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Abstract 

Prostate cancer is a hormone-driven disease and its tumor cell growth highly relies on increased androgen receptor 
(AR) signaling. Therefore, targeted therapy directed against androgen synthesis or AR activation is broadly used and 
continually improved. However, a subset of patients eventually progresses to castration-resistant disease. To date, vari-
ous mechanisms of resistance have been identified including the development of AR-independent aggressive variant 
prostate cancer based on neuroendocrine transdifferentiation (NED). Here, we review the highly complex processes 
contributing to NED. Genetic, epigenetic, transcriptional aberrations and posttranscriptional modifications are high-
lighted and the potential interplay of the different factors is discussed.

Background
Aggressive variant prostate cancer (AVPC) with traits of neuroendocrine differentiation emerges in a rising number of 
patients in recent years. Among others, advanced therapies targeting the androgen receptor axis have been con-
sidered causative for this development. Cell growth of AVPC often occurs completely independent of the androgen 
receptor signal transduction pathway and cells have mostly lost the typical cellular features of prostate adenocar-
cinoma. This complicates both diagnosis and treatment of this very aggressive disease. We believe that a deeper 
understanding of the complex molecular pathological mechanisms contributing to transdifferentiation will help to 
improve diagnostic procedures and develop effective treatment strategies. Indeed, in recent years, many scientists 
have made important contributions to unravel possible causes and mechanisms in the context of neuroendocrine 
transdifferentiation. However, the complexity of the diverse molecular pathways has not been captured completely, 
yet. This narrative review comprehensively highlights the individual steps of neuroendocrine transdifferentiation and 
makes an important contribution in bringing together the results found so far.
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Background
Prostate cancer (PCa) is primarily a hormone-driven 
disease mediated by androgen receptor (AR) signaling-
driven cell growth. Elevated serum concentrations of the 
AR downstream target prostate specific antigen (PSA) are 
indicative of this AR-mediated tumor growth. Androgen 
deprivation therapy (ADT) with Gonadotropin Releas-
ing Hormone agonists or antagonists is the backbone of 
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treatment for advanced hormone sensitive PCa. How-
ever, acquisition of resistance mechanisms that restore 
androgen supply or AR activity in the tumor such as AR 
amplifications, mutations or splice variants eventually 
can result in castration resistant prostate cancer (CRPC) 
[1]. New hormonal agents (NHA) targeting androgen 
synthesis or binding such as abiraterone and enzaluta-
mide show life prolonging activity in CRPC indicating 
that the AR signaling pathway still has a major impact 
for progression of disease. However, apart from those 
“AR-dependent” castration-resistant adenocarcinomas, a 
subset of patients has been found to progress with AR-
independent cancer biology with a short-term response 
to hormonal treatment, early and extensive visceral 
metastases and poor outcomes. Of note, this aggressive 
variant prostate cancer (AVPC) is frequently associated 
with low PSA production and thus not recognized by 
PSA monitoring. Therefore, an early identification of pro-
gressive patients remains challenging.

Clinically, AVPC (formerly known as anaplastic pros-
tate cancer) has been suggested to be defined by at 
least one of the following characteristics, formulated 
by Aparicio et  al.: 1) Histological evidence of small cell 
neuroendocrine prostate cancer (NEPC); 2) presence 
of exclusively visceral metastases; 3) predominant lytic 
bone metastases; 4) bulky lymphadenopathy or bulky 

high-grade tumor mass in the prostate/pelvis; 5) low PSA 
at initial presentation plus high volume bone metastases; 
6) presence of neuroendocrine markers on histology or 
serum at initial diagnosis or progression, plus any of: ele-
vated serum lactate dehydrogenase, malignant hypercal-
cemia and/or elevated serum carcinoembryonic antigen 
in the absence of other features; 7) short interval (≤ 6 m) 
to androgen-independent progression following the ini-
tiation of hormonal therapy with or without the presence 
of neuroendocrine markers [2].

Histopathology
Histopathological and molecular features of AVPC vary 
on an inter- and intra-tumoral level indicating a hetero-
geneous disease. AVPC may present as small cell carci-
noma displaying the typical morphology of tumor cells 
with scant or no cytoplasma, lack of nucleoli and crush 
artefact [3]. These tumors usually express neuroendo-
crine (NE) markers as detected by immunohistochemis-
try including chromogranin A (CHGA), synaptophysin 
(SYP), neuron-specific enolase 2 (ENO2) and neural 
cell adhesion molecule 1 (NCAM1, CD56). Expression 
of PSA and AR is often lost. Representative histopatho-
logic images are shown in Fig. 1. In addition to pure small 
cell carcinoma, tumors with mixed histology consisting 
of high-grade adenocarcinoma and a small cell (or large 

Fig. 1 Histologic staining of small-cell NEPC. Top Small cell neuroendocrine prostate cancer with typical features such as scant cytoplasm, granular 
chromatin and a high number of apoptoses and mitoses, magnification 10x (left), 20 x (right), Lower left Incomplete loss of AR expression, 
magnification 20x, Lower right expression of neuroendocrine marker synaptophysin, magnification 10x
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cell) neuroendocrine component have been described 
in the AVPC category [4]. Usual high-grade adenocar-
cinomas can also exhibit expression of neuroendocrine 
markers. However, NE expression in these cases is not 
an adverse prognostic marker and these tumors are dis-
tinctly different from AVPC [5]. A small subset of AVPC 
are tumors that neither express AR nor NE markers and 
are thus termed “double-negative” [6, 7].

Terminology
Nomenclature of AVPC and other NE-marker expressing 
tumors remains challenging because clinical and molecu-
lar features do not always obviously concur. Moreover, 
these tumors frequently present with varying degrees of 
expression of AR pathway genes, neuroendocrine mark-
ers or stem cell-like states [7, 8]. Thus, they cannot eas-
ily be fitted into finite subtypes. Due to ever-growing 
complexity, different terms have been established and 
used by researchers in this field. In order to distinguish 
between de novo NE tumors and those that develop in 
response to targeted therapy, the term treatment-emer-
gent neuroendocrine prostate carcinoma (t-NEPC) will 
be used throughout this review, when referring to small 
cell neuroendocrine or mixed tumors not apparent at 
first diagnosis, as this term is meanwhile frequently used 
in the literature [1, 8, 9]. However, the terminology was 
not consistent over the past years and thus may vary 
throughout this review. The term mCRPC is used to refer 
to metastatic castration-resistant adenocarcinoma of the 
prostate.

Incidence of NEPC and AVPC
NEPC is rarely diagnosed de novo in its pure form (small 
cell or large cell prostate cancer, < 2% of first diagno-
ses) [10], but about 10-17% of patients with metastatic 
CRPC have been reported to progress with t-NEPC when 
treated with NHA [11]. Increased therapeutic pressure 
on the AR signaling pathway due to broad implemen-
tation of NHA is assumed to be causative for a rising 
number of t-NEPC. For example, Abida et  al. described 
an increase of NEPC in mCRPC tissue biopsies from 
NHA-treated patients (10.5%) compared to NHA-naïve 
patients (2.3%) [12]. Along with the approval of abirater-
one and enzalutamide an increased incidence of patients 
with  NE+ tumors from 6.3% in the time period from 1998 
to 2011 to 13.3% in 2012-2016 was reported [6]. Of note, 
a rising age-adjusted incidence rate of NEPC was also 
observed in the years 2004-2011 suggesting other factors 
to promote this phenomenon (e.g. increased life expec-
tancy or therapeutic pressure by chemotherapies) [13].

