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Abstract 

Background:  Even brief hypotension is associated with increased morbidity and mortality. We developed a machine 
learning model to predict the initial hypotension event among intensive care unit (ICU) patients and designed an 
alert system for bedside implementation.

Materials and methods:  From the Medical Information Mart for Intensive Care III (MIMIC-3) dataset, minute-by-min-
ute vital signs were extracted. A hypotension event was defined as at least five measurements within a 10-min period 
of systolic blood pressure ≤ 90 mmHg and mean arterial pressure ≤ 60 mmHg. Using time series data from 30-min 
overlapping time windows, a random forest (RF) classifier was used to predict risk of hypotension every minute. 
Chronologically, the first half of extracted data was used to train the model, and the second half was used to validate 
the trained model. The model’s performance was measured with area under the receiver operating characteristic 
curve (AUROC) and area under the precision recall curve (AUPRC). Hypotension alerts were generated using risk score 
time series, a stacked RF model. A lockout time were applied for real-life implementation.

Results:  We identified 1307 subjects (1580 ICU stays) as the hypotension group and 1619 subjects (2279 ICU stays) 
as the non-hypotension group. The RF model showed AUROC of 0.93 and 0.88 at 15 and 60 min, respectively, before 
hypotension, and AUPRC of 0.77 at 60 min before. Risk score trajectories revealed 80% and > 60% of hypotension 
predicted at 15 and 60 min before the hypotension, respectively. The stacked model with 15-min lockout produced 
on average 0.79 alerts/subject/hour (sensitivity 92.4%).

Conclusion:  Clinically significant hypotension events in the ICU can be predicted at least 1 h before the initial hypo-
tension episode. With a highly sensitive and reliable practical alert system, a vast majority of future hypotension could 
be captured, suggesting potential real-life utility.
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Introduction
Hypotension is known to be the most consistent mani-
festation of decompensated shock leading to major organ 
failure and death [1]. Hypotension, along with other 
chronic risk factors, is associated with an increased 
chance of acute kidney injury, myocardial ischemia, 
and mortality [2, 3]. However, the underlying signatures 
from hemodynamic monitoring variables that portend 
impending hypotension are not clearly identified [4]. 
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Identifying that a patient is on a trajectory to a hypo-
tensive episode with sufficient lead time could lead 
to effective mitigation of hypotension and possibly 
improved outcomes. Moreover, current treatment proto-
cols for hypotension may themselves be associated with 
unwanted consequences such as excessive resuscitation 
and worsening of acute lung injury [5, 6].

Several early warning scores have been introduced to 
identify patients at risk for decompensation and trig-
ger escalation of care [7–9]. However, most are manu-
ally calculated and often require additional data to be 
entered beyond what is readily available from monitors 
or electronic health records, limiting their utility [10]. 
More importantly, current metrics are unable to pro-
vide reliable, continuous feedback to clinicians who need 
to make time-sensitive decisions for rapidly fluctuating 
conditions. Even recent publications on data-driven pre-
diction models lack clinically applicable implementation 
strategies [11–13]. Therefore, the creation of a real-time, 
continuous, translationally relevant forecasting system, 
which goes beyond a simple prediction model to include 
an additional enrichment layer to enhance alerting reli-
ability, would favor successful implementation at the bed-
side by enhancing reliability and reducing false alarms.

With parsimonious use of multi-granular features 
and application of machine learning (ML) algorithms, 
we previously demonstrated the value of an early warn-
ing system to predict cardiorespiratory insufficiency 
(CRI) with high accuracy in step-down units [14] as well 
as tachycardia prediction in the ICU [15]. We have also 
demonstrated that the risk of CRI evolves along hetero-
geneous but repeatable trajectories, enabling early fore-
casting of the onset of crisis [16]. We hypothesized that 
clinically significant hypotension, a frequent form of CRI, 
could also be predicted and that this prediction could 
be actioned into a practical alert system for critically ill 
patients.

