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Abstract 

Hippo signaling was first identified in Drosophila as a key controller of organ size by regulating cell proliferation and 
anti-apoptosis. Subsequent studies have shown that this pathway is highly conserved in mammals, and its dysregula-
tion is implicated in multiple events of cancer development and progression. Yes-associated protein (YAP) and tran-
scriptional coactivator with PDZ-binding motif (TAZ) (hereafter YAP/TAZ) are the downstream effectors of the Hippo 
pathway. YAP/TAZ overexpression or activation is sufficient to induce tumor initiation and progression, as well as 
recurrence and therapeutic resistance. However, there is growing evidence that YAP/TAZ also exert a tumor-suppres-
sive function in a context-dependent manner. Therefore, caution should be taken when targeting Hippo signaling in 
clinical trials in the future. In this review article, we will first give an overview of YAP/TAZ and their oncogenic roles in 
various cancers and then systematically summarize the tumor-suppressive functions of YAP/TAZ in different contexts. 
Based on these findings, we will further discuss the clinical implications of YAP/TAZ-based tumor targeted therapy and 
potential future directions.
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Graphical Abstract

FACTS

1.	 Dysregulation of Hippo signaling is implicated in 
multiple events of cancer development and pro-
gression.

2.	 YAP/TAZ overexpression or activation is sufficient to 
induce tumor initiation, growth and progression, as 
well as drug resistance.

3.	 YAP/TAZ exert a tumor-suppressive function in a 
context-dependent manner.

4.	 Caution should be taken when targeting Hippo sign-
aling in clinical trials in the future.

Open questions

1.	 YAP/TAZ are double-edged swords with therapeu-
tic potential for cancers. When and where is YAP/
TAZ activation more beneficial than their inhibi-
tion? Additionally, in which stage of tumor progres-
sion and for what kind of cancer types?

2.	 YAP/TAZ activity is essential for normal embryonic 
development, tissue homeostasis and regeneration. 
How can toxicity and negative effects on normal tissues 
be avoided by targeting Hippo-YAP/TAZ signaling? 
Targeting YAP/TAZ upstream regulators, downstream 
effectors, or themselves?

Background
Hpo is a Ser/Thr kinase that can inhibit cell prolifera-
tion and organ growth by activating Wts kinase [1]. The 
Hippo pathway was initially named based on the over-
growth phenotype caused by Hpo mutation in Dros-
ophila [2, 3]. Subsequently, Yorkie (Yki) was identified 
to function as the downstream effector of the Hpo-Wts 
kinase cascade, as its overexpression can phenocopy the 
overgrowth of Hpo or Wts loss-of-function (LOF) mutant 
flies [1]. Owing to these findings, the Hippo pathway is 
defined as a key controller of organ size in Drosophila 
by regulating cell proliferation and anti-apoptosis. In 
mammals, this pathway is highly conserved. Specifi-
cally, mammalian STE-like (MST) protein kinases (Hpo 
orthologs) can phosphorylate and activate large tumor 
suppressor (LATS) kinases (Wts orthologs), which in 
turn phosphorylate YAP/TAZ (Yki orthologs), leading to 
their cytoplasmic retention and degradation (Fig.  1) [4, 
5]. Accordingly, decreased YAP/TAZ activity has been 
shown to inhibit cell hyperproliferation and organ over-
growth [6].

YAP/TAZ, as the final effectors of the Hippo pathway, 
are two highly similar proteins that show approximately 
40% amino acid conservation and share several structural 
features [7]. For example, both contain an N-terminal 
domain for interaction with TEA domain (TEAD) fam-
ily transcription factors, WW domains for mediating 
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protein‒protein interactions, a C-terminal transcrip-
tional activation domain (TAD) with a leucine zipper 
motif, and a PDZ-binding motif [8]. However, YAP, but 
not TAZ, also contains an SH3-binding motif and an 
N-terminal proline-rich region, which are required for 
the interaction with proteins containing an Src homol-
ogy 3 (SH3) domain and heterogeneous nuclear ribonu-
clear proteins, respectively (Fig. 2) [7, 8]. Due to the lack 
of a DNA-binding domain, YAP/TAZ usually act as tran-
scription coregulators (coactivator or corepressor) that 
need to cooperate with other DNA-binding factors to 
exert their functionally relevant transcription. Typically, 
TEAD family transcription factors (scalloped orthologs) 
have been proven to be the prime mediators of YAP/
TAZ-associated functions, particularly in tumorigenesis 
[9–11]. In addition, many more YAP/TAZ-interacting 
partners have also been identified to modulate YAP/
TAZ-associated transcriptional programs in a context-
dependent manner. For additional reference, the context-
dependent transcriptional regulation of YAP/TAZ in 
cancer and stem cells has been recently reviewed else-
where [12, 13].

In the last two decades, accumulating evidence has 
demonstrated that either Hippo kinase inactivation or 
YAP/TAZ activation is implicated in tumor development 
and progression, including tumor initiation, recurrence, 
metastasis and therapy resistance [14]. In the meantime, 
many efforts are being made to develop feasible strategies 
for tumor treatment by targeting this pathway. However, 
emerging evidence reveals that the roles of YAP/TAZ 
in cancers are context dependent. Typically, in different 
contexts and tumor types, YAP/TAZ have both tumor-
promoting and tumor-suppressive functions. Therefore, 
clarifying their functions under different conditions is 
of great significance for precision cancer therapy. In 

Fig. 1  Schematic overview of the Hippo-YAP/TAZ signaling in 
Drosophila and Mammals. The core components of this signaling 
include the core kinase cascade (MST1/2/Hpo and LATS1/2/
Warts), adaptors (SAV/Salvador and MOB1/2/Mats), and the 
downstream effectors YAP/TAZ/Yorki. The Hippo kinase cascades 
(MST-LATS)-mediated phosphorylation is essential for YAP/TAZ activity 
in the nucleus, where they interact with TEADs (Scalloped) to induce 
the transcription of downstream target genes

