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Abstract

Background: Ovarian cancer (OC) ranks fifth as a cause of gynecological cancer-associated death globally. Until
now, the molecular mechanisms underlying the tumorigenesis and prognosis of OC have not been fully
understood. This study aims to identify hub genes and therapeutic drugs involved in OC.

Methods: Four gene expression profiles (GSE54388, GSE69428, GSE36668, and GSE40595) were downloaded from
the Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) in OC tissues and normal tissues
with an adjusted P-value < 0.05 and a |log fold change (FC)| > 1.0 were first identified by GEO2R and FunRich
software. Next, Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses were
performed for functional enrichment analysis of these DEGs. Then, the hub genes were identified by the cytoHubba
plugin and the other bioinformatics approaches including protein-protein interaction (PPI) network analysis, module
analysis, survival analysis, and miRNA-hub gene network construction was also performed. Finally, the GEPIA2 and
DGIdb databases were utilized to verify the expression levels of hub genes and to select the candidate drugs for
OC, respectively.

Results: A total of 171 DEGs were identified, including 114 upregulated and 57 downregulated DEGs. The results of
the GO analysis indicated that the upregulated DEGs were mainly involved in cell division, nucleus, and protein
binding, whereas the biological functions showing enrichment in the downregulated DEGs were mainly negative
regulation of transcription from RNA polymerase II promoter, protein complex and apicolateral plasma membrane,
and glycosaminoglycan binding. As for the KEGG-pathway, the upregulated DEGs were mainly associated with
metabolic pathways, biosynthesis of antibiotics, biosynthesis of amino acids, cell cycle, and HTLV-I infection.
Additionally, 10 hub genes (KIF4A, CDC20, CCNB2, TOP2A, RRM2, TYMS, KIF11, BIRC5, BUB1B, and FOXM1) were
identified and survival analysis of these hub genes showed that OC patients with the high-expression of CCNB2,
TYMS, KIF11, KIF4A, BIRC5, BUB1B, FOXM1, and CDC20 were statistically more likely to have poorer progression free
survival. Meanwhile, the expression levels of the hub genes based on GEPIA2 were in accordance with those based
on GEO. Finally, DGIdb database was used to identify 62 small molecules as the potentially targeted drugs for OC
treatment.

Conclusions: In summary, the data may produce new insights regarding OC pathogenesis and treatment. Hub
genes and candidate drugs may improve individualized diagnosis and therapy for OC in future.
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Introduction
Ovarian cancer (OC) ranks fifth as a cause of gynecological
cancer-associated deaths globally [1], with an estimated
238,700 new cases and 151,900 deaths in 2012 [2]. There
are many risk factors associated with OC, such as a family
history of breast cancer or OC, excess body weight, smok-
ing, earlier menstruation or later menopause, and not
giving birth [2]. Due to the vague symptoms, more than
70% of OC cases are diagnosed at an advanced stage [3]. In
most countries, the 5-year survival rate of OC is usually
lower than 40% [4]. The poor prognosis and high mortality
can be mainly attributed to the lack of early and effective
detection methods [5]. Therefore, more efforts need to be
invested towards the identification and understanding of
novel biomarkers and specific targets of OC, which is
considered the key to developing more effective diagnostic
and therapeutic strategies.
Recently, gene profiles and gene chips have been used to

screen differentially expressed genes (DEGs) [6]. Reanalyzing
these data can provide new insights into current research on
OC [7]. However, current studies on biomarkers may be
insufficient, and the DEG results may be inconsistent be-
cause of the complex tumor heterogeneity and complicated
molecular regulatory mechanism of OC. Furthermore,
chemotherapy resistance remains a major challenge and
causes most failures of treatment and the short overall
survival (OS) and progression free survival (PFS) of OC
patients. Many bioinformatical studies on OC have been
proven to be effective and reliable [7, 8], which means inte-
grated bioinformatics analysis could assist with exploring
the biomarkers and the mechanisms underlying the tumori-
genesis and progression of cancer.
In this study, four original gene expression profiles

(GSE54388, GSE69428, GSE36668, and GSE40595) were
downloaded from the Gene Expression Omnibus (GEO)
database. DEGs were first screened based on the above
four datasets. Subsequently, integrated bioinformatics
analyses including Gene Ontology (GO) term analysis,
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis, protein-protein interaction
(PPI) construction, and the identification of hub genes
were performed. Furthermore, survival analysis and
validation of the hub genes were also performed. Finally,
the miRNA-hub gene network was constructed, and
targeted small molecular drugs for OC were identified.

Materials and methods
Data sources
The NCBI-GEO database is a free and public database
containing gene profiles. Four microarray datasets
(GSE54388, GSE69428, GSE36668, and GSE40595) were
obtained from the GEO database (https://www.ncbi.nlm.
nih.gov/gds/). The inclusion criteria for the above gene ex-
pression profiles were set as follows: (1) the tissue samples

were obtained from human OC tissues and normal tissues;
(2) the number of samples in each dataset was more than
8; (3) and all these profiles were based on GPL570 (Affy-
metrix Human Genome U133 Plus 2.0 Array).

Identification of DEGs
GEO2R is an interactive web tool that can compare and
analyze two different groups of samples under the same
experimental conditions [9]. In this study, the selected
datasets of OC tissues and normal tissues were first ana-
lyzed by GEO2R. Subsequently, the analyzed results
were downloaded in Microsoft Excel format, and genes
that met the cutoff criteria of the adjusted P-value < 0.05
and |log fold change (FC)| > 1.0 were considered DEGs
[8]. Finally, the FunRich tool (version 3.1.3) was applied
to illustrate the intersection of the DEGs. Additionally,
an online tool, ClustVis, was used to draw the heatmap
of the DEGs [10]. Specifically, the gene expression
matrix for the heatmap was derived from GSE69428.

Functional enrichment analysis of DEGs
GO functional analysis and KEGG pathway analysis were
carried out to predict the potential functions of the DEGs
by using the Database for Annotation, Visualization and
Integrated Discovery (DAVID; https://david.ncifcrf.gov/;
version 6.8). Upregulated and downregulated DEGs were
submitted to the DAVID online program. The top 10
items of the cellular component (CC), biological process
(BP), and molecular function (MF) categories and KEGG
pathways were then sorted and presented in the form of
bubble maps. These bubble plots were drawn using the
ggplot2 R package based on P-value through the statistical
software R (version 3.6.1). P < 0.05 was considered statisti-
cally significant.