Materials and methods
Study population
A publicly available retrospective multigranular data-
set, the Medical Information Mart for Intensive Care 
III (MIMIC-3), collected between 2000 and 2014 from 
a tertiary care hospital in Boston, MA, was used as data 
source [17]. Subjects with age ≥ 18 that have all vital 
signs and clinical records were selected. Algorithms 
were applied to identify hypotension events, as described 
below, to classify the source population into ‘hypoten-
sion group’ (subjects experiencing at least one hypoten-
sion event) and ‘non-hypotension group’ (subjects with 
no hypotension events). To enhance specificity of iden-
tification of the first recorded event of hypotension, we 
further excluded from the hypotension group subjects 

who had received vasopressors, any amount of crystal-
loid bolus, or packed red blood cell transfusion two hours 
prior to the subject’s initial (first) hypotension event. 
Only the first hypotension event was targeted for predic-
tion. Subjects admitted to the ICU prior to the median 
date of hospital admission were used for model selection 
and training, while those admitted later than the median 
admission date were used for validation.

Defining hypotension, preprocessing of data, and feature 
engineering
To identify clinically relevant hypotension, the following 
steps were taken. First, the threshold for hypotension was 
determined as systolic blood pressure (SBP) ≤ 90 mmHg 
and mean arterial pressure (MAP) ≤ 60 mmHg [18]. Sec-
ond, at least 5 of 10 consecutive blood pressure readings 
(5 out of 10  min, with discrete data points) had to be 
below the thresholds. Third, if there was a gap of 2 min or 
less between two periods under the thresholds, these two 
periods were combined into a single hypotension event 
(Additional file 1: Figure S1).

In preprocessing, physiologically implausible values 
were removed including SBP, diastolic blood pressure 
(DBP), or MAP < 10 or > 400  mmHg; respiratory rate < 1 
or > 100/min, heart rate < 10 or > 400/min, SpO2 < 10%. 
Missing values were imputed using a moving average of 
the three previous values assuming signal stability during 
that missing data time period if less than 10 min. Interpo-
lation with the use of future data was avoided. The per-
formance of this imputation method was examined by 
comparing statistics of imputed data windows to ground 
truth provided by data segments without missing data.

We computed features from raw vital signs time series 
including statistical values (variance, quartiles, mean, 
median, min, max), frequency domain features using 
discrete Fourier transform [19], as well as exponentially 
weighted moving average (EWMA, moving average with 
increased weighing for recent events) [20]. Features 
were computed on windows of different durations (5, 10, 
30, and 60  min), rolling every minute. To appropriately 
label true hypotension events, we assumed all windows 
from hypotension subject in the training set had a posi-
tive label (hypotension) for the last 15  min prior to the 
hypotension event. For the non-hypotension group, we 
assigned negative labels to non-hypotension subject win-
dows selected such that their ‘onset’ time was defined as 
within 15 min of the mean time on the first hypotension 
onset from ICU admission in the hypotension subjects 
(Fig. 1). Matching similar time lapse in the non-hypoten-
sive group with the time to the first hypotension event in 
hypotension group was performed to generate the nega-
tive label with minimal potential bias, as the overall tra-
jectories during the first few hours, or the last few hours 
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of ICU stay could introduce greater non-physiologic 
confounders. The decision of using a 15-min timeframe 
was made considering practical clinical response time in 
anticipation of a hypotensive event and also objectively 
supported by a t-stochastic neighbor embedding (t-SNE) 
analysis [21], an unsupervised ML model that estimates 
the divergent time point of the two groups before hypo-
tension (Additional file 2: Figure S2).

Model training and validation
We used a random forest (RF) classifier, K-nearest neigh-
bor (KNN) classifier, gradient boosted trees, and logis-
tic regression with L2 regularization models [22, 23] 
with tenfold cross-validation process on the training set 
(development cohort) (Additional file  3: Figure S3). The 
best performing model in the training set was applied to 
the validation set. Performances of those different super-
vised ML models were compared using the area under 
the receiver operating characteristic curve (AUROC) and 
its evolution over time. Since the number of the hypoten-
sion group and the non-hypotension group subjects were 
unequal (unbalanced), we also computed area under the 
precision recall curves (AUPRC), according to recent rec-
ommendations following the transparent reporting of a 
multivariable prediction model for individual prognosis 
or diagnosis (TRIPOD) statement [24, 25]. Model cali-
bration was evaluated using the Brier’s score [26, 27]. A 
brief explanation on models used, training methods, and 

performance evaluation techniques can be found in sup-
plementary glossary (Additional File 4: Glossary).

