChE/
Hgb, or BChE activity levels with cognitive impairment, 
disability, or health-related quality of life up to 6  months 
after hospital discharge.

There remains a lot of interest in elucidating mechanisms 
for acute brain dysfunction (i.e., delirium and coma) dur-
ing critical illness so that tailored therapeutics and patient 
management protocols can be developed. Moreover, the 
mechanisms linking delirium during critical illness and 
longer-term cognitive impairment in survivors remain 
unclear [38]. The majority of recent animal and human 
research has focused on systemic insults (e.g., sepsis) lead-
ing to inflammatory signaling through the blood brain 
barrier, resulting in microglial activation, neuroinflamma-
tion, and neurotransmitter alterations that present as acute 
brain dysfunction and then result in chronic neuronal 
alterations and atrophy manifesting as cognitive impair-
ment in the long-term [13–15, 39–41]. Increasing data 
support the role of the cholinergic system in regulating the 
inflammatory response [14, 16, 42]. During inflammatory 
states, cholinergic stimulation blocks endothelial activa-
tion and leukocyte recruitment [43, 44], and a decrease of 
cerebral acetylcholine triggers increased secretion of IL-1β, 
IL-6, TNFα, and other inflammatory markers [45]. Cholin-
ergic loss can induce microglia priming, leading to central 

(See figure on next page.)
Fig. 1  Daily Cholinesterase Enzyme Activity and Daily Mental Status. The predicted probabilities of normal mental status, comatose mental 
status, and delirious mental status for acetylcholinesterase (AChE, panel A), acetylcholinesterase per hemoglobin (AChE/Hgb, panel B), and 
butyrylcholinesterase (BChE, panel C) activity levels are displayed. The P values represent the independent associations of the enzyme value on 
the odds of comatose vs. normal mental status or delirious vs. normal mental status. Greater AChE enzyme activity levels had decreased odds of 
normal mental status and were significantly associated with a higher odds of delirious mental status on the same day (P = 0.045) but not comatose 
mental status (P = 0.13). AChE/Hgb and BChE activity levels did not show clear relationships with normal mental status and were not significantly 
associated with odds of comatose or delirious mental status
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Fig. 1  (See legend on previous page.)
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Fig. 2  Enrollment Cholinesterase Enzyme Activity and Days Alive Without Delirium or Coma. The predicted days alive without delirium or 
coma in 14 days from enrollment (day 1) acetylcholinesterase (AChE, panel A), acetylcholinesterase per hemoglobin (AChE/Hgb, panel B), and 
butyrylcholinesterase (BChE, panel C) activity levels are displayed. The grey dashed lines represent the 95% confidence intervals. Lower enrollment 
BChE activity levels were associated with fewer days alive without delirium or coma over the following 14 days (P = 0.048), indicating worse acute 
brain dysfunction. Enrollment AChE and AChE/Hgb activity were not significantly associated with days alive without delirium or coma
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nervous system amplification of peripheral inflammatory 
signals [13]. Indeed, a number of anticholinergic agents 
are known to induce delirium [46], and early studies found 
serum anticholinergic activity was associated with delirium 
[47, 48]. There is also an overlap of cholinergic pathways 
and neuroimaging lesions in delirium [49]. Acetylcho-
line deficits have been associated with executive dysfunc-
tion and memory issues, with anticholinergic medications 
associated with changes in cognition [50]. Pre-clinical data 
support that increased cholinergic stimulation can reduce 
brain inflammation and microglial activation to improve 
cognitive responses [51] and physostigmine (a cholinester-
ase inhibitor) produces an anti-inflammatory effect in the 
brain with increasing acetylcholine levels [45, 52]. While 
cholinesterase inhibitors to increase acetylcholine availabil-
ity have not yet shown use in preventing or treating delir-
ium [53, 54], they are used for treatment of Alzheimer’s 
disease and for patients with anticholinergic overdose and 
delirium [55, 56].