PPI network construction and module analysis
The PPI network of the identified DEGs was constructed by
an online tool, the Search Tool for the Retrieval of Interact-
ing Genes/Proteins (STRING; https://string-db.org/), with
an interaction score > 0.4. The active interaction sources
included text mining, experiments, databases, coexpression,
neighborhood, gene fusion, and corecurrence. Furthermore,
the interaction network between the DEGs and their related
genes was presented with the minimum number of interac-
tions = 2. Subsequently, the modules of the PPI network
were screened by the Cytoscape software (version 3.7.1) plu-
gin Molecular Complex Detection (MCODE) with default
parameters as follows: degree cutoff = 2, node score cutoff =
0.2, k-score = 2, and max. Depth = 100. In this study, the
criteria of the top four modules were set with MCODE
scores ≥2.8 and nodes ≥3. KEGG pathway analysis of the
genes in each module was performed by DAVID. Finally,
based on highest degree of connectivity, the top 10 genes
were selected as the target hub genes by using the Cytoscape
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plugin cytoHubba. The construction of the PPI network and
coexpression analysis of the hub genes were performed by
STRING. The criteria of the PPI network included a
confidence score ≥ 0.4 and a maximum number of interac-
tions ≤5.

Survival analysis and validation of the hub genes
The Kaplan-Meier plotter can assess the prognostic effect
of genes on survival in many types of cancer, including
6234 breast, 2190 ovarian, 3452 lung, and 1440 gastric
cancer samples (http://kmplot.com/analysis/). Patients
with OC were categorized into two groups, namely, a
high-expression group and a low-expression group, ac-
cording to the expression of a particular gene. The general
inclusion criteria for the survival analysis were set as fol-
lows: (1) used only the JetSet best probe set; (2) used a
2017 version dataset; (3) excluded biased arrays. Then, the
PFS was analyzed for the above two groups for each hub
gene for the OC patients and the serous OC (SOC) pa-
tients for “all stages”, “early stages (stages 1 and 2)”, and
“advanced stages (stages 3 and 4)”. These analyses are
shown in the form of a survival prognosis forest map and
survival curves according to the hazard ratio (HR), 95%
confidence interval (95% CI), and log-rank P-value. The
forest map was constructed by STATA version 15.0 (Sta-
taCorp, College Station, Texas, USA).
Additionally, the expression levels of the hub genes be-

tween OC and normal samples were verified by Gene Ex-
pression Profiling Interactive Analysis (GEPIA2; http://
gepia2.cancer-pku.cn/#index). Then, GEPIA2 was also used
to explore the variations among OC samples at different
stages. ANOVA was used to assess the statistical significance
of the variations. Pr (>F) < 0.05 was considered statistically
significant. Furthermore, the cBio Cancer Genomics Portal
(https://www.cbioportal.org/; version 3.0.2) online tool was
used to present the genetic alteration information of the
hub genes.

miRNA-hub gene network construction
The Encyclopedia of RNA Interactomes (ENCORI) is an
open-source platform mainly focusing on miRNA-target
interactions (http://starbase.sysu.edu.cn/; version 3.0).
ENCORI utilizes eight established miRNA-target predic-
tion databases, including PITA, RNA22, miRmap, microT,
miRanda, PicTar, TargetScan, and pancancerNum. In this

study, miRNAs were considered the targeted miRNAs of
hub genes based on at least two databases being selected
among the following databases: miRanda, PITA, PicTar,
and TargetScan [11]. Subsequently, the coexpression net-
work of the hub genes and their targeted miRNAs was
visualized by Cytoscape software.

Drug-hub gene interaction
Drugs were selected based on the hub genes that served
as promising targets by using the Drug-Gene Interaction
Database (DGIdb; http://www.dgidb.org/search_interac
tions; version 3.0.2 – sha1 ec916b2). In this study, the final
drug list included only drugs that were approved by the
Food and Drug Administration (FDA). The online tool
named STITCH (http://stitch.embl.de/cgi/input.pl?UserId=
E40G4aCOYHFw&sessionId=8fGboRzTdag6; version 5.0)
was applied to construct the interaction network between
the potential drugs and the hub genes [11].

Results
Identification of DEGs in OC
Four expression profiles (GSE54388, GSE69428, GSE36668,
and GSE40595) were obtained from the GEO database.
The specific details of the above datasets are presented in
Table 1. In this study, the microarray datasets were all
based on the GPL570 platform (Affymetrix Human Gen-
ome U133 Plus 2.0 Array). Three of the datasets were from
SOC, and GSE40595 was from OC stroma (Table 1).
GSE54388 consisted of 16 cases and 6 controls; GSE69428
contained 10 cases and 10 controls; GSE36668 included 4
cases and 4 controls; and GSE40595 contained 63 cases
and 14 controls (Table 1). The Venn diagrams indicated
that a total of 171 DEGs were identified from the four
microarray profile datasets, including 114 upregulated
genes and 57 downregulated genes in OC tissues compared
to normal controls (Fig. 1 and Table 2). In addition, the ex-
pression levels of these DEGs are visualized in the form of a
heatmap in Additional file 1: Figure S1.