Hypotension prediction risk score trajectories
A risk score (a number between 0 and 1, representing the 
relative probability of future hypotension at the end of 
the observation window) was generated every minute for 
each subject in the validation cohort, generating individ-
ualized risk trajectories for the entire ICU stay of a sub-
ject. Due to missing data, not all subjects had risk scores 
computed every minute before hypotension or the end of 
the monitoring window.

Operational performance of the hypotension alert system
To better understand how a hypotension forecasting 
model would perform prospectively when deployed as 
an alerting system, we identified exceedances per hour 
per subject, of the predicted hypotension risk score 
beyond various risk score thresholds. To further deter-
mine whether an exceedance of the risk score quali-
fies as a system alert, we employed a stacked RF model. 
This two-step (stacked) model (Additional file  5: Figure 
S4) was first trained with tenfold cross-validation, then 
underwent out-of-sample subjects validation using addi-
tional features including time since admission, the aver-
age, minimum, maximum and standard deviation of risk 
scores created by the first model, over the last 5, 10, and 
30  min prior to the current time on a moving window. 

Fig. 1  Schematic illustration to assess the performance of the hypotension prediction model on a finite time horizon (2 h). From the 
developmental cohort, the last 5 min before hypotension episode for the hypotension group was labeled and trained as positive, and 15-min long 
data before the last 2 h and 15 min were labeled and trained as negative
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Lastly, a lockout period of 15 min (alert will not be gener-
ated if it were to occur within 15 min after the previous 
alert) was used to prevent an excessive number of alerts, 
either true or false. The alert-level performance was eval-
uated with true positive alert rate and total alerts per sub-
ject per hour, to evaluate whether alerts received could 
be trusted, and how many alerts clinicians would receive 
at the bedside. The subject(patient)-level performance 
was assessed with the probability of a future hypotension 
event following an alert (positive predictive value, PPV) 
and recall rate (1—sensitivity) to demonstrate how likely 
an alert system would predict, and fail to predict hypo-
tension events, respectively.

Results
From a source population of 10,269 subjects with 
22,246 ICU stays, we identified 1532 subjects (1946 
ICU stays) as the hypotension group, and 1707 subjects 
(2585 ICU stays) as the non-hypotension group (Fig. 2). 
The development cohort included 641 hypotension 
subjects (781 ICU stays) and 826 non-hypotension sub-
jects (1148 ICU stays). The validation cohort includes 
666 hypotension subjects (799 ICU stays) and 793 
non-hypotension subjects (1131 ICU stays). The devel-
opment and validation cohorts were similar in size, 
gender, types of ICU (i.e., Medical ICU, Cardiotho-
racic ICU, or Surgical ICU), and in-hospital mortality. 
Notably, age and length of hospital stay were slightly 
shorter in the developmental cohort (Additional file 6: 

Table  S1). In comparing hypotension group and non-
hypotension group, the hypotension group subjects 
were older (age 66.4 years vs. 60.8 years) and had longer 
hospital stays (11 days vs. 5.7 days). Otherwise both the 
hypotension and non-hypotension groups were similar 
in distribution of sex and ICU types (Additional file 7: 
Table S2). The mean time to the first hypotension event 
was 102  h and 16  min (standard deviation: 164  h and 
23  min). The median time was 34  h and 28  min, with 
the interquartile range was 107 h and 45 min.