To date, most data are available on NEPC while double 
negative tumors are still poorly understood. Therefore, 
this review will focus on the molecular mechanisms and 

signaling pathways that have been described to contrib-
ute to the development of t-NEPC. Key aberrations found 
in t-NEPC are introduced and interactions potentially 
involved in the emergence of NE features are highlighted.

Origin of t‑NEPC
To date, there are two partially contradictory ideas on the 
primary cellular origin of t-NEPC - both supported by 
experimental evidence. Both are schematically shown in 
Fig. 2. The first involves clonal evolution of t-NEPC from 
basal or neuroendocrine cells, which are sparsely distrib-
uted in the healthy prostate [14, 15]. Before initiation of 
ADT and NHA, these cells remain small in number as 
they are outgrown by the AR-positive adenocarcinoma 
cells. However, as AR gets inhibited, their AR-independ-
ency is a major growth advantage resulting in develop-
ment of NEPC [16]. Lee et  al. recently suggested basal 
cells as the origin of NEPC based on findings of lineage 
tracing experiments in the transgenic adenocarcinoma of 
the mouse prostate model [14].

Second, a mechanism of transdifferentiation from epi-
thelial adenocarcinoma cells to neuroendocrine cells has 
been suggested. Indicative for this process are experi-
mental findings by Lotan et al., which showed that ERG 
gene rearrangements are found at equal frequencies in a 
cohort of patients with small cell carcinoma compared 
to adenocarcinoma. In patients with mixed adenocar-
cinoma and small cell carcinoma, the ERG status was 
highly congruent [17, 18]. As these fusions lead to the 
activation of ERG in an AR-dependent manner, clones 
with these aberrations confer a growth advantage only 
in hormone-driven disease. Furthermore, copy num-
ber analyses have shown that AR amplification is simi-
larly distributed in patients with mCRPC and those with 
t-NEPC [11]. In fact, the loss of AR rarely occurs due to 
genomic aberrations, but rather by epigenetic or post-
transcriptional mechanisms [1]. Generally, point muta-
tions and copy number aberrations have been found to 
be largely concurring in prostate adenocarcinoma and 
t-NEPC, whereas, considerable differences on transcrip-
tional and epigenetic regulation have been described 
[19]. In addition, re-exposure to androgens has reversed 
induced NE-like transdifferentiation in LNCaP pros-
tate adenocarcinoma cells [20]. Taken together these 
results strongly support the notion of a transdifferentia-
tion mechanism driving the emergence of t-NEPC in the 
majority of patients. An unanswered question remains 
whether this process involves a dedifferentiation step in 
which the adenocarcinoma cells first loose AR-specific 
gene expression and acquire basal or stem-like properties 
before proceeding to a second step in which they differ-
entiate into NE cells, or whether the transdifferentiation 
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arises directly skipping this putative intermediate stem-
like cell stage [21, 22].

Mechanisms of t‑NEPC development
The transdifferentiation from mCRPC to t-NEPC seems 
to be driven by epigenetic changes rather than genomic 
aberrations, though some point mutations and copy 
number aberrations might be indicative of AVPC. Impor-
tantly, NE differentiation alone is not sufficient for the 
development of this rapidly growing cancer: In fact, 
neuroendocrine cells in healthy prostate tissue are not 
characterized by enhanced proliferation and the induc-
tion of a neuroendocrine phenotype has been accom-
panied by reduced cell growth and proliferation in cell 
culture experiments [23, 24]. Therefore, changes in neu-
roendocrine markers are commonly accompanied by the 
deregulation of cellular signaling pathways involved in 
lineage-plasticity, stem-like behavior and epithelial-to-
mesenchymal transition (EMT). This close connection of 
NED and plasticity has been illustrated by overexpression 
of the basal marker TROP2 and the EMT-inducer SNAIL 
in PCa cell models. Depending on genetic background, 
both have been shown to be sufficient to induce an NE 
phenotype individually [25, 26], indicating that NED, 
basal-like gene expression and EMT are interwoven in 
PCa. Moreover, the deregulation of epigenetic factors 
such as chromatin modulators and histone modification 
writers and readers is necessary for the reprogramming 
of the cancer cell’s phenotype [8]. Figure  3 depicts the 

key mechanisms contributing to t-NEPC development. 
A comprehensive overview of all genes and proteins pre-
sented in this paper is given in Table 1.

Genomic aberrations
Although the differences between t-NEPC and mCRPC 
seem to be more pronounced on the epigenetic and tran-
scriptional level, there are characteristic genomic aber-
rations that have been found to be co-occurring or more 
frequent in t-NEPC and AVPC, in general [8, 19].

Genomic aberrations, especially those leading to the 
loss-of-function, of the tumor suppressor phosphatase 
and tensin homolog (PTEN) are amidst the most fre-
quent findings in PCa. PTEN loss is continually found in 
localized disease and confers activation of the PI3 kinase/
AKT pathway [27]. In metastatic disease, the abun-
dance of aberrations in PTEN is significantly increased, 
especially in combination with deleterious variants in 
the well-known tumor suppressor genes RB1 and TP53 
[27]. Although combined loss-of-function aberrations 
inTP53, RB1 and PTEN are found in mCRPC, the com-
bination of genomic aberrations in at least two of these 
genes is indicative of AVPC [27, 28]. Studies with combi-
natorial knock-outs (KO) in mouse models and PCa cell 
lines have confirmed that single KOs are not sufficient to 
introduce an NE phenotype. In contrast, the combina-
tion but not the single KOs of TP53 and RB1 has induced 
the growth of an AR-low NE-like tumor in both models 
[76, 77]. A triple KO model with PTEN loss has exhibited 

Fig. 2 Origin of t-NEPC. Two opposing theories have been proposed to explain the origin of t-NEPC: Clonal expansion – the outgrowth of 
neuroendocrine or NE-differentiated basal cells – and transdifferentiation of adenocarcinoma cells
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an even more aggressive growth with multiple metas-
tases [76]. Although aberrations of these three genes 
do not seem to be directly involved in the induction of 
NE genes, they mediated increased lineage plasticity by 
upregulating SRY-box transcription factor 2 (SOX2) and 
enhancer of zeste homolog 2 (EZH2) (see below) [77]. As 
complexes of RB1 and transcription factor E2F directly 
repress SOX2 and EZH2, RB1 loss derepresses these 
genes thereby enabling reprogramming towards a stem 
cell-like state [76]. PTEN acts by suppressing the activity 
of the PI3K/AKT signaling pathway as well as by induc-
ing  G1 arrest, thereby inhibiting cell cycle progression. 
PTEN loss also contributes to genomic instability, for 
example by increasing replication stress [78]. In addition 
to the attenuation of apoptosis, loss of TP53 function has 
been shown to increase tumor vascularization [79].

Other genomic aberrations frequently found in t-NEPC 
include the amplification of aurora kinase A (AURKA) 
and N-MYC (encoded by MYCN) [29]. AURKA is a 
mitotic kinase regulating various mitotic events and 
thereby mitotic exit and cell cycle progression. Therefore, 
its amplification in cancer is associated with tumorigen-
esis and deregulated proliferation [80]. The transcription 
factor N-MYC is crucial in embryonic development and 
for maturation of the central nervous system [81]. Its 
deregulation is primarily associated with tumors of the 
central nervous system, but N-MYC has also been found 
to be highly enriched in t-NEPC tumors (40% vs. 5% in 
adeno- PCa) [82]. By direct binding to their promot-
ers, N-MYC regulates the transcription of DNA damage 

response (DDR) pathway-associated genes, including 
PARP1/2, BRCA1, RMI2 and TOPBP1 [30]. Notably, 
increased expression and activity of DDR factors has 
been associated with resistance to chemotherapy before 
[83, 84]. Thus, N-MYC driven aberrant regulation might 
actually influence treatment response in t-NEPC as well. 
In addition, N-MYC has been found to attenuate AR 
signaling and directly activate EZH2, thereby contrib-
uting to epigenetic reprogramming [31]. Interestingly, 
AURKA directly binds to N-MYC, thereby increasing its 
stability via inhibiting the interaction with the E3 ubiqui-
tin ligase FBXW7, a mechanism that has been examined 
in detail in neuroblastoma [29, 85].