Functional enrichment analysis of DEGs
A total of 114 upregulated genes and 57 downregulated
genes were analyzed by DAVID software. The top 5
significant terms from the GO enrichment analysis
showed that in the BP category, the upregulated DEGs
were involved in cell division, mitotic nuclear division,

Table 1 Detailed information on the GEO microarray profiles of OC patients

No. of GEO profile Type Source Case Control Platform Annotation platform

GSE54388 mRNA serous ovarian cancer 16 6 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array

GSE69428 mRNA serous ovarian cancer 10 10 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array

GSE36668 mRNA serous ovarian cancer 4 4 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array

GSE40595 mRNA ovarian cancer stroma 63 14 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array

GEO Gene Expression Omnibus
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regulation of the cell cycle, DNA replication, and cellular
response to DNA damage stimulus (Fig. 2a), whereas the
downregulated DEGs were significantly involved in the
negative regulation of transcription from the RNA poly-
merase II promoter, the positive regulation of transcrip-
tion from the RNA polymerase II promoter, skeletal
muscle tissue development, the viral process, and the
regulation of phosphatidylinositol 3-kinase signaling
(Additional file 2: Table S1). For the CC category, the
upregulated DEGs were correlated with the nucleus,
cytoplasm, cytosol, nucleoplasm, and extracellular exo-
somes (Fig. 2b), whereas the downregulated DEGs were
associated with the protein complex and apicolateral
plasma membrane (Additional file 2: Table S1). For the
MF category, the upregulated DEGs were enriched in
protein binding, identical protein binding, protein
homodimerization activity, enzyme binding, and protein
heterodimerization activity (Fig. 2c), whereas the down-
regulated DEGs were related to glycosaminoglycan bind-
ing (Additional file 2: Table S1). For KEGG pathway
enrichment analysis, the downregulated DEGs were not

enriched, whereas the top five significant KEGG pathways
of the upregulated DEGs included metabolic pathways,
biosynthesis of antibiotics, biosynthesis of amino acids,
the cell cycle, and human T-lymphotropic virus type I
(HTLV-I) infection (Fig. 2d). Furthermore, specific infor-
mation on the upregulated DEGs identified in each cat-
egory in the functional enrichment analysis are presented
in Additional file 3: Table S2.

PPI network construction and module analysis
The PPI network of the DEGs in OC was constructed
based on the information obtained from the STRING
database. When 171 DEGs were submitted to the
STRING database, there were 3 unidentified gene IDs,
namely, WHAMMP2, WHAMMP3, and FAM153C.
Subsequently, 168 genes were mapped into the PPI net-
work. The PPI network included 168 nodes and 450
edges, and its PPI enrichment P-value was lower than
1.0e − 16 (Additional file 4: Figure S2). In addition, an
interaction network of 168 DEGs and their neighboring
genes was constructed through FunRich (Additional file 5:

Fig. 1 Venn diagram for overlapping differentially expressed genes (DEGs) based on datasets. The intersection of downregulated (a) and
upregulated (b) DEGs was identified from the four datasets, namely, GSE54388, GSE69428, GSE36668, and GSE40595

Table 2 Information on the overlapping DEGs screened from the datasets

DEGs Gene name

Upregulated
(114)

WHSC1, VEGFA, TYMS, TSTA3, TPI1, TPD52L2, TOP2A, TNNT1, TMPRSS4, TIMELESS, C20orf24, TBC1D7, TACC3, STC2, SORT1, BOLA2,
SLC52A2, SLC4A11, SLC39A4, SLC38A1, SLC2A1, SLC19A1, SHMT2, SCRIB, SAC3D1, S100A2, RRM2, RNASEH2A, RACGAP1, PXDN,
PUF60, PTTG1, PSAT1, PPP1R14B, PIK3R3, PBK, OVOL2, NR2F6, NOV, NDUFB9, NDC80, NCAPG, MYCL, MUC16, MT1F, MRPS15,
MRPL12, MLF2, MCM4, MCAM, MAL, LSM4, LPCAT1, C1orf186, LAPTM4B, KLK8, KLK7, KLK6, KLHL14, KIF4A, KIF11, KIAA0101, ISG15,
IRAK1, IDH2, HN1, HMGB3, HMGA1, H2AFX, GPSM2, FOXM1, FGF18, FEN1, FDPS, ESRP1, EPT1, ENO1, E2F8, DYRK2, DTL, DSC2, DPP3,
DHCR24, DGAT1, DDX39A, DBN1, CYC1, CTPS1, CRABP2, COPE, COL4A1, CLPTM1L, CLDN3, CHD7, CDH6, CDCA3, CDC20, CD47,
CCNE1, CCNB2, C9orf16, C1orf106, BUB1B, BOLA2B, BIRC5, BAK1, AURKAIP1, ATP6V1B1, ASS1, ARL4C, ARF3, APOA1, AIF1L, ABHD11

Downregulated
(57)

ZEB2, ZBTB20, WHAMMP2, WHAMMP3, WDR17, TLE4, THBD, TFPI, SYTL3, SNCAIP, SMIM14, SLC4A4, SCD5, RUNX1T1, RUNDC3B,
RNASE4, PTPN13, PRKAR1A, PLCL2, PIP5K1B, PDK4, PDGFRA, NDNF, NBEA, N4BP2L2, N4BP2L1, MPDZ, MITF, MEF2C, MAF, FAM153A,
FAM153B, FAM153C, KLHDC1, KLF2, KAT2B, KANSL1L, ITM2A, IL6ST, GPRASP1, GNG11, FOXP2, DPYD, DPY19L2P2, DMD, DCN,
CXorf57, CIRBP, CHGB, CELF2, CDC14A, BNC2, ARMCX1, ALDH1A1, ABCA8, ABCA5, AASS

A total of 171 DEGs were identified from the four gene expression profiles, including 114 upregulated DEGs and 57 downregulated DEGs in OC tissues compared
to normal tissues
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Figure S3). Then, the significant modules were identified
via the MCODE plugin. As illustrated in Additional file 6:
Figure S4, the top four functional clusters of modules
were selected (module 1, MCODE score = 21.826; module
2, MCODE score = 3.333; module 3, MCODE score = 3;
and module 4, MCODE score = 2.8). KEGG pathway ana-
lysis of each module was performed by DAVID, as shown
in Additional file 7: Table S3. As shown in Additional file 6:
Figure S4, module 1 consisted of 24 nodes and 251 edges,

the average node degree was 20.9, and the PPI enrichment
P-value was lower than 1.0e − 16 (Additional file 6: Figure
S4A). The KEGG pathway analysis of module 1 indicated
that these genes were involved in the cell cycle, DNA
replication, and oocyte meiosis (Additional file 7:
Table S3). Module 2 consisted of 4 nodes and 5
edges (Additional file 6: Figure S4B), with genes
enriched in ribosomes (Additional file 7: Table S3).
Module 3 contained 3 nodes and 3 edges (Additional