Fig. 2  Schematic representation of YAP/TAZ proteins. There are two major isoforms of YAP protein: the short isoform (SF) contains one WW-domain 
(WW1), whereas the long isoform (LF) contains two WW-domains (WW1 and WW2). TAZ is represented by a unique isoform with a single WW 
domain. In addition, compared with YAP protein, the SH3-binding domain and the proline-rich region are absent in TAZ protein. CC: coiled coil, TAD: 
transcriptional activation domain
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our current study, we will first present an overview of 
the dysregulation of YAP/TAZ in human cancers. Then, 
we systematically summarize the oncogenic roles and 
tumor-suppressive roles of YAP/TAZ in different con-
texts, as well as their underlying molecular mechanisms. 
Based on these ambivalent roles of YAP/TAZ in can-
cers, we finally discuss the clinical implications of YAP/
TAZ-based tumor targeted therapy and potential future 
directions.

Dysregulation of YAP/TAZ in human cancers
Given the evidence that Yki overexpression in flies 
causes cell hyperproliferation, defective apoptosis, and 
tissue overgrowth [1], it was thus considered to be an 
oncogenic protein. Indeed, extensive studies have sub-
sequently revealed that YAP/TAZ are frequently ampli-
fied or activated in human cancers (Fig. 3). For instance, 

the amplification of chromosome 11q22 (where the 
YAP gene resides) is reported in multiple human can-
cers, including liver and breast cancers [15, 16]. Sub-
sequent studies validated that YAP was required for 
sustaining the rapid growth of amplicon-containing 
liver cancer [15], while its overexpression in human 
mammary epithelial cells could induce malignant trans-
formation [16]. In addition, YAP gene amplification has 
also been found in a subset of human hedgehog-asso-
ciated medulloblastomas and esophageal squamous cell 
carcinomas [17, 18]. Apart from whole gene amplifica-
tion, a familial inheritance point mutation (R331 W) 
of YAP was identified as an allele predisposed for lung 
adenocarcinoma. YAP protein carrying this mutation 
was shown to increase the colony-formation ability and 
invasion potential of lung cancer cells [19]. Moreover, 
YAP/TAZ gene fusions have recently been reported in 

Fig. 3  Overview of the gene mutations of Hippo core components identified in human cancers. The mutations of Hippo pathway components 
identified in human cancers have been highlighted in blue dialogue balloons
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a series of human cancers, such as YAP-TFE3 [20] and 
TAZ-CAMTA1 gene fusions in epithelioid hemangi-
oendothelioma [21, 22]. Many of these YAP/TAZ fusion 
transcripts are sufficient to induce tumor formation in 
mouse models.

With the validation of the oncogenic roles of YAP/
TAZ, researchers are trying to identify the upstream 
regulators that are responsible for initiating the Hippo 
pathway and aberrant YAP/TAZ activity in various can-
cers. To date, multiple upstream regulators, including 
mechanical cues, cell polarity and cell‒cell adhesion, as 
well as growth factors and stress signals, have been iden-
tified to transmit various extracellular and intracellular 
signals to YAP/TAZ, thereby mediating their functional 
outputs [13]. Therefore, dysregulation of these regulators 
could also lead to YAP/TAZ activation for tumorigen-
esis (Fig.  3). For example, G protein-coupled receptors 
(GPCRs) represent a large family of cell surface recep-
tors that can transmit diverse extracellular signals to 
the Hippo-YAP/TAZ pathway [23]. Somatic mutations 
of GNAQ or GNA11 have been identified in approxi-
mately 83% of uveal melanoma (UM), the most common 
primary malignancy arising within the adult eye [24]. 
Multiple studies have revealed that hyperactivated YAP 
activity is responsible for the cell proliferation and tumor 
growth of GNAQ/GNA11-associated UM, and inhibition 
of YAP activity with verteporfin can reduce UM growth 
in a mouse model [25, 26]. In addition, FAT1 is one of the 
most frequently mutated genes in human cancers [27, 
28]. Pastushenko et  al. found that FAT1 deficiency can 
accelerate tumor initiation and malignant progression in 
skin squamous cell carcinoma and lung tumors by pro-
moting a hybrid epithelial-to-mesenchymal transition 
(EMT) phenotype [29]. Further study revealed that YAP 
nuclear translocation was responsible for the phenotype 
induced by the loss of FAT1 [29]. Moreover, recent pan-
cancer studies by The Cancer Genome Atlas Research in 
9125 tumor samples have revealed that Hippo pathway 
components are widely altered in human cancers, such 
as downregulation of NF2, FAT1, TAOK1-3, WW45, and 
LATS1/2  [30, 31]. Taken together, these studies high-
light that targeting YAP/TAZ represents an attractive 
therapeutic option for tumors with a dysregulated Hippo 
pathway.

The tumor‑promoting roles of YAP/TAZ in human 
cancers
Since the identification and characterization of the key 
components, as well as the signal transduction process 
for the Hippo pathway, researchers have been working 
on clarifying the detailed molecular mechanisms under-
lying the roles of YAP/TAZ in development and disease, 
especially in human cancers. To date, both in  vitro and 

in  vivo studies have demonstrated that YAP/TAZ are 
involved in multiple events through tumorigenesis and 
progression of human malignancies, including tumor 
growth and metastasis, drug resistance, tumor micro-
environment regulation, angiogenesis, and cancer stem 
cell self-renewal. Meanwhile, the molecular mechanisms 
underlying these processes have also gradually been 
elucidated. In this section, we will discuss the detailed 
molecular mechanisms underlying the tumor-promoting 
functions of YAP/TAZ (Fig. 4).