Apart from gene amplification, AURKA and N-MYC 
expression can also be increased by reduced protein deg-
radation mediated by TP53 mutation and microRNA-25 
[86]. Moreover, the AR has also been described to bind 
to the AURKA gene and increase its expression in CRPC 
with AR amplification [87].

Transcription factors
Achaete-Scute Family BHLH Transcription Factor 1 
(ASCL1) is a pioneer transcription factor binding to 
closed chromatin regions and is directly involved in neu-
ronal lineage differentiation [88]. ASCL1 has been shown 
to be induced upon androgen deprivation in LNCaP cells 
with an accumulation in the nucleus [20]. In t-NEPC 
patient cohorts, ASCL1 expression has been upregu-
lated in comparison to mCRPC [32]. ASCL1 expression 
is generally associated with neuronal differentiation and 

Fig. 3 Key mechanisms contributing to t-NEPC transdifferentiation. Genes and proteins discussed in this review are ordered based on the effects of 
their respective aberrations in t-NEPC
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Table 1 Summary of factors involved in t-NEPC development

Gene (Protein, if not identical) Aberration in t-NEPC Effects Experimental Setting/ Source Reference

Genetic aberrations
 PTEN Deletion Survival and cell cycle progres-

sion
Patient tissue biopsies [27, 28]

 TP53 Mutation Lineage plasticity Patient tissue biopsies [28]

 RB1 Deletion Patient tissue biopsies [28]

 AURKA Amplification N-MYC stabilization, cell cycle 
progression

Patient tissue biopsies [29]

 MYCN Amplification Attenuation of AR signaling, NE 
differentiation, DDR activation

Patient tissue biopsies [29–31]

Transcription factors
 ASCL1 Induced expression NE/pro-neural differentiation Patient tissue biopsies [32]

 FOXA1 Reduced expression Loss of Epithelial differentiation Patient tissue biopsies [33]

 FOXA2 Upregulated expression Pioneering transcription factor, 
promotion of NE differentiation

Patient tissue biopsies [34]

 FOXB2 Upregulated expression Activation of WNT-signaling, NE 
marker expression

Patient tissue biopsies [35]

 NKX2-1 (TTF-1) Upregulated expression unknown Patient tissue biopsies [36]

 NKX3-1 Reduced expression Loss of Epithelial differentiation Patient tissue biopsies [37]

 REST Reduced expression, alternative 
splicing

De-repression of neuronal genes, 
NE differentiation

Patient tissue biopsies [32]

 ONECUT2 Upregulated expression Attenuation of AR signaling, 
survival

Patient tissue biopsies [38]

 POU3F2 (BRN2) Upregulated expression NE differentiation, lineage 
plasticity

Patient tissue biopsies [39]

 POU3F4 (BRN4) Upregulated expression NE differentiation Patient tissue biopsies, PDX [40]

 SOX2 Upregulated expression Lineage plasticity Patient tissue biopsies [32]

 ZBTB46 Upregulated expression NE differentiation, EMT, inflam-
matory signaling

Patient tissue biopsies [41]

Epigenetic factors
 EZH2 Upregulated expression Angiogenesis, NE differentiation Patient tissue biopsies [19]

 PHF8 Upregulated expression NE differentiation Patient tissue biopsies, PDX [42]

 KDM1A (LSD1) Alternative splicing Cancer progression, therapy 
resistance, immune signaling

Patient tissue biopsies, PDX [43]

 MEAF6 Alternative splicing Proliferation, anchorage-inde-
pendent cell growth

Patient tissue biopsies, PDX [44]

 SMARCA4 Upregulated expression Cell cycle progression, aggres-
siveness

Patient tissue biopsies [45]

 CBX5 (HP-1a) Upregulated expression Repression of luminal differentia-
tion

Patient tissue biopsies, PDX [46]

DNA repair pathways
 PARP1 Upregulated expression DDR Patient tissue biopsies, PDX [30]

 SLFN11 Reduced expression Cell cycle progression Patient tissue biopsies [47]

Other nuclear factors
 CCND1 Upregulated expression survival Cell model [48]

Reduced expression unknown Patient tissue biopsies [49]

 LIN28B Upregulated expression Stemness and pluripotency/line-
age plasticity

Patient tissue biopsies [21]

 PEG10 Upregulated expression Cell cycle progression, EMT Patient tissue biopsies [32]

 SRRM4 Upregulated expression NE differentiation Patient tissue biopsies [50]

 GIT1 Alternative splicing, GIT1-A 
upregulation

Neural differentiation, cell adhe-
sion

Patient tissue biopsies, PDX [51]

 BIF1 Alternative splicing, BIF1b/c 
upregulation

Survival Patient tissue biopsies, PDX [52]
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upregulation of NE markers [20]. Small cell prostate can-
cer and small cell lung cancer exhibit transcriptional sim-
ilarities including ASCL1 expression [89]. In small cell 
lung cancer, ASCL1 has been identified as a downstream 
factor of BRN2 and has been implicated in the induction 
of RET kinase, however these pathways have not been 
proven in t-NEPC, yet [90, 91]. In t-NEPC, ASCL1 has 
indirectly induced the expression of the cell adhesion 
protein CEACAM5 [92]. Importantly, ASCL1 nuclear 
localization has persisted in PCa cell culture models, 

even after reversal of NE differentiation by androgen sup-
plementation. Therefore, ASCL1 has been suggested to 
mediate a hybrid state, in which NE and epithelial mark-
ers are co-expressed, when cells have been exposed to 
intermittent androgen deprivation [20].

Pioneering lineage-defining transcription factor 
FOXA2 has been described as a marker for t-NEPC 
with similar specificity to NE markers CHGA and SYP, 
but with enhanced sensitivity [34]. Upregulation of 
FOXA2 has been found to be at least partially mediated 

Table 1 (continued)

Gene (Protein, if not identical) Aberration in t-NEPC Effects Experimental Setting/ Source Reference

 BHC80 Alternative splicing, BHC80-2 
upregulation

Cell growth and invasion Patient tissue biopsies, PDX [53]

Signaling pathways
 mTOR Increased activity NE differentiation, reduced 

growth, increased one-carbon 
pathway

NEPC cell model [54]

 PRKCI Reduced expression Cell proliferation, increased one-
carbon pathway

Patient tissue biopsies [55]

 STAT3 Increased activity NE differentiation, proliferation Cell model [23]

 LIFR Upregulated expression NE differentiation, cell prolifera-
tion

Patient tissue biopsies [56]

 WNT7B Upregulated expression Tumor growth, stemness, drug 
resistance

Patient tissue biopsies [35]

 WNT11 Upregulated expression Promotion of NE differentiation, 
survival migration

AR- independent Cell model and 
xenografts

[57, 58]

 WLS Upregulated expression Promotion of Wnt signaling, pro-
liferation, NE differentiation

Patient tissue biopsies [59]

 PCDH-PC Upregulated expression Wnt activation, NE differentiation Patient tissue biopsies [60, 61]

 CREB1 Increased activation NE differentiation, angiogenesis, 
epigenetic reprogramming

Cell model [62]

 RET Upregulated expression Tumor growth Patient tissue biopsies [63]