Fig. 2 Bubble map for GO and KEGG pathway analyses of upregulated DEGs. The top 10 items of the GO and KEGG pathway enrichment
analyses are illustrated in the form of a bubble plot using the ggplot2 package for R software. A P-value < 0.05 was considered statistically
significant. a biological processe, b cellular components, c molecular function, and d KEGG pathways. GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes
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file 6: Figure S4C), with genes related to the biosyn-
thesis of amino acids, the HIF-1 signaling pathway, and
carbon metabolism (Additional file 7: Table S3). Finally,
module 4 comprised 6 nodes and 7 edges (Additional file
6: Figure S4D), with genes associated with fat digestion
and absorption and the PPAR signaling pathway (Add-
itional file 7: Table S3). The PPI enrichment P-value of
each module was lower than 0.05.
Ten genes (TYMS, CCNB2, KIF11, RRM2, CDC20,

TOP2A, BUB1B, BIRC5, KIF4A, and FOXM1) with the
highest degree scores were identified as the hub genes for
OC by applying the cytoHubba plugin (Additional file 8:
Table S4). All the hub genes were upregulated DEGs, as
shown in Table 2. Additionally, the STRING online data-
base was used to construct the PPI network of the hub
genes (Fig. 3a), and FunRich software was used to draw
the interaction network of the hub genes and their related
genes (Fig. 3b). As shown in Fig. 3a, the PPI network of
the hub genes consisted of 10 nodes and 45 edges, while
its average local clustering coefficient was 1, and its PPI
enrichment P-value was lower than 1.0e − 16. Addition-
ally, the results of the gene coexpression analysis of the
ten hub genes showed that these hub genes might actively
interact with each other (Fig. 3c).

Survival analysis, genetic information and hub gene
expression
The prognostic information of these 10 hub genes for OC
and SOC at different stages was analyzed by the Kaplan-
Meier plotter database. A survival prognosis forest map of
these genes in early stage (Stages 1 and 2) is shown in
Fig. 4a, and the survival curves of these genes are pre-
sented in Fig. 4b-k. Among the 10 hub genes, 8 hub genes
were significantly associated with the PFS of OC patients
at an early stage (stages 1 and 2) (Fig. 4). Except for
TOP2A [HR = 1.19 (0.67–2.09), P = 0.55] (Fig. 4j) and
RRM2 [HR = 1.22 (0.69–2.15), P = 0.50] (Fig. 4i), early-
stage OC patients with higher expression levels of CCNB2
[HR = 1.87 (1.04–3.37), P = 0.033] (Fig. 4d), TYMS [HR =
2.04 (1.14–3.67), P = 0.014] (Fig. 4k), KIF11 [HR = 2.73
(1.48–5.03), P < 0.001] (Fig. 4h), KIF4A [HR = 2.82 (1.51–
5.27), P < 0.001] (Fig. 4g), BIRC5 [HR = 2.85 (1.53–5.31),
P < 0.001] (Fig. 4b), BUB1B [HR = 2.86 (1.55–5.29), P <
0.001] (Fig. 4c), FOXM1 [HR = 3.03 (1.60–5.73), P < 0.001]
(Fig. 4f), and CDC20 [HR = 3.87 (2.01–7.46), P < 0.001]
(Fig. 4e) were significantly related to poorer PFS (Fig. 4).
For SOC patients at stages 1 and 2, except for RRM2,
FOXM1, and TOP2A, the remaining 7 hub genes presented
statistically significant trends (Additional file 9: Figure S5).
In addition, the relationship between PFS and the expres-
sion of these 10 hub genes in OC and SOC patients in “all
stages” and “advanced stages” are presented in Additional
file 10: Figures S6, Additional file 11: Figure S7, Additional
file 12: Figure S8, and Additional file 13: Figure S9. More

interestingly, increased expression of KIF4A and TYMS
were related to poorer PFS in early stage (stages 1 and 2)
OC and SOC patients (Fig. 4g, k, Additional file 9: Figure
S5G & K), whereas decreased expression of the above 2
hub genes were associated with better PFS in advanced
stage (stages 3 and 4) OC and SOC patients (Add-
itional file 12: Figure S8 and Additional file 13: Figure S9).
Subsequently, cBioPortal was used to determine the

genetic alteration information of the 10 hub genes, as
illustrated in Fig. 5. The network shown in Fig. 5a con-
sists of 60 nodes, including 10 hub genes and the 50
most frequently altered neighboring genes (out of a total
of 767). Drugs targeting the 10 hub genes are also pre-
sented in Fig. 5a. From this network, only KIF11, TOP2A,
RRM2, TYMS, and BIRC5 are currently considered chemo-
therapy targets (Fig. 5a). Alteration information of the 10
hub genes is shown in Fig. 5b and c. As presented in Fig. 5b,
the hub genes were altered in 173 (30%) queried patients or
samples. CDC20 and FOXM1 were altered most often (7
and 7%, respectively). These alterations included amplifica-
tion, deep deletion, truncating mutation, missense muta-
tion, inframe mutation, and fusion (Fig. 5b). Among the
different types of alterations, amplification accounted for
the highest percentage (Fig. 5c).
Additionally, the GEPIA2 database was used to verify

the expression levels of the 10 hub genes in tumor and
normal tissues. As shown in Fig. 6a-j, the expression levels
of the 10 hub genes were all statistically significant (P <
0.01) in OC and normal tissues on the basis of gene ex-
pression profiles from The Cancer Genome Atlas (TCGA)
and the genotype-tissue expression (GTEx) projects. The
results of the expression trends in OC patients and healthy
people based on the GEPIA2 database were in accordance
with those based on the GEO datasets (Fig. 6a-j and Table
2). Thus, both the GEPIA2 and GEO databases indi-
cated that the mRNA expression levels of the 10 hub
genes were upregulated in tumor tissues (Fig. 6a-j and
Table 2). Additionally, the expression levels of the 10
hub genes in different stage OC patients are shown in
Fig. 7. According to these results, it is easy to see that
there were significant variations in the expression levels
of BUB1B [Pr (>F) < 0.001] (Fig. 7b), FOXM1 [Pr (>F) =
0.007] (Fig. 7e), KIF4A [Pr (>F) = 0.022] (Fig. 7f), RRM2
[Pr (>F) = 0.025] (Fig. 7h), and TYMS [Pr (>F) =
0.002] (Fig. 7j) in OC patients in different stages. The
overall trends indicated that the expression of the above
five genes decreased gradually with the continuous pro-
gression of OC (Fig. 7).