YAP/TAZ‑mediated cell proliferation, anti‑apoptosis, 
migration and invasion
Uncontrolled cell proliferation and resistance to cell 
death are hallmarks of cancers [32]. The initial study in 
Drosophila reported that Yki overexpression induces cell 
hyperproliferation and reduces cell apoptosis by con-
trolling the cell cycle regulator cycE and the cell death 
inhibitor diap1, respectively [1]. Similarly, in mamma-
lian cells, overexpression of constitutively activated YAP 
(S127/397A) results in increased cell proliferation and 
loss of cell contact-dependent inhibition [4, 33]. In  vivo 
studies also showed that YAP activation increased liver 
size and caused aberrant tissue expansion in mice [34, 
35]. Due to this evidence, YAP thus represents a central 
regulator that coordinates cell proliferation and organ 
growth, as well as tumorigenesis. In these processes, 
TEAD family transcription factors have been demon-
strated to be essential for mediating YAP-associated 
transcriptional function [9–11]. Furthermore, CTGF 
and BIRC5 are identified as the direct target genes of 
YAP-TEAD that regulate cell growth and anti-apoptosis, 
respectively [36]. More interestingly, Kim et  al. recently 
showed that PRDM14-mediated transcriptional upregu-
lation of CALM2 and SLC2A1 in colon cancers can res-
cue YAP suppression to sustain cell proliferation and 
survival [37], indicating the dominant roles of CALM2 
and SLC2A1 in mediating YAP-associated cell prolifera-
tion and tumorigenesis.

In addition to the abovementioned mechanisms, 
emerging evidence has also revealed that YAP/TAZ 
and AP-1 family members form a complex that syner-
gistically activates target genes directly involved in the 
control of S-phase entry and mitosis [38, 39]. Genome-
wide association analysis showed that this complex 
mostly occurred at the distal enhancers that contacted 
target promoters through chromatin looping [40, 41]. 
Moreover, both overexpressed YAP/TAZ could form 
liquid‒liquid phase-separated bodies on these enhanc-
ers, which were required for the transcription of YAP-
specific proliferation genes [42–44]. Recently, the Pan 
group also reported that the 5-methylcytosine dioxy-
genase TET1 was a direct transcriptional target of YAP 



Page 6 of 22Luo et al. J Exp Clin Cancer Res          (2023) 42:130 

in the liver, which in turn directly interacted with YAP/
TEAD to cause regional DNA demethylation, histone 
H3K27 acetylation and chromatin opening [45]. In 
addition to its function as a transcription coactivator, 
the YAP/TAZ-TEAD complex is also able to recruit the 
NuRD complex to deacetylate histones and repress the 
expression of DDIT4 and Trail, which are necessary for 
mTORC1 activation and cell survival, respectively [46]. 
In addition, YAP/TAZ can recruit EZH2 to the genome 
to repress the expression of the cell cycle kinase inhibi-
tor gene p27 or tumor suppressor gene TGFBR2, 
thereby overcoming cell‒cell contact inhibition and 

promoting cell hyperproliferation in human cancer cells 
[47, 48]. Overall, all these studies extended the previous 
knowledge on the transcriptional regulation of cell pro-
liferation and tumorigenesis by YAP/TAZ, which pro-
vides a host of new therapeutic targets for tumors.

In addition to promoting cell proliferation and tumor 
growth, increased YAP/TAZ activity is also able to 
induce the EMT of normal mammary epithelial cells 
in  vitro [4, 16, 49], as well as in  vivo tumor metastasis 
[50, 51]. Mechanistically, the YAP-ZEB1 interaction can 
shift ZEB1 from a transcriptional repressor to an acti-
vator, thereby stimulating the transcription of cancer 

Fig. 4  The tumor-promoting roles of YAP/TAZ and the potential mechanisms in human cancers. YAP/TAZ are implicated in the regulations of the 
hallmarks of cancer, including proliferation, anti-apoptosis, metastasis, drug resistance, stemness, metabolic reprogramming, angiogenesis, and 
microenvironment remodeling
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aggressiveness-associated genes [52]. Further investiga-
tions validated that ZEB1 formed a transactivation com-
plex by cooperating with AP-1 family factors and YAP/
TEAD to mark the most aggressive subtypes of breast 
cancer [53]. Similarly, Liu et  al. also showed that YAP/
TEAD-AP1 co-occupies active enhancer or promoter 
regions in diverse cancer cells to drive a core set of down-
stream target genes and coordinate cancer cell migration 
and invasion [54]. All these studies thus highlight the 
central role of the YAP/TEAD-AP1 complex in tumor cell 
growth and metastasis. In addition, YAP-PRDM4 inter-
action-mediated ITGB2 expression was also found to be 
required for cell invasion in metastatic prostate cancer 
[55], while YAP-induced expression of ARHGAP29 could 
promote tumor cell migration by suppressing the RhoA-
LIMK-cofilin pathway [56]. Taken together, these studies 
demonstrated that YAP/TAZ provided a versatile plat-
form on the genome to coordinate gene transcription and 
cell proliferation and metastasis, basically by recruiting 
different transcription factors or epigenetic modifiers.

YAP/TAZ‑mediated drug resistance in tumor therapy
Drug resistance in tumor cells is one of the major rea-
sons for therapeutic failure. YAP/TAZ have been impli-
cated in therapy resistance in various cancers. For 
example, TAZ-mediated expression of CYR61 and CTGF 
has been reported to be an important modulator of the 
response to Taxol in breast cancer [57, 58]. Specifically, 
TAZ overexpression conferred resistance to Taxol, while 
TAZ deletion sensitized breast cancer cells to doxoru-
bicin, suggesting that inhibition of TAZ activity could 
contribute to overcoming chemotherapy resistance in 
breast cancer [57, 58]. In addition, YAP-induced COX-2 
expression in colorectal cancer and EGFR expression in 
esophageal carcinoma were also revealed to be associated 
with increased Taxol resistance and resistance to 5-FU 
and docetaxel, respectively [59, 60]. Therefore, down-
regulation of COX-2 or EGFR in YAP-induced cancer 
cells could increase chemosensitivity [53, 54]. Targeted 
therapy, including using small molecules and monoclonal 
antibodies, has opened a new era of cancer treatment and 
significantly improved the prognosis of patients. How-
ever, primary or acquired resistance to these drugs is also 
frequently encountered. Mutations in RAF or RAS are 
frequently identified in human cancers, and patients with 
these mutations are eligible for treatment with BRAF or 
MEK inhibitors [61]. Both YAP overexpression and YAP-
associated transcriptional signatures have been linked to 
poor prognosis in patients treated with BRAF inhibitors 
or BRAF and MEK inhibitor combinations [62, 63]. In 
particular, YAP-mediated BCL2L1 expression has been 
demonstrated to contribute to BRAF inhibitor resistance 
in different BRAF-mutated cancer cells [62]. In addition, 