Tumor microenvironment
 cAMP Increased concentration NE differentiation, angiogenesis, 

epigenetic reprogramming
Cell model [64]

 Glutamine Increased concentration ATP production, proliferation, NE 
differentiation

Cell model [65]

 IL-6 Increased concentration NE differentiation, angiogenesis Cell model [64]

 IL-8 Upregulated expression Survival, proliferation Cell model [66]

 GRPR/bombesin Upregulated expression Angiogenesis Cell model [67]

 BIRC5 (Survivin) Upregulated expression Survival Patient tissue biopsies [68]

 NTS (Neurotensin) Upregulated expression NE differentiation Cell model and xenograft [69]

 PTHrH Upregulated expression Cell proliferation, treatment-
resistance

Cell model [70]

 CALCA (Calcitonin) Upregulated expression Invasion Cell model [71]

 QRFP (Neuropeptide 26RFa) Upregulated expression NE differentiation, migration Patient tissue biopsies [72]

 ADM (Adrenomedullin) Upregulated expression NE differentiation Cell model [73]

 ADCYAP1 (Pituitary adenylate 
cyclase activating polypeptide)

Upregulated expression Cell proliferation, NE differentia-
tion

Cell model [74]

 GABA Upregulated expression GRP release Cell model [75]

For genes and proteins presented in this review key information regarding their aberration in t-NEPC and the cellular effects of these aberrations are summed up. 
The experimental setting refers to the most reliable type of data in which the respective aberration has been found (Patient tissue biopsies > PDX > xenografts > cell 
model)
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by increased activity of PHF8, which removes repres-
sive histone marks from the FOXA2 promoter [42]. In 
the transgenic mouse model, FOXA2 has been involved 
in enhancing the expression of a subset of HIF-1α target 
genes by direct interaction with the transcription factor 
under hypoxia and in contributing to NE differentiation 
[93].

FOX transcription factors primarily regulate cellular 
plasticity, and are suggested to be a key factor in epithe-
lial to NE differentiation, including FOXA1 and FOXB2 
[33, 35]. The critical role of FOXA1 in PCa is the regula-
tion of the AR pathway, but its role in t-NEPC remains 
controversial [33, 94]. Kim et  al. observed a loss of 
FOXA1 in t-NEPC compared to mCRPC datasets and 
identified subsequent induction of IL-8 as a mechanism 
of increased expression of the NE marker ENO2 [33]. 
However, a recent study by Baca et  al. found a main-
tained FOXA1 expression in t-NEPC, while the FOXA1 
cistrome was reprogrammed [94]. Next, the transcription 
factor FOXB2, which is associated with neuronal devel-
opment, has been found to be upregulated in advanced 
PCa including t-NEPC. FOXB2 has been involved in the 
emergence of t-NEPC due to its role in activating WNT-
signaling independently of β-catenin, for instance by acti-
vation of WNT7B. In addition, overexpression of FOXB2 
has been sufficient to induce NE marker expression and 
a neuron-like morphology in LNCaP cells [35]. Another 
layer of growing complexity is brought by recent studies 
that identified several non-coding RNAs, such as micro-
RNA-194 and LINC00261, that promote neuroendocrine 
transdifferentiation by regulating expression of FOXA1 
and FOXA2, respectively [95, 96].

The transcription factor NKX3-1 is activated by AR 
signaling and indicates prostate epithelial differentiation. 
Its expression is decreased in AR-independent PCa and 
t-NEPC [11]. NKX2-1, in contrast, encodes the thyroid 
transcription factor-1 (TTF1) protein, which has for-
merly been considered a marker of lung cancer. However, 
TTF1 has also been shown to be expressed in about 50% 
of a cohort of t-NEPC patients [36]. Although it has been 
associated with enhanced proliferation and shorter over-
all survival (OS) [36], the function of TTF1 in t-NEPC 
has not been unraveled, yet. Findings in other NE tumors 
indicate that TTF1 might generally contribute to NE 
reprogramming [89].

RE1 silencing transcription factor (REST), a transcrip-
tional repressor restricting the expression of neuronal 
genes, is expressed in prostate epithelial cells. Different 
pathways have been identified that lead to a repression of 
REST in t-NEPC. While AR signaling indirectly enhances 
REST stability by inhibiting the ubiquitin ligase subunit 
BTRC and thus prevents degradation of REST, inhibi-
tion of AR signaling destabilizes the REST protein [97]. 

In addition, the splicing factor Serine/Arginine Repeti-
tive Matrix 4 (SRRM4), which is associated with neuronal 
differentiation, converts the active REST transcript to 
its inactive isoform REST4, which is no longer capable 
of repressing its target genes [98]. Lastly, cell stress such 
as hypoxia or inhibition of AKT signaling have also been 
shown to inhibit REST [99]. As a consequence of lost 
REST expression, neural genes such as CHGA and SYP 
as well as AURKA are increasingly expressed and in turn 
promote the NE-phenotype [97]. Of note, knock-down 
of REST in the castration-resistant C4-2B cell model has 
been shown to result in a  G1 arrest, which can been res-
cued by TP53 inactivation [100].

Another transcription factor that is repressed by REST 
is ONECUT2, which has recently been identified to be 
involved in the progression to AR-independent disease. 
Interestingly, ONECUT2 increases the expression of 
PEG10 and inhibits the expression of AR and its down-
stream transcription factor FOXA1, thereby contributing 
to a NE phenotype [101]. As a mechanism of action of 
ONECUT2, the induction of hypoxia signaling by activa-
tion of HIF-1α via SMAD3 has been proposed to drive 
NED in the PCa cell model [38].

A family of transcription factors that is essential in 
neurogenesis are Class III (Pit-Oct-Unc)-domain/Oct 
proteins (POU3F) [102]. POU3F2 and POU3F4 (also 
known as BRN2 and BRN4) have both been found to be 
upregulated in t-NEPC [39, 40]. Cell models suggest that 
the combinatorial KO of TP53 and RB1, AR inhibition as 
well as overexpression of N-MYC can cause the upregu-
lation of BRN2 and BRN4 [39, 77]. Additionally, BRN2 
overexpression upregulates BRN4 [40]. BRN4 overex-
pression induces SOX2 and, in turn, SOX2 sites have 
been identified in the BRN4 promotor. This suggests that 
a regulatory feedback loop is activated in t-NEPC. Due 
to the direct interactions of BRN2 and BRN4, it seems 
likely that both are involved in SOX2 regulation [40]. 
Overexpression of BRN2 has been sufficient to induce 
the expression of NE markers such as SYP and NCAM1 
in a prostate cancer cell model [39]. Together with SOX2, 
BRN2 has been shown to activate further genes in stem 
and progenitor cells that are not directly linked to NE dif-
ferentiation, but more generally to tumorigenesis and lin-
eage plasticity [103].

SOX2 is a central factor in embryonal development 
and maintenance of pluripotency [104]. In healthy tis-
sue or low-grade adenocarcinoma, AR represses SOX2 
and maintains the differentiated state. However, SOX2 
expression can be induced by direct binding of BRN2 
and E2F, among others, to the SOX2 promoter [39, 105]. 
The activity of E2F is increased in cells with combinato-
rial TP53 and RB1 loss of function. Thus, loss of these 
tumor suppressors has been associated with increased 
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SOX2 expression and lineage plasticity as mentioned 
before [77]. SOX2 is considered to promote a plastic cell 
state that facilitates the acquisition of further phenotypi-
cal changes such as expression of the NE marker SYP, but 
is not considered to be sufficient to confer enzalutamide 
resistance on its own [106].