miRNA-hub gene network
ENCORI was applied to screen the targeted miRNAs of
the hub genes. The miRNAs predicted by at least two da-
tabases (among the following databases: miRanda, PITA,
PicTar, and TargetScan) were identified as the targeted
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Fig. 3 PPI network and coexpression analysis of the hub genes in OC. a The PPI network of the hub genes using the STRING online database. b
The interaction network of the hub genes and their related neighboring genes using the FunRich software. c The coexpression analysis of the
hub genes using the STRING online database
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miRNAs of the hub genes. Then, Cytoscape software was
used to draw the miRNA-hub gene network. As illustrated
in Fig. 8, the interaction network consists of 9 hub genes
and 116 miRNAs. Moreover, the contribution level of the
miRNAs to their surrounding hub genes is presented as
the number of arrows (Fig. 8). According to the top 10
molecules in the network ranked by their degree of
connectivity using cytoHubba, KIF11 (degree score =

47), RRM2 (degree score = 38), TOP2A (degree score =
23), and FOXM1 (degree score = 20) were clearly the
four interactive hub genes that most miRNAs would
target (Fig. 8), followed by BIRC5 (degree score = 14),
KIF4A (degree score = 11), BUB1B (degree score = 6),
and TYMS (degree score = 5). Furthermore, hsa-miR-
377-3p (degree score = 4) and hsa-miR-335-5p (degree
score = 4) were the top two interactive miRNAs that

Fig. 4 Progression free survival analyses of hub genes in patients with stage 1 or 2 OC. a Survival prognosis forest map of the hub genes related
to prognosis in OC patients. Each point in the forest plot represents the hazard ratio (HR) of the gene, and the line on both sides of the point
represents the 95% confidence interval (95% CI). b-k Survival curves were constructed by the Kaplan-Meier plotter online database based on the
low and high expression of the hub genes in OC patients. Log-rank P < 0.05 was considered statistically significant
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Fig. 5 (See legend on next page.)
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targeted the most target hub genes (Fig. 8). Addition-
ally, the respective miRNAs targeting the 10 hub genes
are presented in Additional file 14: Table S5.

Drug-gene interaction
A total of 62 potential drugs for treating OC patients
were identified when the drug-gene interactions were

explored using DGIdb (Table 3). In this study, according
to the statistically significant results of the survival analysis,
TYMS and BIRC5 were selected as the potential targets of
62 drugs (Table 3). Both hub genes have been verified as
current chemotherapy targets based on cBioPortal (Fig. 5a).
As demonstrated in Table 3, the promising 62 candidate
drugs were all approved by the FDA. Most potential drugs

(See figure on previous page.)
Fig. 5 Information on the genetic alterations of the hub genes. a The association between the hub genes and related drugs was identified by
cBioPortal, and the network of 10 hub genes and the 50 most frequently altered neighboring genes was also constructed. b The genetic
alterations related to the hub genes are shown through a visual summary across a set of ovarian serous cystadenocarcinoma samples (data from
TCGA, PanCancer Atlas). c An overview of the alterations of the 10 hub genes in the genomics datasets of ovarian serous cystadenocarcinoma in
the TCGA database

Fig. 6 The expression level of hub genes in OC tissues and normal tissues from patients (a-j). To further verify the expression level of the hub
genes between OC tissues and normal tissues, the hub genes were analyzed by the GEPIA2 online database. P < 0.01 was considered
statistically significant
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might interact with the TYMS (32/62), either in some un-
known manners or as an inhibitor (Table 3). The down-
stream interaction networks of TYMS and BIRC5 were
constructed by STITCH (Additional file 15: Figure
S10). As shown in Additional file 15: Figure S10, TYMS
might have downstream effects on 5-thymidylic acid
(poly(dT)), 5-fluorouracil, deoxyuridine monophosphate
(dUMP), pemetrexed, methotrexate, OSI-7904 L, raltitrexed,
FdUMP, dihydrofolate, and dihydrofolate reductase (DHFR)
(Additional file 15: Figure S10A), whereas BIRC5 might have
downstream effects on exportin 1 (XPO1), poly-like kinase 1
(PLK1), cyclin-dependent kinase 1 (CDK1), cell division
cycle associated 8 (CDCA8), aurora kinase A (AURKA), aur-
ora kinase (AURKB), inner centromere protein antigens
(INCENP), baculoviral IAP repeat-containing 2 (BIRC2),
caspase 9 (CASP-9), and IAP-binding mitochondrial protein
(DIABLO) (Additional file 15: Figure S10B).

Discussion
Although great progress on surgical and medical therapy
has been made for OC, the overall mortality of OC re-
mains the fifth cause of death among malignant gyneco-
logic tumors. The causes of death from OC are mainly
attributed to a lack of detection methods at an early
stage, a high tendency for metastasis, and chemotherapy
resistance [12, 13]. Therefore, exploring reliable bio-
markers and precise molecular mechanisms for the early
diagnosis, treatment, and prognosis of OC is urgent and

necessary. In recent years, with the rapid development of
bioinformatics, an increasing amount of microarray and
sequencing data have provided a convenient and compre-
hensive platform to explore general genetic alterations,
identify DEGs, and elucidate molecular mechanisms for
the diagnosis, therapy, and prognosis of tumors [14].
In this study, four GEO datasets, namely, GSE54388,