YAP/TAZ-regulated actin polymerization and actomyo-
sin tension could also confer BRAF inhibitor resistance to 
melanoma cells [64]. Targeted inhibition of CDK4/6 has 
shown efficacy in the treatment of patients with estrogen 
receptor-positive (ER+) metastatic breast cancer [65]. 
Li et al. reported that FAT1 and RB1 LOF mutations are 
linked to drug resistance in breast cancer patients treated 
with CDK4/6 inhibitors [65]. Further study showed that 
YAP-induced CDK6 upregulation was responsible for 
CDK4/6 inhibitor resistance, highlighting the central role 
and clinical value of CDK6 in breast cancer therapy [65]. 
Anti-PD-1/PD-L1 therapy has shown promising clinical 
outcomes in the treatment of many cancer types, whereas 
resistance is common in solid tumors. Yu et al. reported 
that YAP-mediated phase separation and transcription 
can contribute to interferon-γ-dependent immunother-
apy adaptive resistance, which leads to tumor survival 
and immunotherapy resistance [66]. Taken together, 
these studies highlight that YAP/TAZ-mediated tran-
scriptional outputs play essential roles in drug resistance 
in tumor therapy. Therefore, targeting YAP/TAZ or their 
transcriptional outputs in different cancers may serve as a 
rational treatment regimen to overcome drug resistance.

YAP/TAZ‑mediated regulation of tumor stemness
Cancer stem cells (CSCs) are defined as a part of the cell 
population, specifically endowed with self-renewal abil-
ity in  vitro and tumor initiation potential in  vivo. An 
early study in adult organs showed that YAP is highly 
expressed in the undifferentiated progenitor/stem cell 
compartment, and YAP activation expands these cell 
populations and leads to organ overgrowth [34]. Sub-
sequently, YAP was also found to be elevated during 
induced pluripotent stem cell reprogramming, and its 
knockdown led to a loss of embryonic stem cell pluripo-
tency [67]. These studies thus supported that YAP might 
function as a stemness regulator. Indeed, Cordenonsi 
et  al. subsequently showed evidence that TAZ gain-of-
function (GOF) endows non-CSCs with self-renewal 
abilities, tumorigenicity and migratory activities [68], 
while TAZ LOF in breast CSCs severely impairs meta-
static colonization and chemoresistance [58]. In addition, 
Kim et  al. also found that YAP activation could induce 
a large number of mammary stem cell signature genes, 
such as IL6, by cooperating with the transcription factor 
SRF [69]. Furthermore, SRF-YAP-IL6 signaling was found 
to be enriched in basal-like breast cancer patients and 
required for maintaining cancer stemness [69]. Other 
cancer stemness-related proteins, including OCT4, 
SOX2 and SOX9, were also found to be direct transcrip-
tional targets of YAP/TAZ in multiple cancer types. Typi-
cally, YAP-driven SOX9 expression is a critical event in 
the acquisition of CSC properties in esophageal and 
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pancreatic cancer cells, suggesting that YAP inhibition 
may offer an effective means of therapeutically targeting 
the CSC population [70, 71]. More interestingly, Schaal 
et al. reported that nicotine could induce SOX2 through a 
YAP/E2F1/OCT4 signaling axis, which accounted for the 
nicotine-mediated promotion of stemness in lung cancer 
[72]. Combined together, these findings support that tar-
geting YAP/TAZ-dependent cancer stemness represents 
an attractive therapeutic strategy for cancer treatment.

YAP/TAZ‑mediated metabolic reprogramming of tumor 
cells
Dysregulation of metabolic pathways is one of the hall-
marks of cancer. Given the dominant roles of YAP/TAZ 
in tumor cell survival and growth, they have indeed 
been revealed to influence cancer progression by regu-
lating tumor metabolism, including glucose, fatty acid, 
and amino acid metabolism [73]. For instance, glucose 
transporter 3 (GLUT3) is frequently overexpressed in 
tumors; meanwhile, it has been identified to be a direct 
transcriptional target of YAP [74]. Moreover, a subset of 
glioblastomas exhibited an addiction to GLUT3, which 
was sensitive to agents disrupting the YAP-TEAD inter-
action [74]. This study thus highlighted the essential role 
of YAP-mediated glucose uptake in tumor cell growth. 
In addition, YAP/TAZ are also involved in the meta-
bolic reprogramming of tumor cells to coordinate the 
environmental conditions and tumor growth. Typically, 
cancer cells are inclined to produce ATP through gly-
colysis instead of oxidative phosphorylation even under 
aerobic conditions, which is referred to as the Warburg 
effect. YAP/TAZ have been reported to directly induce 
the expression of several genes involved in glycolysis in 
different cancer types, including HK1, HK2, PFKFB4, 
PFKP, PKM2, GAPDH, PGK1, PGAM1, LDHA, PDHA1, 
and PDHB [74–76]. Moreover, YAP/TAZ activation can 
repress mitochondrial respiration, oxidative phospho-
rylation, and oxidative stress-induced cell death [75]. 
In addition to aerobic glycolysis, glutamine is of great 
importance for maintaining cellular hyperplasia or malig-
nancy [77]. Multiple studies have reported that many 
glutamine-metabolizing enzymes are the transcriptional 
targets of YAP-TEAD in cancer cells, including GLS1, 
SLC1A5, GOT1 and PSAT1 [78, 79]. These studies sup-
ported that YAP/TAZ-mediated glutaminolysis repre-
sents a novel tumorigenesis mechanism and a therapeutic 
target. Recently, the Pan group reported that YAP/TAZ-
mediated ODC1 transcription and polyamine biosynthe-
sis could further activate the eIF5A hypusination-LSD1 
axis, which coordinated metabolic and epigenetic repro-
gramming and tumorigenesis [80]. Taken together, these 
studies highlight that targeting YAP-mediated metabolic 

reprogramming in cancers also represents a very attrac-
tive treatment strategy.