SAM Pointed Domain Containing ETS Transcription 
Factor (SPDEF) is a transcription factor of the ETS fam-
ily specific for prostate epithelial cells. It has been found 
to be a transactivator of PSA and is generally associated 
with regulation of AR activity. In accordance, experimen-
tal data have shown a decrease in SPDEF expression in 
t-NEPC patient samples and cell lines [41]. DNA hyper-
methylation has been identified as an important mecha-
nism in SPDEF silencing [19]. SPDEF has been found 
to bind to the promoter of the transcription factor zinc 
finger and BTB domain containing 46 (ZBTB46) which 
is upregulated in t-NEPC. ZBTB46 promotes NED by 
enhanced expression of leukemia inhibitory factor (LIF) 
and nerve growth factor in vitro [107, 108].

Deregulation of epigenetic factors
Epigenetic regulation of gene expression includes 
the methylation of DNA, histone modifications and 

non-coding RNA-species. An overview of epigenetic 
alterations in t-NEPC is given in Fig. 4. Generally, malig-
nant disease is characterized by global hypomethylation 
of the DNA compared to the benign tissue and hyper-
methylation of specific tumor suppressor loci [109]. 
This is also observed in PCa. Recently published whole 
genome bisulfite sequencing data have indicated that 
mCRPC and t-NEPC can be distinguished based on 
DNA methylation patterns, which emphasize the rel-
evance of epigenetic mechanisms in t-NEPC develop-
ment [110, 111]. DNA methylation is mainly governed 
by the activity of DNA methyltransferases (DNMT) and 
TET enzymes, which remove methyl groups. In prostate 
cancer, expression levels of the three DNMTs have been 
found to continually increase with disease progression 
[112]. However, so far no distinct t-NEPC expression pat-
tern has been identified.

Epigenetic regulation is also conferred by the post-
translational modification of histones. These individual 
methylation modifications on histones can have dif-
ferent roles (activating or silencing) depending on the 
genetic context, thereby altering the chromatin structure 
and influence the accessibility for transcription factors 
[113, 114]. EZH2 is a histone-lysine N-methyltransferase 

Fig. 4 Overview of epigenetic alterations in t-NEPC. Factors contributing to epigenetic deregulation are assigned to their respective mechanism of 
action; methylation of histone tails or DNA is indicated by green dots, histone acetylation is represented by orange triangles
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that catalyzes the methylation of lysine 27 in histone 
3 (H3K27). This mark represses the transcription of 
affected genes [115]. Expression of EZH2 has been shown 
to be upregulated in t-NEPC, directly mediated by an 
increased activity of E2F transcription factors [116]. 
PKA/CREB activation has also been found to cause ele-
vated EZH2 levels in a t-NEPC cell model [62]. EZH2 
targets comprise genes with diverse functions, but EZH2 
activity is generally associated with cell fate determina-
tion. Concretely, increased EZH2 expression has been 
shown to promote NE marker expression. Addition-
ally, EZH2 directly contributes to tumor angiogenesis by 
reducing the levels of the angiogenesis inhibitor TSP1 
[62].

Histone demethylase KDM7B, also known as PHF8, 
binds to di- and tri-methylated histone H3 lysine 4 
(H3K4me2/3), associated with transcriptional activa-
tion, and removes the repressing marks H3K9me1/2 and 
H3K27me2. Thereby, PHF8 promotes an active chroma-
tin state that allows transcription of the respective genes 
[117]. Hypoxia and c-Myc signaling both increase the 
expression of PHF8 in PCa [118]. In CRPC, PHF8 has 
been shown to act as a coactivator of AR [119]. Thus, 
the overexpression of PHF8 has been shown to cause 
resistance of LNCaP cells to enzalutamide [42]. Impor-
tantly, overexpression of PHF8 has also been shown to 
enhance the expression of NE markers such as NSE in a 
mouse model. Mechanistically, PHF8 removes repressive 
marks from the FOXA2 promoter, which causes induc-
tion of FOXA2 expression. Co-expression of both, PHF8 
and FOXA2, has been demonstrated to be much higher 
in t-NEPC patient-derived xenografts (PDX) and patient 
samples compared to adenocarcinoma [42].

Another histone demethylase, KDM1A, also known 
as LSD1, removes the activating marks H3K4me2/1. 
Thereby, LSD1 promotes a repressive chromatin state 
and regulates gene expression in stem cells [120]. In 
CRPC, LSD1 has been found to be upregulated and pro-
mote AR-independent survival. Remarkably, LSD1 exhib-
its demethylase-independent functions in transcriptional 
regulation. In cell models, LSD1 has mediated expression 
of several genes mainly involved in mitosis and replica-
tion [121]. In addition, LSD1 has been shown to be a tar-
get of the splicing factor SRRM4 in PCa. The LSD1 + 8a 
splice variant, resulting in inclusion of a novel 12 nucleo-
tide micro-exon (exon 8a) and alternative substrate speci-
ficity and regulation to canonical LSD1 isoform, has been 
found exclusively in t-NEPC samples where it upregu-
lates the expression of genes associated with cancer pro-
gression and therapy resistance [43, 122].

The MYST/Esa1-associated factor 6 (MEAF6) is a 
subunit of the NuA4 histone acetyltransferase complex, 
which mediates a transcriptional active chromatin state 

by acetylation of H4 and H2A [123] In t-NEPC, expres-
sion of the neural-specific isoform MEAF6-1 has been 
described to be increased due to the enhanced expression 
of the splicing factor SRRM4 [44]. MEAF6-1 has been 
shown to promote anchorage-independent cell growth 
and proliferation in t-NEPC cell models and xenografts, 
possibly through upregulating ID1 and ID3 genes, which 
inhibit differentiation and promote proliferation [124]. 
However, neither MEAF6-1 nor MEAF6-2 have been 
capable of inducing NE differentiation in this cell model, 
indicating that MEAF6 is not a driver of NE-differen-
tiation. The increase in the MEAF6-1 splice variant has 
been suggested to be rather a facilitator of cell prolifera-
tion [44].

Apart from histone modifications, the conformation of 
the chromatin can be rebuild by ATP-dependent mam-
malian SWI/SNF chromatin remodeling complexes, also 
known as Brg/Brahma-associated factor (BAF) com-
plexes [125]. In fact, the expression of the SWI/SNF 
subunits BAF53B and BAF45B, which are considered 
to be neuron-specific, has been observed in t-NEPC 
patient samples. The mechanism mediating the expres-
sion of BAF53B/45B has not been identified, yet, but loss 
of REST expression has been excluded. Knock-down of 
neither BAF53B nor BAF45B has shown an impact on 
cell proliferation of organoids modelling NEPC. There-
fore, these subunits may rather be passengers of t-NEPC 
development than drivers. SMARCA4 is another SWI/
SNF subunit upregulated in t-NEPC. Its expression is 
correlated with worse OS and more aggressive disease. At 
least in part, this has been led back to its involvement in 
lineage plasticity [45].

The heterochromatin protein 1α (HP1a, encoded by 
CBX5), is involved in the silencing of target genes by 
promotion of the heterochromatin state [126]. In a PDX 
model of transdifferentiation from prostate adenocarci-
noma to t-NEPC, HP1a has been identified as one of the 
earliest upregulated genes after castration. HP1a has fur-
ther continued to increase during t-NEPC development. 
Increased expression of HP1a has also been confirmed 
in published cohorts of t-NEPC patients. Although over-
expression of HP1a alone was not sufficient to induce 
NED in castration-resistant LNCaP, expression of the NE 
markers NSE and NCAM1 was significantly higher after 
enzalutamide treatment of HP1a-overexpressing versus 
control cells. Chromatin immunoprecipitation results 
suggest that HP1a acts by mediating increased repres-
sive H3K9 histone methylation at AR and REST promoter 
regions. Accordingly, AR and REST mRNA and protein 
levels have been found to be decreased in HP1a-overex-
pressing cells [46].