Performance of machine learning algorithms
In selecting the best risk model, RF showed equivalent 
performances as visualized on the AUROC on the vali-
dation cohort, compared with KNN, logistic regression, 
and gradient boosted forest models. AUROC during the 
last 15 min and 1 h prior to the hypotension event were 
0.93 and 0.88, respectively, on the validation cohort 
(Additional file 8: Figure S5, Left), with a good calibra-
tion score (Brier score 0.09) (Additional file  8: Figure 
S5, Center), with AUPRC of 0.90 and 0.83 (Additional 
file 8: Figure S5, Right). Given equivalence of predictive 
performance, but prevailing calibration score, we chose 
the RF algorithm to build a prediction model. Then, 
the performance of the RF model was verified with the 
validation cohort, with AUROC, calibration plot, and 
AUPRC (Fig. 3).

Fig. 2  Data extraction pipeline. From the initial MIMIC3 database, inclusion and exclusion criteria were applied, along with the definition of 
hypotension event. Then, feature selection was performed to derive the hypotension (subjects experienced hypotension events during the ICU 
stay) and the non-hypotension (those without the hypotension event) groups



Page 5 of 9Yoon et al. Crit Care          (2020) 24:661 	

Trajectory analysis
With the missing values due to incomplete data, we had 
793 hypotension subjects and 1131 non-hypotension 
subjects with risk score trajectories. The trajectories 

(Fig.  4) drawn with the validation cohort exhibited a 
clear separation in mean risk between hypotension and 
non-hypotension subjects from 3  h prior to hypoten-
sion. The separation became wider as the hypotension 

Fig. 3  Performance evaluation for various supervised machine learning algorithms, with the evolution of area under the receiver operating 
characteristics (AUROC) over time (left), calibration plot with the Brier’s scores (center), and the evolution of the area under the precision–recall 
curve (AUPRC) over time (right)

Fig. 4  Average evolution of the risk scores for hypotension (red) and non-hypotension (blue) groups is projected as trajectories, extending to 
4 h preceding hypotension events. Shaded areas represent 95% confidence intervals. Dotted lines indicate the number of hypotension and 
non-hypotension subjects used to derive the risk score trajectory points at a given horizon
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subjects are getting closer to the hypotension event, 
and the risk of hypotension subjects escalated rapidly 
from approximately 30 min prior to hypotension.

Alert identification and operational usefulness
We investigated the relationship between different risk 
score thresholds and the probability of future hypoten-
sion (alert). We first chose a threshold of 0.5, aiming to 
detect at least 90% of actual future hypotension events, 
which yielded 7.39 alerts/subject/hour on average, with 
a PPV of 57.7%. Using the stacked RF model, average 
alert frequency was reduced to 4.93 alerts/subject/hour 
at the same thresholds, with PPV improved to 65.2%. 
Adding a 15-min lockout period on the output of the 
stacked model further decreased alerts to 0.79 alerts/
subject/hour. That means, with the lockout period, the 
probability of future hypotension with a single alert 
(PPV) will not be negatively impacted, but a clinician 
could expect much less alerts (every 75  min on aver-
age). Using the same thresholds, our model will have 
sensitivity of 92.4% (failing to predict hypotension for 
7.6% of actual hypotension subjects) (Fig.  5). On the 
patient(subject)-level, the whole ICU data of a given 
subject showed the AUPRC of 0.68. When a random 
1-h data from the hypotension and non-hypotension 
groups were used, the AUPRC was 0.91 in the valida-
tion cohort.

Discussion
This study is one of the few to demonstrate the capac-
ity of data-driven prediction of clinically significant 
hypotension events using a supervised ML algorithm to 
stream bedside monitoring vital sign data and is unique 
in providing an actionable roadmap for the design of an 
alerting system using a predictive model developed on 
retrospective data that has clinical utility. In this study, 
we focused on designing a ‘data-driven’ risk prediction 
system that has operational usefulness. Our approach 
is notable for a modeling component where we assess 
model performance using multiple methods and express 
dynamic changes in risk, and an implementation part 
where we design a two-step pipeline to increase the over-
all reliability of alerts and decrease alarm fatigue.