YAP/TAZ‑mediated tumor angiogenesis
Tumor-associated angiogenesis is critically important for 
continued tumor growth and metastasis. Extensive stud-
ies have confirmed that vascular endothelial growth fac-
tor (VEGF) is a major driver of blood vessel formation 
in both normal tissues and cancers. Emerging evidence 
has shown that YAP/TAZ act as central mediators of 
VEGF signaling to mediate angiogenesis [81–83]. Par-
ticularly, in tumor cells, Ma et al. reported that YAP/TAZ 
can complex with HIF-1α to promote VEGF expression 
in response to hypoxia, thereby facilitating angiogenesis 
and tumor growth [84, 85]. Recently, Shen et al. discov-
ered that YAP/TAZ are nuclear localized and activated 
in endothelial cells (ECs) of metastatic patient colorec-
tal cancers [86]. Further investigation showed that YAP/
TAZ associated with STAT3 in tumor-associated ECs to 
enhance TEAD-associated transcription [87, 88]. Phar-
macological inhibition of YAP/TAZ suppressed tumor 
angiogenesis and tumor progression in both cancer cells 
and mouse models. These studies suggested that YAP/
TAZ activation in both cancer cells and tumor-associated 
ECs could contribute to tumor development by promot-
ing tumor-associated angiogenesis. More recently, Ong 
et  al. reported that endothelial nutrient acquisition was 
an essential regulator of YAP/TAZ-induced angiogen-
esis [89]. Specifically, YAP/TAZ-mediated SLC7A5 tran-
scription stimulated the import of amino acids and other 
essential nutrients, which in turn activated mTORC1 
to promote angiogenic growth [89]. This study further 
highlighted the central role of YAP/TAZ in coordinating 
angiogenesis and tumor growth, as well as the therapeu-
tic value of targeting YAP/TAZ-mediated angiogenesis.

YAP/TAZ‑mediated tumor microenvironment (TME) 
regulation
The TME is a complex ecosystem of various cellular ele-
ments, as well as acellular components, which synergis-
tically potentiate tumor growth and progression. The 
acellular components are composed of the extracellular 
matrix (ECM), exosomes, and cytokines, while cellular 
components include fibroblasts, ECs, adipocytes, and 
immune cells [90]. In addition, the TME is usually char-
acterized by acidic pH, hypoxia, increased interstitial 
pressure, inflammation and immunosuppression [90]. 
To date, accumulating studies have shown that YAP/
TAZ-mediated TME remodeling plays an essential role in 
tumor development.

The increased rigidity of the ECM surrounding the 
cells has been proven to be related to abnormal cell 
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behaviors, including cell hyperproliferation, migration 
and metastasis [91]. YAP/TAZ have been identified as 
both sensors and mediators of mechanical signals from 
the microenvironment, including ECM rigidity [91]. Typ-
ically, Chang et al. found that TAZ regulates the forma-
tion of an LM511 matrix by transcriptionally regulating 
LMa5 expression in breast cancer [92]. The activation of 
LM511-integrin α6β1 signaling can further contribute to 
CSC properties by activating TAZ [92]. Likewise, YAP 
activation in cancer-associated fibroblasts can also con-
tribute to the matrix stiffening of breast cancer, thereby 
promoting cancer cell growth and invasion [93]. Tar-
geting the immune microenvironment is a hotspot in 
tumor immunotherapy. Typically, PD-L1 is an immune 
checkpoint molecule that is responsible for the interac-
tion between tumor-infiltrating lymphocytes and can-
cer cells. PD-L1 in cancer cells can bind to its receptor 
PD-1 on T cells to suppress its antitumor activity [94]. 
PD-L1 has been identified to be a direct transcriptional 
target of YAP/TAZ-TEAD in tumor cells [95], which 
thus establishes an immunosuppressive TME for YAP/
TAZ-induced cancers. Tumor-associated macrophages 
(TAMs) are divided into M1 and M2 macrophages. YAP 
activation has been demonstrated to be associated with 
the polarization of TAMs to the M2 phenotype, thereby 
reducing the capacity of antigenic presentation of TAMs 
[96, 97]. Further investigation revealed that YAP could 
promote tumorigenesis of colon cancer by increasing the 
expression of M2-promoting IL-4 and tumor-promot-
ing IL-6 cytokines [98]. Similarly, YAP-induced CXCL5 
upregulation in prostate cancer could attract CXCR2-
expressing myeloid-derived suppressor cells, thereby 
blocking the immune cell response and promoting tumor 
progression [99]. In addition, YAP-mediated inhibition 
of CD4/CD8-positive cell differentiation and the activa-
tion of regulatory T cells also potentiate the immuno-
suppressed microenvironment to ensure the survival 
of tumors [100, 101]. Taken together, these discoveries 
support that YAP/TAZ are multifunctional regulators 
of tumor development by coordinating both tumor cell 
behaviors and TME remodeling Table 1.