Altered expression of non-coding RNA species, includ-
ing microRNAs and long non-coding RNAs, shape the 
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epigenetic landscape of t-NEPC. For instance, RNA 
sequencing of patient samples and PDX has revealed 
significant changes in microRNA expression patterns 
in t-NEPC compared to adenocarcinoma. Interestingly, 
microRNAs targeting MYCN, AURKA, STAT3, E2F1 
and EZH2, among others, have been found to be down-
regulated while microRNAs targeting RB1 are increased 
[127]. Additionally, long non-coding RNAs modulate 
gene expression by various mechanisms and exhibit spe-
cific expression signatures in t-NEPC. Thus, long non-
coding RNAs have been found to contribute to enhanced 
expression of SOX2 and the loss of TP53 [128].

Deregulation of DNA repair pathways
The role of DDR defects for the development of t-NEPC 
has not been conclusively clarified, yet. Beltran et al. have 
not detected significant differences in the frequency of 
DDR gene mutations in t-NEPC compared to mCRPC 
patients [110]. In contrast, Aggarwal et al. have reported 
a reduced frequency of DDR mutations in t-NEPC which 
they have described as close to “mutually exclusive” with 
t-NEPC [11]. Thus, further data from larger cohorts is 
urgently needed to clarify the relevance of DDR muta-
tions in t-NEPC.

Recently PARP-inhibitors have been approved for 
therapy in PCa patients with DDR pathway mutations 
and have already been used to treat t-NEPC patients 
with such aberrations, though only with limited success 
[129]. PARP1 is a chromatin associated enzyme modify-
ing various nuclear proteins by poly-ADP-ribosylation, 
but it also functions as transcriptional coactivator for 
E2F1 [130]. In t-NEPC cell models and xenografts, PARP 
inhibitors have been shown to decrease cell proliferation 
and tumor growth. PARP inhibitors have also suppressed 
the expression of NE markers, at least partially by infer-
ring with N-MYC and E2F activity [131]. As a coactiva-
tor of N-MYC, PARP1/2 may regulate DDR genes in 
t-NEPC [30]. In addition, overexpression of the stem-cell 
marker TROP2 increases PARP1 expression and induces 
expression of NE markers in vitro. Of note, PARP inhibi-
tion has led to a significant decrease of tumor growth and 
NE marker expression in the same setting [25]. Moreo-
ver, combined loss of PTEN and TP53 has been shown to 
sensitize cells to PARP inhibitors [132]. However, expres-
sion of the DDR-related gene SLFN11, which has been 
associated with enhanced sensitivity to PARP inhibition, 
is less-frequent in patient samples of t-NEPC compared 
to mCRPC [47].

Deregulation of other nuclear factors
Cyclin D1 (CCND1) functions in a complex with cell 
cycle-dependent kinases 4/6 to promote cell cycle pro-
gression. The role of CCND1 in t-NEPC remains elusive, 

as contrary results on its expression have been found. 
Exploration of mRNA and microRNA expression lev-
els in a cell model of NED has revealed upregulation of 
CCND1, while no significant changes have been detected 
in other cyclins. This altered expression level has been 
caused by decreased expression of the microRNA-17 
family, which bind to the CCND1 mRNA [48]. In con-
trast, Tsai et al. reported the loss of CCND1 expression 
to be indicative of small cell-like PCa in patient tissue, 
as 88% of samples classified as small cell carcinoma have 
been observed to be CCND1-negative compared to less 
than 10% of the adenocarcinomas [49]. Additionally, a 
recent study in de novo NEPC identified loss of CCND1 
expression in patient tissue [133]. Possibly, CCND1 
loss is predominantly involved in de novo-emergence 
of NEPC. Despite its function in cell cycle progression, 
CCND1 also has kinase-independent functions, as it has 
been shown to act as a co-repressor of AR signaling in 
PCa [134]. Together with CDKN2A, CCND1 expression 
levels have also been suggested as a biomarker for RB1 
functional status [49].

The nuclear protein LIN28B is known for its ability to 
inhibit the maturation of pri-let7 transcripts, thereby 
maintaining the pluripotent state of stem cells. When 
expressed in cancer cells, LIN28B promotes the expres-
sion of genes associated with embryogenesis and line-
age plasticity [135]. Recently, Lovnicki et al. reported the 
expression of LIN28B in a subset of t-NEPC patients. 
Evaluation of LIN28B in the studied cell model suggested 
a pathway in which the inhibition of let-7 transcripts by 
LIN28B enables the expression of High Mobility Group 
AT-Hook 2 (HMGA2), a transcriptional activator of 
the SOX2 gene. A positive correlation of LIN28B and 
SOX2 expression has been confirmed in patient data-
sets. As LIN28B was only expressed in about half of the 
t-NEPC samples, the authors suggested that this might 
indicate the development of t-NEPC by two different 
pathways. LIN28B-high cells might evolve from an inter-
mediate stem-like state that undergoes NE-differentia-
tion, whereas the LIN28B-low cells might be a result of 
direct transdifferentiation. However, they also speculated 
that LIN28B expression might be lost after NE-differen-
tiation, meaning that the two groups of LIN28B high and 
low t-NEPC represent different stages of the transdiffer-
entiation process [21]. Sequencing results from mouse 
KO models under NHA indicate that LIN28B expression 
is not enabled by PTEN KO alone, but by TP53 double 
KO or TP53 and RB1 triple KO [76].

The retrotransposon-derived protein PEG10 is a pater-
nally expressed imprinted gene present in adult as well 
as embryonic tissues. Expression of PEG10 has been 
repressed by the AR which is supported by the obser-
vation that PEG10 is de-repressed in response to NHA 
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treatment [136, 137]. Additionally, E2F transcription fac-
tors have been identified as direct regulators of PEG10 
and their activity is increased in t-NEPC, following TP53 
and RB1 loss of function [76]. In t-NEPC, PEG10 is 
thought to be involved in cell cycle progression following 
TP53 loss as well as in motility and EMT as it has been 
found to promote TGF-β signaling [136].

SRRM4 is a splice factor associated with neuronal 
development that has been found to be upregulated in 
t-NEPC [50, 138]. Genes that have been shown to be 
alternatively spliced by SRRM4 in t-NEPC include GIT1, 
REST, BIF-1, BHC80, LSD1, and MEAF6 [43, 44, 51–53, 
97]. The upregulation of the GIT1-A splice variant and 
downregulation of the GIT1-C variant have been identi-
fied in t-NEPC patient samples, PDX and cell lines and 
has been associated with morphogenesis, neural func-
tion and epigenetic regulation [51]. Next, when spliced 
by SRRM4, the transcriptional repressor REST has been 
shown to be converted to its inactive isoform REST4, 
causing a loss of its repressive effect on neuronal genes 
[97]. By alternative splicing of the BIF-1 gene, SRRM4 has 
enhanced the expression of anti-apoptotic BIF-1b and 
BIF-1c variants, thereby contributing to cell survival dur-
ing AR pathway inhibition [52]. Proliferation of t-NEPC 
has also been reported to be increased by the BHC80-2 
splice variant which, in contrast to the BHC80-1, has his-
tone demethylase-independent functions and indirectly 
stabilizes tumor-promoting cytokines [53].