GSE69428, GSE36668, and GSE40595, were selected to
screen DEGs. Applying the GEO2R tool and FunRich soft-
ware, the intersection of 171 DEGs was identified,
including 114 upregulated DEGs and 57 downregulated
DEGs. Then, GO and KEGG pathway analyses of the DEGs
were performed by DAVID. The KEGG pathway results
showed that the upregulated DEGs were mainly associated
with metabolic pathways, the biosynthesis of antibiotics, the
biosynthesis of amino acids, the cell cycle, and HTLV-I in-
fection, whereas the downregulated DEGs were not
enriched. These results also provided significant clues to
studying molecular interactions in the progression of OC.
Indeed, many studies have indicated that metabolic path-
ways and the cell cycle are highly associated with the
tumorigenesis and progression of OC [15–17]. For ex-
ample, autophagy is well known to affect various processes,
such as survival under harsh metabolic conditions, and the
actual level of autophagy in OC cells could also be affected
by cancer-associated fibroblasts [15]. Previously, many stud-
ies have reported that antibiotics, such as minocycline, sali-
nomycin, monensin, and pegylated liposomal doxorubicin,

Fig. 7 The expression level of hub genes in OC tissues at different stages (a-j). To further verify the expression level of the hub genes in OC
tissues at different stages, the hub genes were analyzed by the GEPIA2 online database. ANOVA was performed to assess the statistical
significance of the variations. Pr (>F) < 0.05 was considered statistically significant
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could be effective in treating OC [18–21]. Furthermore,
Plewa S et al. once quantitated 42 serum-free amino acids
and distinguished amino acid metabolic pathways related to
OC growth and development [22]. However, the association
between HTLV-I and OC remains unclear. In this study,
the upregulated DEGs were mainly involved in biological
functions such as cell division, the nucleus, and protein
binding. The downregulated DEGs were mainly enriched in
biological functions such as the negative regulation of tran-
scription from the RNA polymerase II promoter, the pro-
tein complex, the apicolateral plasma membrane, and
glycosaminoglycan binding.

Furthermore, a PPI network with 168 nodes and 450
edges was constructed based on the DEGs, and 10 hub
genes with the highest degrees of connectivity in the PPI
network were identified. Subsequently, survival analysis
of these hub genes demonstrated that 8 upregulated hub
genes (CCNB2, TYMS, KIF11, KIF4A, BIRC5, BUB1B,
FOXM1, and CDC20) were significantly associated with
a poorer PFS in OC patients at an early stage (stages 1
and 2). Then, the GEPIA2 database was used to further
verify the expression levels of these hub genes in tumor
and normal tissues, and the results were in accordance
with those from the GEO database. The expression

Fig. 8 Interaction network between hub genes and targeted miRNAs. Hub genes are presented in yellow circles, whereas targeted miRNAs are
shown in blue circles. The interaction between the hub genes and related miRNAs is shown in the form of arrows
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Table 3 Candidate drugs targeted by the hub genes

No. Gene Drug Interaction
types

Sources PMIDs

1 TYMS ETOPOSIDE – PharmGKB –

2 TYMS IRINOTECAN – CIViC 20,628,391

3 TYMS VINCRISTINE – NCI 2,804,079

4 TYMS FOLIC ACID – PharmGKB –

5 TYMS TOPOTECAN – NCI 10,803,925

6 TYMS CYTARABINE – PharmGKB –

7 TYMS MITOMYCIN – NCI 15,218,314

8 TYMS PREDNISONE – PharmGKB –

9 TYMS TRIFLURIDINE inhibitor DrugBank 18,600,528; 16,902,987; 20,372,850; 19,816,940;
19,886,911; 4,719,131; 6,436,227; 15,571,283;
17,179,993; 14,719,072; 16,010,590; 15,125,867;
11,752,352; 18,798,063; 6,010,427

10 TYMS DAUNORUBICIN – NCI 2,967,076

11 TYMS HYDROCORTISONE – NCI 2,707,640

12 TYMS PRALATREXATE inhibitor DrugBank 23,409,799

13 TYMS PHENTOLAMINE – NCI 2,866,100

14 TYMS TRIMETHOPRIM inhibitor DrugBank 8,538,681; 10,090,784; 10,592,235; 17,139,284;
8,920,005; 17,016,423; 19,622,858

15 TYMS INDOMETHACIN – NCI 2,707,640

16 TYMS GEMCITABINE inhibitor DrugBank 16,563,096; 15,795,320; 17,166,391; 16,818,276;
11,752,352; 15,655,942; 16,818,496

17 TYMS ASPARAGINASE – PharmGKB –

18 TYMS CAPECITABINE inhibitor ClearityFoundationBiomarkers;
ClearityFoundationClinicalTrial;
GuideToPharmacologyInteractions;
ChemblInteractions; DrugBank

15,134,221; 16,926,630; 15,866,500; 15,132,128;
11,752,352; 15,709,193

19 TYMS FLOXURIDINE inhibitor TdgClinicalTrial; ClearityFoundationClinicalTrial;
ChemblInteractions; TEND; DrugBank

10,697,523; 10,891,536; 10,697,524; 10,482,907;
10,553,409

20 TYMS LEUCOVORIN – TdgClinicalTrial; TEND –

21 TYMS TAMOXIFEN – NCI 9,615,734

22 TYMS VERAPAMIL – NCI 3,436,366

23 TYMS RALTITREXED inhibitor PharmGKB; TdgClinicalTrial;
GuideToPharmacologyInteractions;
TEND; DrugBank

18,773,878; 10,598,555; 10,430,100; 10,592,235;
11,752,352; 10,499,608; 10,482,907; 10,047,461;
10,496,350

24 TYMS PEMETREXED
DISODIUM

inhibitor ChemblInteractions –

25 TYMS DEXAMETHASONE – NCI 2,707,640; 3,398,844

26 TYMS INTERFERON GAMA-1B – NCI 1,557,656

27 TYMS FLUOROURACIL inhibitor ClearityFoundationClinicalTrial;
ChemblInteractions; CIViC; DrugBank

16,563,096; 20,628,391; 16,609,021; 16,719,540;
16,596,248; 16,538,493; 11,752,352; 15,353,299

28 TYMS OXALIPLATIN – PharmGKB –

29 TYMS TEGAFUR – TdgClinicalTrial –

30 TYMS SULFASALAZINE – PharmGKB –

31 TYMS PEMETREXED
(CHEMBL1201258)

inhibitor ClearityFoundationBiomarkers;
TdgClinicalTrial; GuideToPharmacologyInteractions;
CIViC; TEND

