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Introduction
The clinical outcome of critically ill patients has improved 
significantly and to an unprecedented level as standards 
of care have improved [1]. However, conventional criti-
cal care practice still has limitations in understanding the 
complexity of acuity, handling extreme individual hetero-
geneity, anticipating deterioration, and providing early 
treatment strategies before decompensation. Critical care 
medicine has seen the arrival of advanced monitoring 
systems and various non-invasive and invasive treatment 
strategies to provide timely intervention for critically-ill 
patients. Whether the mergence of such systems repre-
sents the next step in improving bedside care is an exist-
ing, yet unproven possibility.

The simplified concept of artificial intelligence (AI) is 
to allow computers to find patterns in a complex envi-
ronment of multidomain and multidimensional data, 
with the prerequisite that such patterns would not be 
recognized otherwise. Previously, applying the concept 
in real life required a tremendous amount of comput-
ing time and resources. This could only be done in lim-
ited fields, including physics or astronomy. However, 
with recent exponential growth in computing power and 
portability, the power of AI became available to many 

fields, including critical care medicine where data are 
vast, abundant, and complex [2]. More and more clinical 
investigations are being performed using AI-driven mod-
els to leverage the data in the intensive care unit (ICU), 
but our understanding of the power and utility of AI in 
critical care medicine is still quite rudimentary. In addi-
tion, there are many obstacles and pitfalls for AI to over-
come before becoming a core component of our daily 
clinical practice.

In this chapter, we seek to introduce the roles of AI 
with the potential to change the landscape of our conven-
tional practice patterns in the ICU, describe its current 
strengths and pitfalls, and consider future promise for 
critical care medicine.

Applications of AI in Critical Care
Disease Identification
Oftentimes, finding the root cause of clinical deteriora-
tion from the exhaustive list of differential diagnoses is 
challenging, because of the insidious characteristic of 
early disease progression or the presence of co-existing 
conditions masking the main problem (Fig.  1). More 
than anything, the underlying context should be deci-
phered correctly, often a challenging task. For example, 
pulmonary infiltrates cannot simply be assumed to rep-
resent excessive alveolar fluid. They could indicate pul-
monary edema from a cardiac cause, pleural effusion, 
parapneumonic fluid from inflammation or infection, or 
in some cases collections of blood as a result of trauma. 
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Without clinical context and further testing, adequate 
and timely management could be delayed. AI could 
assist in such cases by obtaining a more precise diagno-
sis, given advanced text and image processing capability. 
The presence of congestive heart failure (CHF) could be 
differentiated from other causes of lung disease using a 
machine learning model [3], and amounts of pulmonary 
edema secondary to the CHF could be quantified with 
semi-supervised machine learning using a variational 
autoencoder [4]. During the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) pandemic, imaging 
data from patients admitted to hospital were processed 
to detect coronavirus disease 2019 (COVID-19) using an 
AI model [5]. With recent efforts in image segmentation 
and quantification of lesions by convolutional neural net-
works, a type of algorithm particularly apt at interpret-
ing images, the presence of traumatic brain injury (TBI) 
on head computed tomography (CT) could be evaluated 
with higher accuracy than manual reading [6]. Similarly, 
traumatic hemoperitoneum was quantitatively visualized 
and measured using a multiscale residual neural network 
[7].

Disease Evolution Prediction
Disease detection and prediction of disease evolution is 
one of the holy grails for critically ill patients. Given that 
the disease process is a continuum, instability of clini-
cal condition can take various paths, even prior to ICU 
admission [8]. In a series of step-down unit patients who 
experienced cardiorespiratory instability (defined as 
hypotension, tachycardia, respiratory distress, or a desat-
uration event using numerical thresholds), a dynamic 
model using a random forest classification showed that 
a personalized risk trajectory predicted deterioration 
90 min ahead of the crisis [9].