The tumor‑suppressive roles of YAP/TAZ in human 
cancers
Although YAP/TAZ overexpression or activation has 
been proven to promote tumor progression via multiple 
mechanisms, accumulating evidence shows that YAP/
TAZ also exert tumor-suppressive functions in a context-
dependent manner. Typically, 11q22, the YAP gene-resid-
ing region, is frequently lost of heterozygosity (LOH) in 
some breast cancers [102, 103]. Further investigations 
revealed that LOH of the 11q22 amplicon was associ-
ated with the invasive subtype and poor survival in breast 

tumors [104]. Consistently, YAP knockdown in breast 
cancer cells increased migration and invasion abilities, 
inhibited the response to Taxol and enhanced tumor 
growth in nude mice [105]. Moreover, recent in  vivo 
studies also revealed that depletion of YAP in breast can-
cer cells led to significantly more lung metastasis [106]. 
All these studies thus indicated a potent tumor-suppres-
sive role of YAP/TAZ. More interestingly, Pearson et al. 
recently reported that solid tumors can be classified into 
two categories, named “YAP on”, in which YAP is highly 
expressed and behaves as an oncogene, and “YAP off”, in 
which its expression is silenced and it behaves as a tumor 
suppressor [107]. “YAP off” solid cancers are usually RB1 
deficient, including retinoblastoma, small cell lung can-
cer, and neuroendocrine prostate cancer [107]. In “YAP 
off” solid cancers, re-expression of YAP to activate genes 
belonging to the integrin/ECM/adhesion pathway can 
induce cytostasis [107]. In this section, we mainly aim to 
systematically summarize the emerging tumor-suppres-
sive roles of YAP/TAZ and their underlying molecular 
mechanisms in different contexts (Fig. 5).

YAP/TAZ interfere with the transcriptional program of key 
oncogenic factors
Hormone-associated tumors, such as ER + breast cancer 
and androgen receptor-positive (AR+) prostate cancer, 
are mainly dependent on hormone receptor (HR) signal-
ing to sustain tumor cell growth and survival. Therefore, 
interfering with HR-related functions and signal trans-
duction processes is the mainstay treatment for these 
cancers. An early study reported that the YAP-TEAD 
complex and ERα could co-occupy the superenhancer 
regions of ERα-associated target genes to mediate estro-
gen-associated transcription and breast cancer growth 
[108]. However, a recent study revealed that YAP was 
more likely to play a tumor-suppressive role in ER + BC. 
Specifically, the YAP-ER association could compete with 
ERα for binding to TEAD, which led to the dissociation 
of ERα from its target sites and subsequent degrada-
tion [109]. In the same group, they also identified that 
YAP acted as a context-dependent tumor suppressor in 
AR + prostate cancer by antagonizing TEAD-mediated 
AR signaling [110]. Similarly, the YAP-TEAD interaction 
was also found to be a competitor for the TEAD-Hif-2α 
complex in clear cell renal cell carcinoma (ccRCC) [111]. 
Increased nuclear YAP reduced ccRCC tumor growth 
by decreasing HIF-2α target gene expression, includ-
ing GLUT1 and VEGF [111]. All these studies indicated 
a general tumor-suppressive mechanism of YAP/TAZ 
through interference with the transcriptional program 
of key oncogenic factors, especially for HR + cancers. In 
addition, TAZ expression was lower in hematological 
malignancies, while its high expression was correlated 
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with better patient outcomes [112]. Further investiga-
tions showed that TAZ elicited an antitumorigenic func-
tion by repressing MYC expression and its transcriptional 
program [112]. Therefore, inhibition of Hippo signaling 
in these contexts may be a more rational strategy for can-
cer therapy.

YAP/TAZ facilitate the transcriptional program of tumor 
suppressors
Although YAP/TAZ usually promote the expres-
sion of genes related to tumor promotion, early stud-
ies also showed that YAP/TAZ activation induced the 
transcription of their negative regulators, including 
LATS1/2, AMOT, and NF2, to establish a negative 
feedback loop and prevent tumorigenesis [113, 114]. 
Recently, He et  al. identified NR4A1 as a novel target 
of YAP that mediates the proapoptotic and antitumor 
effects of the Hippo pathway [115]. Specifically, YAP-
mediated NR4A1 transcription could promote YAP 
degradation and inhibit YAP-induced liver regenera-
tion and tumorigenesis [115]. Overall, these studies 
highlighted a negative feedback regulatory mechanism 
for YAP/TAZ in organ growth.

Vestigial-like protein 4 (VGLL4) has been reported to 
inhibit YAP-TEAD transcriptional activity by displacing 
YAP from TEAD [116–118]. Ma et al. recently reported 
that VGLL3 was a direct transcription target of YAP-
TEAD in ER + BC [119]. YAP-induced VGLL3 could fur-
ther compete with YAP/TAZ for binding to the TEAD 
transcription factor and then recruit the NCOR2/SMRT 
repressor to the superenhancer of the ESR1 gene, lead-
ing to epigenetic alteration and transcriptional silencing 
[119]. This study thus revealed another mechanism for 
YAP-associated tumor suppressor function in ER + breast 
cancer. Trichorhinophalangeal syndrome 1 (TRPS1) is 
commonly overexpressed in breast cancer. Elster et  al. 
reported that TRPS1 is a potent repressor of YAP-
dependent transactivation [120], while YAP is found to 
induce the expression of genes related to immunosur-
veillance in this context [120]. In addition, Huang et  al. 
reported that digitoxin can suppress human lung squa-
mous cell carcinoma growth both in vitro and in vivo by 
attenuating YAP phosphorylation and promoting YAP 
nuclear sequestration [121]. Further study showed that 
YAP activation led to excessive accumulation of reac-
tive oxygen species by downregulating the antioxidant 

Fig. 5  The tumor-suppressive roles of YAP/TAZ and the potential mechanisms in human cancers. YAP/TAZ exert a tumor-suppressive function in a 
context-dependent manner through different molecular mechanisms



Page 15 of 22Luo et al. J Exp Clin Cancer Res          (2023) 42:130 	

enzyme GPX2 [121]. This study thus highlighted a novel 
tumor-suppressor function of YAP via downregulation of 
GPX2, with potential implications for improving preci-
sion medicine for human lung squamous cell carcinoma. 
In addition, YAP activation also caused a growth inhibi-
tory effect in mouse MC38 colon cancer cells by induc-
ing the expression of Wisp2 and Ccdc80 [122]. Deletion 
of these two genes prevented the growth inhibitory effect 
of YAP activation in these cells [122]. Recently, Frost 
et  al. showed that YAP/TAZ suppressed the growth of 
MCPyV-positive Merker cell carcinoma cells through 
TEAD-dependent transcriptional repression of MCPyV 
LT [123], further highlighting that the function of YAP/
TAZ was highly dependent on their transcriptional out-
puts in different cancers.