Deregulation of signaling pathways
mTOR signaling pathway
The PI3K/AKT pathway is one of the main regulators 
of cell survival, proliferation and metabolism. The path-
way is deregulated in several solid cancer entities and 
mostly due to common PTEN loss, activated PI3K/AKT 
signaling is already present in hormone-sensitive PCa 
[139]. The mammalian target of rapamycin (mTOR) is a 
downstream factor of AKT signaling and a key regula-
tor of metabolism and biosynthesis, which might be of 
increased importance in t-NEPC. However, the exact 
consequences of its activation for NED are not com-
pletely understood. Expression of protein kinase C iota 
(PRKCI) has been found to be reduced in t-NEPC com-
pared to mCRPC in patient tissue samples. In  vitro, 
loss of PRKCI contributes to the activation of mTORC1 
via loss of phosphorylation of the mTORC1 regulator 
LAMTOR2 [55]. A recent study by Kanayama et al. sug-
gested that the expression of constitutively active mTOR 
was sufficient for the induction of a NE-morphological 
changes and NSE expression in LNCaP cells. However, 
the expression was also found to induce a growth arrest, 
mediated at least partially by the mTOR targets IRF1 and 

CDK inhibitor p21. Of note, IRF1 was not involved in the 
induction of NSE [54].

In addition, increased activity of the transcription fac-
tor ATF4 causes an increase in the serine, glycine, one-
carbon pathway, downstream of mTOR activation. This 
leads to elevated levels of cell metabolites, including the 
methyl-donor S-adenosyl methionine, and ultimately to 
increased DNA methylation, for example of AR target 
genes. This emphasizes the role of mTOR not only in cell 
metabolism, but also as a potential facilitator of epige-
netic reprogramming. ATF4 seems to be also involved 
in the expression of NE and basal markers, but a distinct 
mechanism has not been identified yet [55].

Another target of mTOR is the transcription activator 
STAT3, which has also been associated with NE-differen-
tiation [54]. For instance, STAT3 has been shown to be 
activated by IL-6 and LIF receptor (LIFR) in androgen-
deprived PCa cell models [23]. Indeed, expression of 
LIFR is increased in t-NEPC as compared to adenocar-
cinoma and correlates with elevated NE marker expres-
sion in patients’ tissues. In  vitro, androgen withdrawal 
has been shown to increase LIFR expression, while over-
expression of LIFR enhances NE marker expression. 
By activation of STAT3, LIFR shows increased expres-
sion of succinate-CoA ligase GDP-forming beta subu-
nit SUCLG2, which, in turn, enhances cell proliferation 
and facilitates nucleotide synthesis in LNCaP cells [56]. 
However, SUCLG2 expression has been found to be not 
significantly different between t-NEPC and high-grade 
adenocarcinoma patients [56], indicating that LIFR acti-
vation and STAT3 signaling are not exclusive regula-
tors of SUCLG2 in t-NEPC. LIF, the ligand of LIFR, is 
increased in CRPC patients upon AR inhibition and may 
be part of a positive feedback loop activating the tran-
scription factor ZBTB46, which has also been shown to 
be activated in t-NEPC [107].

WNT signaling pathway
The WNT signaling pathway is a major regulator of 
development and stemness in various solid tumors [140]. 
In PCa, WNT signaling is associated with therapy resist-
ance and cancer stem cell renewal [141]. For instance, 
activation of the noncanonical WNT pathway has been 
identified in patients progressing on AR-inhibition com-
pared with untreated patients [142]. Increased expres-
sion of FOXB2 upregulates the expression of WNT7B 
in t-NEPC. This enables the induction WNT pathway 
activity irrespective of β-catenin [35]. WNT11 is another 
WNT ligand that has been identified to be upregulated 
upon androgen depletion in  vitro. WNT11 expression 
induces the expression of NE-markers and the transcrip-
tion factor ASCL1, but these changes have only been 
observed in malignant and not in benign prostate cells. 
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Thus, further aberrations seem to be necessary for this 
WNT11 activity [57]. Additionally, WNT signaling and 
NE-differentiation have been facilitated by the WNT 
carrier protein WLS. WLS is repressed by the AR in 
adenocarcinoma, but is increasingly expressed upon AR 
inhibition and t-NEPC transdifferentiation [59]. Another 
inducer of WNT signaling is protocadherin-PC (PCDH-
PC), which has been reported to be specifically upregu-
lated in castration-resistant disease. Of note, in a PCa cell 
model, PCDH-PC overexpression has been accompanied 
by increased WNT signaling and NE marker expression 
[60, 61].

cAMP signaling pathway
cAMP has been one of the firstly identified inducers of 
NED, promoting morphological changes of the cells as 
well as the production and secretion of NE-markers such 
as NSE, SYP and CHGA [143]. Increased cAMP levels 
may result from ADT, beta-adrenergic stress signaling or 
copy number gains in adenylate cyclase 8 [28, 62, 144]. As 
a consequence of elevated cAMP levels, the PKA-CREB1 
pathway is activated. Targets of CREB1 include the pro-
angiogenic key driver VEGF, EZH2, HDAC2 and the NE-
marker ENO2 [62, 144].

RET signaling pathway
The receptor tyrosine kinase and protooncogene RET is 
associated with the development of the nervous system 
and has been upregulated and hyperphosphorylated in 
neuroendocrine malignancies including t-NEPC [145]. 
In patient samples, RET expression positively corre-
lated with NE marker expression and negatively corre-
lated with AR target gene expression. RET knock-down 
or inhibition in a t-NEPC cell model reduced the phos-
phorylation of ERK1/2, indicating an activation of MAP 
kinase pathway by RET. The inhibition of RET by small 
molecule inhibitors decreases tumor growth of t-NEPC 
cell lines, 3D cultures and xenografts [63].

Signaling in the tumor microenvironment (TME)
Cancer‑associated fibroblasts
Cancer-associated fibroblasts are fibroblasts in the tumor 
stroma that contribute to cancer cell growth and prolif-
eration, for instance by cytokine secretion. In cell culture 
experiments, treatment with NHA has also been found to 
affect prostate fibroblasts. As a consequence of increased 
DNMT activity upon NHA stimulation, these cells down-
regulate the expression of the RAS inhibitor RASAL3 
and increase the release of glutamine. RASAL3 promoter 
hypermethylation has also been demonstrated in patient 
samples. In the tumor cells, increased extracellular glu-
tamine concentration enhances glutamine uptake, ATP 
production and cell proliferation. Additionally, increased 

glutamine leads to the activation of mTOR and NE mark-
ers such as ENO2 [65].

Cytokines
Pro-inflammatory cytokines in the TME can mediate 
NE differentiation. For example, tumor-associated mac-
rophages release IL-6, when stimulated with bone mor-
phogenic protein-6 which, in turn, is secreted by PCa 
cells [146]. In addition, increased IL-6 secretion has been 
found in cancer-associated fibroblasts from PCa biop-
sies [147]. IL-6 initiates NED by inducing expression of 
the NE markers CHGA and ENO2 through STAT3 and 
MAPK pathways [23, 64]. Additionally, IL-6 promotes 
angiogenesis by up-regulating VEGF via PI3K/Akt sign-
aling [147]. Moreover, IL-8 is expressed in benign as 
well as malignant NE cells [148]. As FOXA1 directly 
represses IL-8, loss of FOXA1 expression in t-NEPC has 
been considered the cause of an increased expression of 
IL-8. Effects of paracrine and autocrine IL-8 stimulation 
include cell survival and proliferation as well as NED 
mediated by MAPK and STAT3 signaling [33, 66].