In the ICU, rapid clinical deterioration is common, and 
the result can be irreversible and even lead to mortality 
if detected late. Thus, efforts are being made to predict 
such hemodynamic decompensation. Tachycardia, one of 
the most commonly observed deviations from normality 
prior to shock, was predicted 75  min prior to develop-
ment using a normalized dynamic risk score trajectory 
with a random forest model [10]. Hypotension, a mani-
festation of shock, was also predicted in the operating 
room [11]. The utility of a machine learning model in 
reducing intraop-erative hypotension was further con-
firmed in a randomized controlled trial in patients hav-
ing intermediate and high-risk surgery, with hypotension 
occurring in 1.2% of patients managed with an AI-driven 
intervention, versus 21.5% using conventional methods 
[12]. Hypotension events have also been predicted in the 
ICU where vital sign granularities are lower and datasets 
contain more noise. Using electronic health record (EHR) 
as well as physiologic numeric vital sign data, clinically 
relevant hypotension events were predicted with a ran-
dom forest model, achieving a sensitivity of 92.7%, with 
the average area under the curve (AUC) of 0.93 at 15 min 
before the actual event [13].

Hypoxia and respiratory distress have also been major 
targets for prediction, the roles of which have expanded 
during the recent coronavirus pandemic. In the first few 
months of the pandemic, AI-driven models were used 
to predict the progression of COVID-19, using imaging, 
biological, and clinical variables [14]. Cardiac arrest has 
also been predicted using an electronic Cardiac Arrest 
Risk Triage (eCART) score from EHR data, showing non-
inferior scores compared to conventional early warning 
scoring systems [15]. Sepsis has also been predicted, with 
an AUC of 0.85 using Weibull-Cox proportional hazards 
model on high-resolution vital sign time series data and 
clinical data [16]. Other clinical outcomes may be pre-
dicted using AI models, including mortality after TBI 
[17] or mortality of COVID-19 patients with different 
risk profiles [18].

Disease Phenotyping
Critical illness is complex and its manifestations can 
rarely be reduced to typical presentations. Rather, criti-
cal illness manifests in a lot of different ways (inherent 
heterogeneity), and carries significant risks for organ dys-
function that can subsequently complicate the underlying 
disease process or recovery processes. Such syndromes 
should not be treated blindly without careful considera-
tion of underlying etiologies or clinical conditions for a 
given individual. Moreover, the complex critical states 
change over time, such that clinicians cannot rely on 
assessments from even a few hours earlier. Yet, evidence-
based guidelines should be followed whenever these 
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Fig. 1  Conceptual role of artificial intelligence (AI)-driven predictive 
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exist. With its strong capability of pattern recognition 
from complex data, AI could delineate distinctive pheno-
types or endotypes that could reflect influences from the 
critical state and hence open up avenues to personalize 
management, integrated into existing guidelines.

Sepsis, one of the most common ICU conditions, is a 
highly heterogenous syndrome, and has been a favorite 
target of AI algorithms. Recently, using different clinical 
trial cohorts, sepsis was clustered into four phenotypes 
(α, 3, γ, and 6) by consensus K-means clustering, a type of 
unsupervised machine learning model. The phenotypes 
had distinctive demographic characteristics, different 
biochemical presentations, correlated to host-response 
patterns, and were eventually associated with different 
clinical outcomes [19]. Such phenotypes are of a descrip-
tive nature, are useful in describing case-mix, and could 
represent targets for predictive enrichment of clini-
cal trials. However, they are not at this juncture based 
in mechanism and thus are not therapeutically action-
able. Nevertheless, further explorations using richer data 
might allow a greater degree of actionability.

In the acute respiratory distress syndrome (ARDS), 
latent class analysis (LCA) revealed two subtypes (hypo- 
and hyper-inflammatory subtypes) linked with different 
clinical characteristics, treatment responses, and clini-
cal outcomes [20]. A parsimonious model was developed 
and achieved similar performance to the initial LCA 
using a smaller set of classifier variables (interleukin [IL]-
6, -8), protein C, soluble tumor necrosis factor (TNF) 
receptor 1, bicarbonate, and vasopressors). This result 
was validated in a secondary analysis of three different 
randomized clinical trials [21]. This machine learning-
driven ARDS phenotyping has expanded our knowledge 
in assessing and treating complex disease, and become 
one of the criteria for predictive enrichment of future 
clinical trials.