23,645,741; 23,060,591; 21,367,480; 26,502,926

32 TYMS METHOTREXATE – CIViC 23,652,803

33 BIRC5 IRINOTECAN – NCI 15,956,246

34 BIRC5 INTERFERON BETA-1A – NCI 12,117,359

Yang et al. Journal of Ovarian Research           (2020) 13:10 Page 13 of 18



levels of hub genes in different stage OC patients were
also conducted. Considering the significant variations in
the expression levels of KIF4A and TYMS in early and
advanced stage OC patients (Fig. 7), we hypothesized
that this result may explain why KIF4A and TYMS were
related to poorer PFS in early stage (stages 1 and 2) OC
and SOC patients (Fig. 4g, k, Additional file 9: Figure
S5G, & K), whereas the 2 hub genes described above
were associated with better PFS in advanced stage
(stages 3 and 4) OC and SOC patients (Additional file 12:
Figure S8 and Additional file 13: Figure S9). Thus, we
further hypothesized whether KIF4A and TYMS might
be considered as the tumor marker in the diagnosis of
early OC. It is well known that tumor invasion and me-
tastasis are always accompanied by complicated molecu-
lar regulatory mechanisms. In this study, the expression

levels of all hub genes were dysregulated in OC tissues
compared with normal tissues, meaning that these genes
may be crucial to tumorigenesis and progression in OC.
Although many studies have studied these hub genes con-
nected with the diagnosis, treatment, and prognosis of
various carcinomas, the molecular mechanisms underlying
the tumorigenesis and progression of OC have not been
fully understood.
First, kinesin family member 4A (KIF4A) is a microtubule-

based motor protein that has been reported to be associated
with various cancers, such as oral squamous cell carcinoma,
cervical cancer, breast cancer, prostate cancer, colorectal can-
cer, and lung cancer [23–28]. However, there have been no
studies conducted on KIF4A in regard to OC. In this study,
the downregulated expression of KIF4A was correlated with
poorer PFS in OC patients, especially in SOC patients at an

Table 3 Candidate drugs targeted by the hub genes (Continued)

No. Gene Drug Interaction
types

Sources PMIDs

35 BIRC5 DOXORUBICIN – NCI 16,211,302

36 BIRC5 CYTARABINE – NCI 14,713,572

37 BIRC5 TRASTUZUMAB – NCI|CIViC 16,452,223; 23,204,226

38 BIRC5 LAPATINIB – NCI 16,452,223

39 BIRC5 PROXYPHYLLINE – NCI 12,895,357

40 BIRC5 PACLITAXEL – ClearityFoundationBiomarkers; NCI 16,211,241; 15,347,474

41 BIRC5 DOCETAXEL – ClearityFoundationBiomarkers –

42 BIRC5 FLUTAMIDE – NCI 15,735,703

43 BIRC5 VORINOSTAT – NCI 16,951,239

44 BIRC5 PRASTERONE – NCI 16,461,558

45 BIRC5 ARSENIC TRIOXIDE – NCI 15,587,394; 16,950,207

46 BIRC5 ERLOTINIB – NCI 17,047,074

47 BIRC5 INDOMETHACIN – NCI 17,270,149

48 BIRC5 IMATINIB – NCI 16,254,145

49 BIRC5 ROMIDEPSIN – NCI 14,767,553

50 BIRC5 EPIRUBICIN – NCI 16,608,080

51 BIRC5 PLICAMYCIN – NCI 17,124,180

52 BIRC5 OMACETAXINE
MEPESUCCINATE

– NCI 15,854,289

53 BIRC5 MYCOPHENOLIC ACID – NCI 15,571,295

54 BIRC5 DEXAMETHASONE – NCI 16,787,583

55 BIRC5 FLUOROURACIL – NCI 15,067,352

56 BIRC5 DACTINOMYCIN – NCI 15,883,285

57 BIRC5 CALCITONIN – NCI 16,222,118

58 BIRC5 CARBOPLATIN – NCI 15,347,474

59 BIRC5 EPOETIN ALFA – NCI 17,112,829

60 BIRC5 TRETINOIN – NCI 11,939,262; 14,587,026; 16,403,261

61 BIRC5 METHOTREXATE – NCI 15,670,151

62 BIRC5 SULINDAC – NCI 16,707,021; 16,950,207

These data were obtained from the DGIdb database
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early stage (Fig. 4g, Additional file 6: Figure S4G). We also
found 11 potential miRNAs (hsa-miR-183-5p, hsa-miR-223-
3p, hsa-miR-136-5p, hsa-miR-150-5p, hsa-miR-376c-3p, hsa-
miR-375, hsa-miR-335-5p, hsa-miR-494-3p, hsa-miR-411-5p,
hsa-miR-421, and hsa-miR-543) that KIF4A might target
(Fig. 8).
The overexpression of many cyclins has been reported

in many tumors [29]; cyclin B2 (CCNB2) is located on
the Golgi apparatus during the whole cell cycle and may
cause a compromised G2/M transition in Hec1-depleted
mouse oocytes [30, 31]. However, the association be-
tween CCNB2 and OC is not clearly understood. Cell
division cycle 20 (CDC20) is an activator of the ligase
anaphase-promoting complex/C (APC/C) that has been
identified as a key candidate gene in OC patients based
on many bioinformatics studies [32, 33]. High expression
levels of CDC20 have been reported to be correlated
with poor prognosis in a variety of cancers [34–36].
However, its specific molecular mechanisms underlying
OC have not been fully explained. In this study, the
survival analysis of CDC20 in OC patients at an early
stage suggested that higher CDC20 expression could be
related to poorer prognosis (Fig. 4e).
Thymidylate synthase (TYMS) is crucial for DNA synthe-