There are few studies using ML-based approaches to 
predict hypotension. A recent report describes the intra-
operative prediction of hypotension 10–15  min earlier, 
with using data from a specialized commercially avail-
able noninvasive continuous arterial waveform sensor 
[11]. Our research demonstrated that this prediction task 
could be extended to ICU patients, with using relatively 
sparse (minute-by-minute) data, resulting in a longer 
prediction horizon (AUROC of 0.88 at 60  min prior to 
the event), linked with clinically relevant alerts (an aver-
age of 0.79 alerts/subject/hour, with a 15-min lockout 
time). Our strategy has practical benefits in implemen-
tation to secure time to prepare action plans and can be 
useful in a relatively resource-limited environment where 
continuous care by trained critical care providers is not 
available for immediate action.

Performance of the prediction model needs to be 
assessed with multiple methods. The previous study on 
the MIMIC II database has used vital signs and medica-
tion data to predict hypotension at 1-h prior to the event 
showed an AUROC of 0.934 [12]. Despite seemingly high 
AUROC, however, the study reported many negative 
samples (low pretest probability) and a deceptively low 
PPV of 0.151, limiting real-life feasibility of the resulting 
model. To bolster potential feasibility in implementa-
tion, we performed a multi-faceted performance evalua-
tion by employing not only AUROC trajectory, but also 
AUPRC and calibration assessed using Brier’s score. 
Methodologically, model analysis relying only on the 
cumulative assessment of ROC curves could mislead the 
interpretation of such patterns in vital sign physiology, 
as AUROC itself does not address misclassification cost 
[28]. The addition of PRC allowed assessing the ability of 
the models to identify true positives when the groups are 
imbalanced, providing the full picture of the capacity of 
different models. Calibration study helped selecting the 
model type whose predictions are best aligned with pos-
terior probability distributions.

Fig. 5  Relationship between the detected hypotension subjects 
(%) and the probability of hypotension after an alert between the 
stacked model (orange line) and single random forest model (blue 
line). Detected cases indicate the percentage of hypotension subjects 
our model successfully predicted as an alert before hypotension. At 
the risk score threshold of 0.5, the probability of hypotension in the 
future (positive predictive value) was approximately 0.65 (red dashed 
arrow), with 92.37% of hypotension events were captured (vertical 
blue dashed arrow)
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Building risk score trajectories provides conceptual 
and practical advantages. Instantaneous scores may be 
subject to stochastic variations, erroneous entries, and 
artifacts, while trajectories provide historical context to 
a risk, which translate to the clinical concept of worsen-
ing or improving health state, perhaps in response to an 
intervention [29–31]. Second, studies suggest that the 
prognosis of critically ill patients is associated with early 
recognition and timely intervention of abrupt changes 
[32]. Early identification of dynamic risk changes on 
critically ill patients can be highly informative, as sud-
den unexpected physiologic deteriorations are common 
in the ICU (e.g., septic patients develop gastrointestinal 
bleeding with stress ulcer; or renal failure patients exhibit 
arrhythmias with severe hyperkalemia). In our study, pre-
diction visualized with the risk score trajectory allowed 
early differentiation in the mean risk scores from at least 
3 h prior to hypotension events, which objective metric 
does not rely on practitioners’ level of skill in interpre-
tation. While this finding illustrates the power of our 
model, it needs to be interpreted with caution: The mean 
risk is never applicable to an individual patient; thus, 
some probability of an individual being outside of a com-
mon band should be provided with high interpersonal 
variances of risk scores in real life.

Prediction followed by a reliable alerting strategy of 
any critical event in real life would be the one of the holy 
grails of the ICU care, because of a highly variable and 
heterogeneous individual clinical pictures. A recent study 
confirmed this, as various cardiovascular states, reserves, 
or responses were observed when a standardized resus-
citation protocol was employed during septic shock [33]. 
Delivering the prediction to the bedside is also chal-
lenging, as the alert should be actionable and linked to a 
meaningful management strategy. A recent study devel-
oped an intraoperative hypotension prediction index 
with an AUROC of 0.88 at 15  min, with excellent PPV 
and NPV [34], and was linked with an action plan in the 
operating room to treat predicted hypotension, resulted 
in less hypotension and less post-operative complications 
[35]. In our study, we conceptualized a predictive alert 
system performing well in the ICU environment where 
less frequent monitoring takes place than the operating 
room, along with a lockout design to minimize alarm 
fatigue. First, our two-step model demonstrated the util-
ity of potential implementation with further increased 
true positive and decreased false positive rates. Then, 
a 15-min lockout period allowed the model to be more 
actionable by reducing the unwanted impact on alarm 
fatigue. Mitigating alarm fatigue is important, because 
it could be associated with failure to rescue, if clinicians 
ignore excessively frequent alarms even though they 
may carry critical information [36]. The 15-min lockout 