Dynamic phenotyping for prediction of clinical dete-
rioration can be performed on time series data. Using 
analysis of 1/20  Hz granular physiologic vital sign data, 
several unique phenotypes, including persistently high, 
early onset, and late onset deterioration, were identi-
fied prior to overt cardiorespiratory deterioration, using 
K-means clustering (Fig.  2) [9]. Time-series of images 
can be clustered for dynamic phenotyping, as performed 
using transesophageal echocardiographic monitoring 
images in patients with septic shock: using a hierarchi-
cal clustering method, septic shock was clustered into 
three cardiac deterioration patterns and two responses 
to interventions, which were linked with clinical outcome 
with different day 7 and ICU mortality rates [22].

Guiding Clinical Decisions
For a complex problem, one-size-fits-all solutions do not 
work well. Over the last decade, research has failed to 
improve the outcome of septic shock with different treat-
ment guidelines [23, 24]. The extreme heterogeneity of 
septic shock, various underlying conditions, and differ-
ent host-responses could be at least partially addressed 
by AI to provide individualized solutions using reinforce-
ment learning. The algorithm in reinforcement learning 
is designed to detect numerous variables in a given state 
to build an action model, which then learns from the 
reward or penalty from the results of the action. Apply-
ing this to the sepsis population, reinforcement learn-
ing could provide optimal sequential decision-making 
solutions for sepsis treatment, showcasing the potential 
impact of AI to generate personalized solutions [25]. In 
patients receiving mechanical ventilation, time series 
data with 44 features were extracted and reinforcement 
learning (Markov Decision Process) resulted in bet-
ter results compared to physicians’ standard clinical 
care, with target outcomes of 90-day and ICU mortality 
[26]. These examples demonstrate the role AI may have 
in guiding important decision-making for critically ill 
patients. The notion of AI’s therapeutic utility could be 
more pronounced and provocative in different clinical 
environments, such as critical case scenarios in remote 
areas where clinicians are not available and patient trans-
fer is not possible, or resource-limited settings where 
treatment options are limited. Because the optimality 
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of such treatment recommendations is computed from 
retrospective and observational datasets, it is imperative 
that recommendation sequences or policies originating 
from such AI systems be fully analyzed and then tested 
prospectively before clinical implementation.

Implementation
An important consideration in successful deployment 
of AI at the bedside is system usability and trustwor-
thiness. Deployment of such systems should involve 
all stakeholders, including clinicians and patients (end 
users), researchers (producers), and hospital admin-
istrators (logistics and management). In a specific 
research project, an implementation strategy entails 
creating models with adequate amounts of informa-
tion (not a ‘flood’ of information with alarms), delivered 
with understandable (interpretable) logics, and placed 
on a visually appealing vehicle or dashboard—a graphic 
user interface. These systems, when deployed as alert-
ing tools, must be accurate enough and parsimonious 
enough to prevent alarm fatigue, which leads to delays 
in detecting, and intervening for, developing crises [27]. 
In recent work on prediction of hypotension in the 
ICU, researchers found that AI-generated alerts could 
be reduced tenfold while maintaining sensitivity, when 
they used a stacked random forest model, or a model 
checking on another model before generating alerts 
[13].

Understanding AI-derived predictions and recom-
mendations is arguably an important component of AI 
acceptance at the bedside. Although complex models 
can be thought of as ‘black-boxes’, an enormous effort is 
underway to enhance model interpretability and explain-
ability. For example, in a recent report on hypoxia detec-
tion, researchers adopted concepts from game theory to 
differentially weight predictive physiological readouts 
during surgery, as an attempt to interpret the clinical 
drivers of hypoxic alarming from an AI system [28]. Cre-
ating the graphic user interface is necessary not only for 
the AI output to be delivered to the bedside, but also to 
improve hospital workflow and alleviate nursing burden. 
As shown in recent work, deep learning could be used 
to analyze fiducial points from the face, postures, and 
action of patients, and from environmental stimuli to dis-
criminate delirious and non- delirious ICU patients [29]. 
Future ICU design should embrace the functionalities of 
AI solutions to enable clinicians to react earlier to any 
potential deterioration, and researchers to build models 
that perform better using more comprehensive data, and 
presented in such a way that it will be readily available, 
highly accurate, and trusted by bedside clinicians.