YAP/TAZ enhance susceptibility to apoptosis‑inducing 
agents
Apoptosis is an important mechanism to eliminate onco-
genesis. The p53 family proteins play an essential role in 
inducing cell cycle arrest or apoptosis. YAP/TAZ have 
been found to play a proapoptotic role by interacting 
with p73 (a homolog of p53), which can further induce 
p73-associated target genes in response to DNA dam-
age [124, 125]. Furthermore, the YAP-p73 association 
is positively regulated by ABL-mediated YAP tyros-
ine phosphorylation at Y357 but repressed by AKT and 
LATS-mediated serine phosphorylation at S127 [126, 
127]. Subsequently, Lapi et  al. identified promyelocytic 
leukemia (PML), a tumor suppressor gene, as a direct 
transcriptional target of the YAP-p73 complex [128]. 
PML could further interact with YAP and cause PML-
mediated sumoylation and stabilization of YAP, which 
eventually accelerated DNA damage-induced apoptosis 
[128]. Consistently, EGR-1 was identified to be upregu-
lated in prostate carcinoma cells by ionizing irradiation, 
and it could complex with YAP to upregulate Bax expres-
sion, thereby enhancing the susceptibility to radiation-
induced apoptosis [129]. In hematologic malignancies, 
including leukemias, lymphomas, and multiple myeloma, 
YAP was found to be deleted or consistently downregu-
lated [130]. Further investigation showed that YAP acti-
vation could also trigger DNA damage-induced apoptosis 
in these cancers, further supporting a tumor suppres-
sor function of YAP in hematological malignancy [130]. 
More interestingly, Gujral et  al. recently showed that 
nuclear YAP enhanced gemcitabine intracellular avail-
ability in multiple human pancreatic cancer cells and 
tumors by downregulating the expression of multidrug 
transporters [131], supporting that YAP activation could 
also contribute to overcoming drug resistance in pancre-
atic cancer.

YAP/TAZ promote ferroptosis
Ferroptosis is a new type of iron-dependent regulated 
cell death mechanism that can contribute to antitumor 
function [132] and thus represents a novel method for 
treating cancer. Multiple studies have demonstrated 
that YAP/TAZ play essential roles in regulating fer-
roptosis [133]. For example, TAZ is activated in both 
RCC and ovarian cancer (OC). Yang et  al. found that 
TAZ activation can enhance the susceptibility of RCC 
to ferroptosis by inducing the expression of EMP1 
and NOX4 [134], while in OC, the TAZ-ANGPTL4-
NOX2 signaling axis mediates cell density-regulated 
ferroptosis [135]. These studies thus implied that TAZ 
status could serve as a predictor of ferroptosis sensitiv-
ity and novel therapeutic potential for both RCC and 
OC. In addition, inactivation of NF2 in mesothelioma 
cells activates YAP, which enhances cellular sensitivity 
to ferroptosis [136]. Further studies showed that YAP 
induced ferroptosis by upregulating several ferroptosis 
modulators, including ACSL4 and TFRC [136]. Taken 
together, these studies suggest that activation of YAP/
TAZ-mediated ferroptosis offers an attractive strategy 
for cancer treatment in the future.

YAP/TAZ shape the suppressive tumor microenvironment
The TME plays an important role in tumor growth, 
metastasis and drug resistance. Inactivation of the 
Hippo pathway or YAP activation can dramatically 
induce liver tumorigenesis and progression [34, 35, 
137]. However, Moya et  al. found that YAP/TAZ were 
also activated in the normal hepatocytes surrounding 
liver tumors and that depletion of YAP/TAZ in these 
cells activated tumor growth [138]. Moreover, con-
stitutively activated YAP in peritumoral hepatocytes 
repressed primary liver tumor growth and melanoma-
derived liver metastases [138]. This study highlighted 
that YAP/TAZ acted through a mechanism of cell com-
petition from TMEs to eliminate tumor cells. Recently, 
Nie et  al. revealed that the YAP/TAZ-CD54 axis was 
required for CXCR2−CD44− tumor-specific neutrophils 
to suppress gastric cancer, opening a new possibility to 
develop neutrophil-based antitumor therapeutics [139]. 
In addition, tumor cells can shape their microenviron-
ment through the secretion of cytokines, chemokines, 
growth factors, etc. Moroishi et al. reported that either 
LATS1/2 deletion or YAP/TAZ hyperactivation inhib-
ited tumor growth due to the induction of antitumor 
immune responses [140]. Specifically, LATS1/2-null or 
YAP/TAZ-activated tumor cells could secrete nucleic 
acid-rich extracellular vesicles that stimulated the host 
TLR-MYD88/TRIF-IFN pathway to induce antitumor 
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immunity and the eventual elimination of tumor cells 
[140]. This study thus indicated a new paradigm for 
how YAP/TAZ activation in tumor cells regulates 
tumor immunogenicity and has implications for target-
ing YAP/TAZ in cancer immunotherapy.