Measuring acetylcholine levels is not clinically feasible, 
but activity levels of AChE and BChE can be measured, 
including through the use of portable point-of-care test-
ing. Additionally, AChE activity can be readily normalized 
to account for AChE found on red blood cells. Measuring 
activity levels may assist in guiding potential therapies for 
delirium in appropriate patients. It appears AChE activ-
ity, which is primarily found in synapses and red blood 
cell membranes, may be linked to more chronic cho-
linergic activity and neurologic deficit or vulnerability. 
Increased AChE activity, potentially indicating low ace-
tylcholine availability in the synapses, has been associated 
with increased risk of postoperative delirium [17] and with 
major neurocognitive disorder [18]. In this cohort study of 
critically ill patients, we found that increased AChE activ-
ity was independently associated with increased odds of 
delirium (though not when normalized to Hgb levels) but 
was not significantly associated with cognitive impairment, 
or other impairments, after discharge. Thus, this potential 
vulnerability for acute brain dysfunction did not translate 
to long-term deficits.

BChE activity, which is primarily found in plasma, 
correlates with increasing inflammation, greater illness 
severity, and worse outcomes in critically ill patients [19–
21]. As such, decreasing levels appear to be a marker of 

acute stress, inflammation, and potentially neuroinflam-
mation. Decreased BChE activity has been associated 
with increased risk of postoperative delirium in several 
studies [17, 22–24]—though this finding is not univer-
sal [57]—and has been associated with dementia [25, 
26]. We found that decreased BChE activity early on in 
the critical illness course was independently associated 
worse acute brain dysfunction as shown by lower days 
alive and free of delirium or coma. This provides support 
of the link between decreased BChE activity, increased 
inflammation, and increased acute brain dysfunction, yet 
its activity does not subsequently predict longer lasting 
impairments in survivors.

Our study had several strengths and limitations. 
The cohort consisted of medical, surgical, and trauma 
patients, increasing generalizability. Trained research 
nurses performed RASS and CAM-ICU assessments, 
and trained neuropsychology professionals performed 
follow-up assessments of cognition, disability, and 
health-related quality of life. We used prospectively col-
lected data to evaluate potential relationships between 
enzyme activities and both acute and long-term brain 
dysfunction. Our limitations include use of AChE and 
BChE activities as markers of the cholinergic system as 
acetylcholine is not directly measurable. Similarly, as 
direct measurement of central nervous system inflam-
matory processes is not feasible in many patients, we 
used more readily available plasma markers as surro-
gates of central nervous system pathology. Our samples 
were collected on frequent, designated study days in 
the mornings; we did not, however, specify exact tim-
ing of sample collection, which may potentially exhibit 
diurnal variances with ACh activity [58, 59]. Addition-
ally, we did not collect daily administration of anticho-
linergic medications, which may influence systemic 
AChE and BChE levels. However, the use of point-of-
care assessments allowed us to measure the current 
state of enzyme activity in the setting of critical illness, 
comorbid disease, and medication exposure to evaluate 
the associations of current functional levels with out-
comes. This observational study cannot prove causation 
or direct mechanistic links between the enzymes and 
acute brain dysfunction, though we adjusted for a num-
ber of a priori identified confounders.

(See figure on next page.)
Fig. 3  Cholinesterase Enzyme Activity and Neuropsychological Outcomes. The odds ratio (95% confidence interval) of cognitive impairment 
(panels A and B), disability in activities of daily living (panels C and D), and better health-related quality of life on the EQ-5D (panels E and F) for 
the 75th percentile acetylcholinesterase (AChE), acetylcholinesterase per hemoglobin (AChE/Hgb), and butyrylcholinesterase (BChE) activity levels 
compared to the 25th percentile enzyme levels are displayed. Also listed are the P values of the overall relationships. We did not find any statistically 
significant associations between either enrollment (day 1) or median AChE, AChE/Hgb, or BChE activity levels and cognitive or functional 
impairments up to 6 months after discharge
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Fig. 3  (See legend on previous page.)
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Conclusions
We found that plasma cholinesterase activity is predic-
tive of acute brain dysfunction during critical illness 
but not long-term impairments after discharge. Future 
studies should evaluate if cholinergic modulation in 
selected patients identified by plasma cholinesterase 
activity can reduce acute brain dysfunction.
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