Pitfalls of AI in Critical Care
As much as the power of the AI model changes the cur-
rent landscape of data analysis and plays an important 
role in assisting early diagnosis and management, there 
are many road blocks that should not be overlooked 
when introducing AI models for critically ill patients.

Explainability and Interpretability
Many AI models have complex layers of nodes that ena-
ble the characteristics of input data to be more meaning-
ful in revealing hidden patterns. While the model may 
produce seemingly accurate output through that process, 
oftentimes the rationale of the computation cannot be 
provided to the end users. In the clinical environment, 
this can create strong resistance to accepting AI mod-
els into daily practice, as clinicians fear that performing 
unnecessary interventions or changing a treatment strat-
egy without supporting scientific evidence could easily 
violate the first rule of patient care, primum non nocere. 
In critical care medicine, such a move could be directly 
and rapidly associated with mortality. On the other 
hand, many novel treatments did not have enough evi-
dence when first introduced in the history of medicine, 
and ‘black-box’ models do not need to be completely 
deciphered, advocating the use of inherently interpret-
able AI [30]. Another recent approach argues that pro-
viding detailed methodologies for the model validation, 
robustness of analysis, history of successful/unsuccessful 
implementations, and expert knowledge could alleviate 
epistemological and methodological concerns and gain 
reliability and trust [31].

Multiple efforts have been introduced to overcome the 
complexity of deep learning models. Explaining feature 
contribution on a dynamic time series dataset became 
possible by leveraging game theory into measuring fea-
ture importance, when predicting near-term hypoxic 
events during surgery [32]. In that report, contribut-
ing features explained by SHapley Additive exPlanation 
(SHAP) showed consistency with the literature and prior 
knowledge from anesthesiologists for upcoming hypoxia 
risks. Moreover, anesthesiologists were able to make bet-
ter clinical decisions to prevent intraoperative hypoxia 
when assisted by the explainable AI model.

Lack of Robustness
The readiness of AI for the real-life clinical environment 
is limited by the lack of adequate clinical experiments 
and trials, with a disappointingly low rate of reproduc-
ibility and prospective analyses. In a recent review of 
172 AI-driven solutions created from routinely collected 
chart data, the clinical readiness level for AI was low. 
In that study, the maturity of the AI was classified into 
nine stages corresponding to real world application [33]. 
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Strikingly, around 93% of all analyzed articles remained 
below stage 4, with no external validation process, and 
only 2% of published studies had performed prospective 
validation. Thus, current AI models in critical care medi-
cine have largely been generated using retrospective data, 
without external validation or prospective evaluation.

Reproducibility of AI solutions is not guaranteed and 
no clear protocols exist to examine this thoroughly. As 
mentioned above, AI solutions already have limitations 
in terms of data openness and almost inexplicable algo-
rithmic complexity, so the lack of reproducibility on top 
of these factors could significantly impact the fidelity of 
the AI model. A recent study attempted to reproduce 38 
experiments for 28mortality prediction projects using the 
Medical Information Mart for Intensive Care (MIMIC-
III) database, and reported large sample size differences 
in about a half the experiments [34]. This problem high-
lights the importance of accurate labeling, understanding 
the clinical context to create the study population, as well 
as precise reporting methods including data pre-process-
ing and featurization.

Adherence to reporting standards and risks of bias is 
also sub-optimal, as a study that analyzed 81 non-ran-
domized and 10 randomized trials using deep learning 
showed only 6 of 81 non-randomized studies had been 
tested in a real-world clinical setting and 72% of studies 
showed high risks of bias [35]. Hence, considering the 
scientific rigor of conventional randomized controlled 
trials needed to prove scientific hypothesis, the maturity 
and robustness of AI-driven models would be even less 
convincing for everyday practice.