Neuroendocrine peptides
T-NEPC tumor cells themselves release different com-
pounds that have been described to initiate or promote 
NED in neighboring non-NEPC cells. For instance, the 
NE peptides, some of which are broadly used as NE-
markers, exhibit distinct autocrine and paracrine func-
tions in the TME. Culture of androgen-resistant PCa 
cells with NEPC-conditioned medium has been shown to 
confer a survival advantage upon NHA treatment [149]. 
Several single neuropeptides have meanwhile been iden-
tified that are secreted by NE and t-NEPC cells and stim-
ulate survival, proliferation, migration and angiogenesis. 
These include survivin, gastrin-releasing peptide (GRP, 
bombesin), neurotensin, parathyroid hormone-related 
protein, serotonin and calcitonin [68, 150]. In addition, 
different peptides such as neurotensin, neuropeptide 
26RFa, adrenomedullin and pituitary adenylate cyclase 
activating polypeptide have induced NED in PCa cell 
models [69, 72–74]. Neurotensin, for instance has been 
found to be upregulated in castration-resistant xeno-
grafts inducing the expression of NE markers and ASCL1 
via its receptors NTSR1 and NTSR3 [69]. In addition, 
also EGFR and IGF1-R have been found to be involved 
in NE peptide signaling by activating, for example, focal 
adhesion kinase, ERK and PI3K/Akt signaling [149, 150]. 
This is, however, not specific for NED. In addition to the 
expression of these NE-peptides, calcium-dependent 
secretion and the expression of T-type calcium chan-
nels have been upregulated in a NE-cell model, which 
is of major importance for autocrine and paracrine cell 
stimulation [151]. Moreover, AR-knockdown has caused 
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an increase in the secretion of the neurotransmitter 
GABA and a slight upregulation in the GABBR1 receptor 
in vitro. Stimulation of the GABBR1 receptor, in turn, led 
to an increase in GRP secretion, which is associated with 
enhanced migration and angiogenesis [67, 75, 152].

Extracellular vesicles
Extracellular vesicles containing proteins and nucleic 
acid, among others, within a lipid membrane are released 
by cells and, for instance, serve cell-cell communication. 
Vesicles released from androgen-independent cancer 
cells have been shown to promote androgen-independ-
ence in androgen-dependent cells [153]. Moreover, 
extracellular vesicles released by t-NEPC or cell lines 
that resemble this subtype have been shown to contain, 
for instance, the transcription factors BRN2 and BRN4. 
Incubation of a non-NE cell line with these vesicles has 
altered the expression of NE markers and AR [40]. Cave-
olin-1 is another cargo of extracellular vesicles that has 
been identified to confer stemness and EMT in  vitro, 
thereby promoting lineage plasticity [154].

Conclusion and future directions
The emergence of NEPC is a major challenge in the 
nomenclature, diagnosis, classification and treatment 
of advanced PCa due to increased aggressiveness and a 
lack of effective treatment options. On the inter-patient 
as well as intra-patient level, t-NEPC presents as a het-
erogeneous disease. This includes the presence of histo-
logically and molecularly mixed tumors as well as varying 
degrees of manifestation of different traits such as cel-
lular stemness and plasticity. Recent investigations have 
brought first light into the growing complexity under-
lying the nature of t-NEPC development. As summa-
rized in this review, different biological mechanisms and 
molecular determinants contributing to the manifesta-
tion of t-NEPC, have been identified and the mechanism 
of transdifferentiation from adenocarcinoma to t-NEPC 
is broadly accepted.

Mechanisms driving the development of t-NEPC are 
complex and analyses of patient samples have revealed 
genomic aberrations as well as significant epigenetic, 
transcriptional and posttranslational changes. Lineage 
plasticity, enhanced proliferation and EMT belong to the 
central features of t-NEPC.

Clinical observations as well as experimental studies 
point out that the deregulation of key factors involved in 
the control of cell cycle progression, such as TP53, RB1, 
PTEN, CCND1 and AURKA is invariably observed in 
t-NEPC tumors. Deregulation of these factors paves the 
way for unhindered accumulation of genomic aberrations 
in individual tumor cells [155]. Extensive deregulation 
of cell cycle control is a key event in the development 

of t-NEPC and seems to be one of the main sources of 
intra-tumoral heterogeneity and to contribute to therapy 
resistance found in t-NEPC.

Beyond this generic phenomenon of cancer progres-
sion, several studies show that the expression and activity 
of several proteins involved in transcriptional and epi-
genetic regulation are often altered in t-NEPC. Among 
others, this includes the induction of MYCN, ASCL1, 
FOXA2, SOX2, EZH2, PHF8 expression as well as down-
regulation of FOXA1 or NKX3-1. It is well established 
that for untransformed, somatic cells the transition 
between different cell states during development is gov-
erned by transcription factor-induced reprogramming 
which also involves genome-wide changes to the chro-
matin [156]. We agree with the concept that this biologi-
cal principle may also be true for transdifferentiation of 
NEPC, with the fundamental difference that the acquisi-
tion of a new cell state is the result of e.g. selection pres-
sure of constant anti-androgen therapy [11, 157, 158]. 
This selection pressure will select for mutations, chromo-
somal rearrangements and epigenetic patterns that medi-
ate the transition to a cell state which is independent of 
AR activity or otherwise helps to evade treatment-medi-
ated cytotoxicity.

Today, several individual factors contributing to NE 
differentiation have been identified. However, the inter-
play of the different factors as well as the temporal order 
of genetic and epigenetic events causing the transdiffer-
entiation still requires further clarification. Indeed, the 
heterogeneity of the disease may be caused by a varying 
influence of the described mechanisms of action. There-
fore, a prioritization of distinct features and mechanisms 
such as stemness or epigenetic reprogramming is difficult 
at the current stage.

Continuation of research of t-NEPC is urgently needed, 
as a detailed knowledge of the processes underlying NED 
will support the development of reliable biomarkers and 
novel therapies for this lethal disease. Enhanced under-
standing of histopathologic and molecular patterns of 
t-NEPC and AVPC might also facilitate a more uniform 
nomenclature and classification of these tumors. The 
identification of more specific and sensitive biomarkers 
for NED may allow an earlier identification of transdif-
ferentiation in the course of treatment as well as a better 
monitoring of the applied therapies.

For this aim, functional studies in t-NEPC models need 
to be combined with recent advances in the field of liq-
uid biopsy – the analysis of tumor cells and tumor cell 
compounds in body fluids. Liquid biopsies are associated 
with lower risk for the patients and can be repeatedly 
applied as required in therapy monitoring, for instance. 
Importantly, liquid biopsy allows the assessment of intra-
patient tumor heterogeneity and, therefore, is a valuable 
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tool to monitor transition stages were adenocarcinoma 
and t-NEPC cell populations co-exist [159].

Remarkably, the discovery of key aberrations in t-NEPC 
has already led to the use of directed therapies in clinical 
trials. For instance, AURKA inhibitor alisertib has been 
tested in a phase II clinical trial, though the success has 
been limited to few patients [160].

Due to the high degree of plasticity of AVPC the com-
bination of different treatment approaches may be neces-
sary. Currently, an ongoing phase II clinical trial analyzes 
the combination of chemotherapy with carboplatin and 
cabazitaxel with PARP inhibition and anti-PD1 immuno-
therapy (NCT04592237). More t-NEPC small molecule 
inhibitors have been analyzed in preclinical trials, but 
have not yet been tested in the clinic [63, 101, 121].

Summarizing, the transdifferentiation from prostate 
adenocarcinoma to t-NEPC is a highly complex process 
mediated by the interplay of various genomic, epigenetic, 
transcriptional and posttranslational aberrations. Fur-
ther research is needed to decipher the precise molecu-
lar mechanisms driving the disease and to ultimately 
develop successful therapies.
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