period was chosen to decrease repetitive alerts with simi-
lar clinical meaning, assuming that alerts more frequent 
than 15  min would not alter the rationale of manage-
ment strategy. In a hypothetical 20-bed ICU, our model 
would alarm 16 times per hour, while without the lockout 
period, it would yield 159 alerts (7.93 × 20) per hour. A 
good example for this application would be a recent study 
used a rule-based model for cardiothoracic ICU patients 
to decrease alerts by 55% with lockout, while capturing 
almost all true clinical deterioration events [37]. Finally, 
with the alert-level and subject-level analyses of the alert 
system, we showed that a vast majority of future hypo-
tension could be captured with a high sensitivity and an 
accountable probability, suggesting potential real-life 
utility.

Our work has several limitations. First, an external 
validation cohort using multicenter data was not used 
to confirm the performance of our model. Instead, we 
used an a priori separated out-of-sample validation set. 
We are currently collecting a large-scale multigranular 
ICU data in our institution and plan for further exter-
nal cohort validation. Second, our operational defini-
tion of hypotension was based on conventional cutoff 
values, not specifically designed to meet the character-
istics of the individual subjects. In addition, despite our 
preprocessing to minimize non-physiologic artifacts, 
there could still be artifacts fell within physiologic nor-
mal range and might have interfered the analysis. How-
ever, we postulated the effects of the remaining artifacts 
are likely minimally associated if the distribution of arti-
facts across vital sign samples are not systematic (i.e., 
random). Third, we developed a risk model for the first 
hypotension event in the ICU, to simplify the prediction 
task. An alerting system that would apply across the span 
of an admission would have to go beyond a first episode 
of hypotension. An alerting system for all hypotension 
episodes would need to integrate a different risk model 
for subsequent episodes, and this model would likely use 
clinical interventions and number of prior episodes as 
additional risk factors. We are currently developing such 
a model. We also excluded subjects that had received 
fluid bolus or vasopressor treatment within 2 h of a first 
hypotension event. This modeling choice, justified by the 
notion that such interventions were possibly linked to 
unwitnessed hypotension (prior to data availability) and 
thus that the first hypotensive episode recorded episode 
of hypotension in this subpopulation, was more likely 
to be a subsequent episode. These choices narrowed the 
potential utility of our alert system if deployed. Although 
our proposed alerted system could be tested in these 
circumstances, we would expect a decrease in perfor-
mance. Fourth, we did not use temporal correlations 
between features imposed by physiological constraints 
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as additional features. Expanding the set of variables to 
include more sophisticated and physiologically inspired 
features, and including higher granularity monitor data 
(e.g., waveforms) might achieve better algorithm perfor-
mance. Lastly, our selection of hypotension events might 
have missed potential real events (false negatives), as 
acutely profound hypotension events are usually treated 
within minutes with fluid boluses resuscitation or vaso-
pressor therapy. With a higher granularity dataset, we 
argue that individual trajectory and its triggering fac-
tors for future hypotension could be identified in a more 
sophisticated manner.

Conclusions
Clinically relevant hypotension events can be predicted 
from minute-by-minute vital signs dataset with the use 
of machine learning approaches. This prediction can be 
integrated into a highly sensitive alert delivery system 
with low false alerts causing minimal alarm fatigue, with 
potential real-life utility.
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evolution of area under the receiver operating characteristics (AUROC) 
over time (Left), calibration plot with the Brier’s score (Center), and the 
evolution of the area under the precision–recall curve (AUPRC) over time 
(Right). Note the random forest had similar performance to other methods 
in terms of AUROC and AUPRC distribution, but it demonstrated superior 
calibration metric.
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