More complex and sophisticated AI models, like rein-
forcement learning are also not free from challenges, 
as such intricate models require a lot of computational 
resources and are difficult to test on patients in order to 
train or test the models in a clinical environment. Inverse 
reinforcement learning, which infers information about 
rewards, could be a new model-agnostic reinforcement 
learning approach to constructing decision-making tra-
jectories, because this approach alleviates the stress of 
manually designing a reward function [36]. With those 
algorithmic advances, decision-assisting engines can be 
more robust and reliable when input data varies, which 
may be a great asset to critical care data science where 
work is conducted with enormous quantity and extreme 
heterogeneity of data.

Ethical Concerns
Use of AI in critical care is still a new field to most 
researchers and clinicians. We will not really appreciate 
what ethical issues we will encounter until AI becomes 
more widely used and apparent in the development pipe-
line and bedside applications. However, given the nature 

of AI characteristics and current AI-driven solutions, a 
few aspects can be discussed to look around the corner 
into likely ethical dilemmas of AI models in critical care. 
The first issue is in data privacy and sharing. Innovation 
in data science allows us to collect and manipulate data 
to find hidden patterns, during which course collateral 
data leakage could pose threats, especially in its pre-pro-
cessing and in external validation steps towards gener-
alization. It is very hard to remove individual data points 
from the dataset once they are already being used by 
the AI model. De-identification and parallel/distributive 
computing could provide some solutions to data manage-
ment, and novel models, including federated learning, 
might minimize data leakage and potentially speed up 
the multicenter validation process.

A second issue in ethics is safety of the AI model at the 
bedside. To semi-quantitatively describe the safety of the 
model, the analogous maturity metric used by self-driving 
cars was used for clinical adaptability of AI-driven solu-
tions, with 6 levels [37]: 0 (no automation) to 2 (partial 
automation) represent situations where the human driver 
monitors the environment; 3 (conditional automation) to 
5 (full automation) represent situations where the system 
is monitoring the environment rather than any human 
involvement. According to this scale, if used in real life, 
most of the AI-driven solutions developed would fall into 
categories 1 or 2. This concept signifies that the safety 
and accountability of the AI model cannot be blindly 
guaranteed, and decision making by clinicians remains an 
integral part of patient care. Also, the autonomy of indi-
vidual patients has never been more important, includ-
ing generating informed consent or expressing desire 
to be treated in life-threatening situations—here the AI 
recommendations might not be aligned with those of the 
patient. Recognition of such ethical issues and preparing 
for potential solutions to overcome limitations of AI, as 
well as understanding more about patient perspectives 
could allow researchers and clinicians to develop more 
practical and ethical AI solutions.

Future Tasks of AI in Critical Care
Data De‑identification/Standardization/Sharing Strategy
Like any other clinical research, AI solutions need vali-
dation from many different angles. External validation, 
which uses input data from other environments, is one of 
the most common ways to generalize a model. Although 
external validation and prospective study designs cer-
tainly require collaborative data pools and concerted 
efforts, creating such a healthy ecosystem for AI research 
in critical care demands considerable groundwork.

De-identification of the healthcare data is probably the 
first step to ascertain data privacy and usability. The Soci-
ety of Critical Care Medicine (SCCM)/European Society 
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of Intensive Care Medicine (ESICM) Joint Data Science 
Task Force team has published the process to create a 
large-scale database from different source databases, 
including the following steps: (1) using an anonymization 
threshold, personal data are separated from anonymous 
data; (2) iterative, risk-based process to de-identify per-
sonal data; (3) external review process to ensure privacy 
and legal considerations to abide within the European 
General Data Protection Regulation (GDPR) [38]. Such a 
de-identification process would ascertain safe data trans-
fer and could further facilitate high-quality AI model 
training.