YAP/TAZ counteract the key oncogenic pathway
YAP/TAZ activation is widespread in many human 
tumors. However, inactivation of Hippo kinases or YAP/
TAZ activation is insufficient to drive the initiation of 
most tumors [14]. Typically, the Wnt pathway is the major 
driving force for homeostatic self-renewal and regenera-
tion in the mammalian intestine. Meanwhile, constitutive 
activation of this pathway is also the most common event 
for triggering colon tumor formation [141]. Barry et  al. 
reported that cytoplasmic YAP can restrict Wnt signal-
ing by limiting the activity of Dishevelled, thereby inhib-
iting the regenerative growth of intestinal epithelia [142]. 
Moreover, YAP is silenced in a subset of highly aggressive 
and undifferentiated human colorectal carcinomas, and 
its reactivation restricts the growth of colorectal carci-
noma xenografts [142]. This study thus highlighted that 
YAP was a tumor suppressor in colon cancer by interfer-
ing with Wnt signaling. Recently, the same group also 
reported that YAP activation could maintain gut epithe-
lial cells in a state characterized by a wound-healing sig-
nature, with increased Kruppel-like factor 6 expression 
and decreased Wnt signaling [143]. In contrast, deletion 
of YAP favored the growth of focally induced colonic 
tumors [143]. This study further supported that YAP 
acted as a tumor suppressor, and activating the Hippo 
kinases represented a novel therapeutic approach for 
combating colorectal cancers Table 2.

The therapeutic implications of YAP/TAZ in human 
cancers
In most human cancers, YAP/TAZ overexpression or 
activation induces cancer cell proliferation, metastasis, 
CSC attributes, drug resistance, and TME remodeling. 
Targeting YAP/TAZ thus always represents a large 
therapeutic window for cancer treatment. These also 
represent a mainstream view in the field of targeted 
therapy of Hippo-YAP/TAZ signaling. To this end, 
numerous drugs targeting YAP/TAZ have been devel-
oped and proven to inhibit their nuclear localization 
or transcriptional activity, thereby exhibiting potent 
antitumor effects [144, 145]. Typically, verteporfin, an 
FDA-approved compound for treating macular degen-
eration, was initially identified to block the interaction 
between YAP and TEAD, thereby inhibiting tumor cell 
growth and metastasis both in vitro and in vivo [146]. 
As with verteporfin, many other compounds, such as 
CA3 and CPD3.1 [147–149], have also been shown 

to interfere with YAP/TAZ-TEAD-mediated activity, 
thereby inhibiting tumor cell growth. VGLL4, a ves-
tigial-like protein 4, is found to be a tumor suppressor 
in human cancers via direct competition with YAP for 
binding TEADs [116, 150]. Therefore, a VGLL4-mim-
icking peptide called “super-TDU” has been designed 
and showed antitumor efficiency both in  vitro and 
in  vivo [116, 150]. However, the target specificity and 
selectivity of these drugs remain to be determined. To 
date, three inhibitors have entered clinical stage I [151]. 
Among them, ION537 is an antisense nucleotide inhib-
itor, and for others targeting the YAP-TEAD interac-
tion, no chemical structure has been reported [151].

In addition, AP-1 family transcription factors are the 
most representative partners that can cooperate with 
YAP/TAZ to synergistically drive oncogenic growth in 
YAP/TAZ-associated cancers [40]. From this perspec-
tive, targeting AP1 directly or its regulation also offers 
the possibility of eliminating YAP/TAZ-driven cancers. 
As stated, Koo et  al. have shown that chemical AP-1 
inhibitors (SR-11,302 or T5224) can inhibit YAP/TAZ-
mediated gene transcription and oncogenic cell growth 
in vitro, as well as YAP/TAZ-driven liver growth in vivo 
[152]. Similarly, YAP/TAZ-mediated recruitment of gen-
eral transcriptional cofactors, including bromodomain-
containing protein 4, CDK9 and RNA polymerase II, can 
also boost the expression of oncogenic growth-regulating 
genes [39, 153]. Therefore, targeting these factors also 
represents a potential therapeutic strategy for YAP/TAZ-
driven cancers in the future.

In our current study, we also revealed a context-
dependent role for YAP/TAZ in distinct tumors. Typi-
cally, in HR + cancers, including ER + breast cancer 
and AR + prostate cancer, YAP/TAZ seem to perform 
a tumor-suppressive function through different mech-
anisms. However, TEADs have always performed a 
tumor-promoting function in these processes. Therefore, 
directly targeting TEADs for the treatment of HR + can-
cers seems to be more straightforward. For example, 
multiple studies have revealed that there is a novel pocket 
in the center of the TEAD transactivation domain that 
is more accessible and druggable, which makes it pos-
sible to develop TEAD-selective compounds [154–157]. 
In addition, XMU-MP-1, an ATP-competitive inhibi-
tor of both MST1 and MST2, has been demonstrated to 
improve live repair and regeneration in multiple mouse 
models through YAP activation [158]. Recently, Ma 
et al. also developed a potent LATS inhibitor, VT02956, 
which is able to reduce ESR1 expression and the growth 
of ER + breast cancer cell lines and patient-derived tumor 
organoids [119]. Therefore, inhibition of Hippo kinase 
cascades might be an attractive strategy for HR + cancer 
treatment in the future.
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Conclusion
In this review, we have provided a comprehensive sum-
mary of the roles of YAP/TAZ in carcinogenesis. Unlike 
previous reviews, we also focus on the emerging tumor-
suppressive roles of YAP/TAZ in various cancers. Our 
study thus indicated more complex roles for Hippo-
YAP/TAZ signaling in different cancer types, as well as 
in different contexts. Based on current research, cau-
tion should be exercised when translating the results 
to the clinical setting in the future by targeting Hippo-
YAP/TAZ signaling. To this end, we also advocate that 
more functional studies and mechanistic insights are 
needed to clarify the precise role of YAP/TAZ in spe-
cific cancer types and in distinct TMEs. For this pur-
pose, multiple omics analysis along with the integration 
of human tumor organoid and patient-derived xeno-
graft models may enable us to obtain a more in-depth 
and comprehensive understanding of the functions of 
YAP/TAZ in cancers, therefore aiding future cancer 
therapy strategies.
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