sis in both normal and tumor cells. Biason P et al. calcu-
lated six TYMS polymorphisms related to OS in epithelial
OC (EOC) through a multivariate analysis and found that
the TYMS 1494ins/del, 1053C >T and IVS6-68C >T poly-
morphisms might be considered prognostic markers for OS
in EOC patients [37]. Additionally, Kelemen LE et al. also
reported that re495139 in the TYMS-ENOSF1 region was
associated with the risk of OC by evaluating large samples
of assembled cases [38, 39]. KIF11, a member of the
kinesin-like protein family, was once identified as a hub
gene in OC by Zhanzhan Xu et al. [8], and they also found
that KIF11 was potentially targeted by hsa-miR-424 and
hsa-miR-381. A recent study explored whether death recep-
tor 6 can promote OC cell migration by interacting with
KIF11 and TNF receptor-associated factor 4 [40]. In this
study, KIF11 was also considered a chemotherapy target for
OC using cBioPortal (Fig. 5a). Ribonucleotide reductase
M2 (RRM2) is the regulatory subunit of ribonucleotide
reductase and is not only involved in the tumorigenesis and
progression of a variety of carcinomas (such as colon,
breast, and pancreatic cancer) [41–43] but also leads to re-
sistance to cancer chemotherapy [44]. Katherine M Aird
et al. found that the knockdown of RRM2 expression could
inhibit the growth of human EOC cells by triggering cellu-
lar senescence [45], which suggests that RRM2 might be a
novel prosenescence therapeutic strategy to improve the
OS of EOC patients. Our drug-hub gene interaction result
was consistent with that of Katherine M Aird et al. Type 2
topoisomerase alpha (TOP2A) is a gene close to the HER2
gene that encodes a nuclear enzyme that is crucial in the

cell cycle. Mano et al. first explored TOP2A amplifications
in EOC [46], whereas in our study, we found that the type
of alteration for TOP2A in SOC mainly included trun-
cating mutations, missense mutations, and deep dele-
tions (Fig. 5b). Mitotic checkpoint serine/threonine kinase
B (BUB1B), the mammalian homolog of yeast Mad 3, is
susceptible to cancer and causes chromosome loss and
apoptotic cell death in human cancer cells [47, 48]. Many
studies have reported that BUB1B is highly associated with
advanced stages, serous histology and high grades in EOC,
and a weakened spindle checkpoint with the downregulated
expression of BUB1B is also related to acquired paclitaxel
resistance in OC cells [49, 50]. Forkhead box protein M1
(FOXM1), a transcription factor with a “winged helix”
DNA-binding domain, plays a significant role in tumor pro-
gression through cell proliferation, tumor invasion, migra-
tion, and angiogenesis [51, 52]. Yu Wang et al. reported
that FOXM1 promotes the reprogramming of glucose
metabolism in EOC by activating GLUT1 and HK2 tran-
scription [53]. Finally, baculoviral inhibitor of apoptosis
repeat-containing 5 (BIRC5) is an inhibitor of apoptosis
that is always absent in normal tissues and is associ-
ated with various cancers, such as breast cancer and
OC [54, 55]. Epithelial to mesenchymal transition (EMT)
is a biological process that is associated with tumor metas-
tasis and chemoresistance in ovarian tumors [56]. Zhao G
et al. reported that higher expression of BIRC5 always pro-
moted EMT in ovarian cancer cells [57]. In this study,
both the cBioPortal and DGIdb databases considered
BIRC5 to be a target of chemotherapy drugs used to treat
OC (Fig. 5a, Table 3).
Furthermore, 10 genes were identified as the hub

genes, and their expression levels in OC patients of dif-
ferent stages were all verified according to both the GEO
and GEPIA2 databases. A list of 62 drugs with potential
therapeutic efficacy against OC were selected (Table 3).
For the 10 hub genes, the potential gene targets of these
drugs were TYMS and BIRC5. However, the mecha-
nisms of most of these drugs were unknown. The effects
of the screened drugs were verified for many other types
of cancers such as lung cancer, liver cancer, and colon
cancer. Only a few of the TYMS- and BIRC5-targeting
drugs have been used for OC treatment, such as fluoro-
uracil/oxaliplatin (5-fluorouracil can induce the upregula-
tion of human TYMS expression through TYMS mRNA
transcription) [58], paclitaxel (the inhibition of BIRC5
expression can activate cell responses to paclitaxel treat-
ment) [57], and carboplatin [59]. Additional studies and
clinical trials are needed to identify and explore the drugs
that are effective for OC treatment in future. Nevertheless,
this study used multiple available databases to provide
novel insights into the OC pathogenesis and treatment,
and the identified conventional drugs might find potential
new uses.
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Therefore, considering the crucial roles of these 10
hub genes on the basis of this study and other previous
studies mentioned above, further studies may be focused
on exploring their precise mechanisms in the tumorigen-
esis and prognosis of OC, especially studying KIF4A,
CCNB2, and CDC20. There were still several limitations
in this study. One is that the microarray data and other
analyses were obtained from many public databases, not
generated by authors. The other is that only the TCGA
and GEPIA2 databases were used to verify the expres-
sion levels of the hub genes, and experiments were not
performed by the authors. Furthermore, due to a lack of
experimental studies and verifications, we could not
further explore how hub gene-miRNAs networks have
effects on the diagnosis and therapy of ovarian cancer in
depth. Despite these limitations, this study may provide
more accurate results based on integrated bioinformatic
analysis compared to the single dataset studies.

Conclusions
In summary, a total of 171 DEGs, including 114 upregu-
lated DEGs and 57 downregulated DEGs in OC, were
screened through integrated bioinformatic analysis, and
10 hub genes, namely, KIF4A, CDC20, CCNB2, TOP2A,
RRM2, TYMS, KIF11, BIRC5, BUB1B, and FOXM1, may
play crucial roles in the tumorigenesis and prognosis of
OC. Among these hub genes, one gene, KIF4A, has not
been previously reported to be related to OC, which indi-
cates that KIF4A might be a potential biomarker for OC
diagnosis and prognosis at an early stage. Additionally, the
miRNA-hub gene network and potential targeted drugs
related to these hub genes were constructed and selected,
respectively, and may contribute to studying the mecha-
nisms of OC. In-depth molecular mechanisms of the novel
hub genes in OC are needed in future, and relevant ex-
perimental models can be constructed on the basis of
these genes for the early detection, prognostic judgment,
risk assessment, and targeted therapy of OC.
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