Other important groundwork for the multi-center col-
laboration is data standardization. Individual hospital 
systems have developed numerous different data labeling 
strategies in different EHR layers. Even within the same 
hospital system, small discrepancies, including the num-
ber of decimals, commonly used abbreviations, and data 
order within the chart, could be stumbling blocks for 
systematic data standardization. In addition, data with 
higher granularity, including physiologic waveform data, 
are even harder to standardize, as there are no distinc-
tive labels to express the values in a structured way. To 
address this, international researchers have developed 
a standardized format to facilitate efficient exchange of 
clinical and physiologic data [39]. In this Hierarchical 
Data Format-version 5 (HDF5)-based critical care data 
exchange format, multiparameter data could be stored, 
compressed, and streamed real time. This type of data 
exchange format would allow integration of other types 
of large-scale datasets as well, including imaging or 
genomics.

While one cannot completely remove the data privacy 
and governance concerns, rapid collaboration can be 
facilitated when those are less of an issue. An example is 
federated learning, where models can be designed to be 
dispatched to local centers for training, instead of data 
from participating centers collected to one central loca-
tion for model training. While the data are not directly 
exposed to the outside environment, the model could still 
be trained by outside datasets with comparable efficacy 
and performance [40]. Federated learning could be even 
more useful when the data distribution among differ-
ent centers is imbalanced or skewed, demonstrating the 
real-world collaboration environment [41]. A compre-
hensive federated learning project was performed during 
the COVID-19 pandemic. Across the globe, 20 academic 
centers collaborated to predict clinical outcomes from 
COVID-19 by constructing federated learning within a 
strong cloud computing system [42]. During the study 
phase, researchers developed an AI model to predict the 
future oxygen requirements of patients with sympto-
matic COVID-19 using chest X-ray data, which was then 

dispatched to participating hospitals. The trained model 
was calibrated with shared partial-model weights, then 
the averaged global model was generated, while privacy 
was preserved in each hospital system. In that way, the AI 
model achieved an average AUC > 0.92 for predicting 24- 
to 72-h outcomes. In addition, about a 16% improvement 
in average AUC, with a 38% increase in generalizability 
was observed when the model was tested with feder-
ated learning compared to the prediction model applied 
to individual centers. This report exemplifies the poten-
tial power of a federated learning-based collaborative 
approach, albeit the source data (chest X-ray and other 
clinical data) are relatively easy to standardize for the fed-
erated learning system to work on.

Novel AI Models and Trial Designs
Labeling target events for AI models is a daunting, labor-
intensive task, and requires a lot of resources. To make 
the task more efficient, novel AI models, such as weakly 
supervised learning, have been introduced. Weakly 
supervised learning can build desired labels with only 
partial participation of domain experts, and may poten-
tially preserve resource use. One example was pro-
vided by performing weakly supervised classification 
tasks using medical ontologies and expert-driven rules 
on patients visiting the emergency department with 
COVID-19 related symptoms [43]. When ontology-based 
weak supervision was coupled with pretrained language 
models, the engineering cost of creating classifiers was 
reduced more than for simple weakly supervised learn-
ing, showing an improved performance compared to a 
majority vote classifier. The results showed that this AI 
model could make unstructured chart data available for 
machine learning input, in a short period of time, with-
out an expert labeling process in the midst of a pandemic. 
Future clinical trials could also be designed with AI mod-
els, especially to maximize benefits and minimize risks 
to participants, as well as to make the best use of limited 
resources. One example of such an innovative design is 
the REMAP-CAP (Randomized Embedded Multifacto-
rial Additive Platform for Community-Acquired Pneu-
monia), which adopted a Bayesian inference model. In 
detail, this multicenter clinical trial allows randomization 
with robust causal inference, creates multiple interven-
tion arms across multiple patient subgroups, provides 
response-adaptive randomization with preferential 
assignment, and provides a novel platform with perpet-
ual enrollment beyond the evaluation of the initial treat-
ments [44]. The platform, initially developed to identify 
optimal treatment for community-acquired pneumonia, 
continued to enroll throughout the COVID-19 pan-
demic, and has contributed to improved survival among 
critically ill COVID-19 patients [45, 46].
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Real‑Time Application
To establish a valuable AI system in the real-life setting, 
the model should be able to deliver important informa-
tion in a timely manner. In critically ill patients, the feed-
back time should be extremely short, sometimes less than 
a few minutes. Prediction made too early would have 
enough time to formulate the model, but have less pre-
dictive power, and prediction made very close to target 
events would have higher performance, with no time to 
curate the input data and run the model for output.

To be used in the real-life environment, a real time AI 
model should be equipped with a very fast data pre-pro-
cessing platform, and able to parsimoniously featurize to 
update the model with new input data simultaneously. 
The output should also be delivered to the bedside rap-
idly. In that strict sense of real time, almost no clini-
cal studies have accomplished real-time prediction. A 
few publications claim real-time prediction, but most of 
them used retrospective data, and failed to demonstrate 
continuous real-time data pre-processing without time 
delay. Using a gradient boosting tree model, one study 
showed dynamic ‘real-time’ risks of the onset of sepsis 
from a large retrospective dataset. The duration of ICU 
stay was divided into three periods (0–9 h, 10–49 h, and 
more than 50 h of ICU stay), partitioned to reflect differ-
ent sepsis onset events, and resulted in different utility 
scores in each phase [47]. While this provides valuable 
information on different performances of the AI model 
for different durations of ICU stay, use of continuous 
real-time pre-processing without a time delay was not 
demonstrated. Another study using a recurrent neural 
network on postoperative physiologic vital sign data pro-
duced a high positive predictive value of 0.90 with sen-
sitivity of 0.85 in predicting mortality, and was superior 
to the conventional metric to predict mortality and other 
complications [48]. The study also showed that the pre-
dictive difference between the AI solution and conven-
tional methods was evident from the beginning of the 
ICU stay. However, prediction from the earliest part of 
the ICU stay also does not qualify as true real-time pre-
diction. Although this is a challenging task for current 
technology, application of the real- time AI model to the 
critical care environment could yield significant benefit 
in downstream diagnostic or therapeutic options without 
time delay.

Quality Control After Model Deployment
Once the AI model achieves high performance and is 
deemed to be useful in a real-life clinical setting, imple-
mentation strategies as well as quality assessment efforts 
should follow. Anticipating such changes in the clini-
cal/administrative landscape, the National Academy 

of Medicine of the United States has published a white 
paper on AI use in healthcare, in which the authors urge 
the development of guidelines and legal terms for safer, 
more efficacious, and personalized medicine [49]. In par-
ticular, for the maturity of AI solutions and their integra-
tion with healthcare, the authors suggested addressing 
implicit and explicit bias, contextualizing a dialogue of 
transparency and trust, developing and deploying appro-
priate training and educational tools, and avoiding over-
regulation or over-legislation of AI solutions.

Conclusion
Rapid development and realization of AI models second-
ary to an unprecedented increase in computing power 
has invigorated research in many fields, including medi-
cine. Many research topics in critical care medicine have 
employed the concept of AI to recognize hidden disease 
patterns among the extremely heterogeneous and noise-
prone clinical datasets. AI models provide useful solu-
tions in disease detection, phenotyping, and prediction 
that might alter the course of critical diseases. They may 
also lead to optimal, individualized treatment strategies 
when multiple treatment options exist. However, at the 
current stage, development and implementation of AI 
solutions face many challenges. First, data generaliza-
tion is difficult without proper groundwork, including 
de-identification and standardization. Second, AI models 
are not robust, with sub-optimal adherence to reporting 
standards, a high risk of bias, lack of reproducibility, and 
without proper external validation with open data and 
transparent model architecture. Third, with the nature 
of the obscurity and probabilistic approach, AI models 
could lead to unforeseen ethical dilemmas. For the suc-
cessful implementation of AI into clinical practice in the 
future, collaborative research efforts with plans for data 
standardization and sharing, advanced model develop-
ment to ascertain data security, real-time application, 
and quality control are required.
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