Tan et al. Journal of Experimental & Clinical Cancer Research
https://doi.org/10.1186/s13046-021-01952-4

(2021) 40:146

Journal of Experimental &
Clinical Cancer Research

REVIEW Open Access

N6-methyladenosine-dependent signalling
in cancer progression and insights into

cancer therapies

Check for
updates

Fenghua Tan'?, Mengyao Zhao'?, Fang Xiong®, Yumin Wang?®, Shanshan Zhang®, Zhaojian Gong”, Xiayu Li°,
Yi He', Lei Shi*, Fuyan Wang? Bo Xiang', Ming Zhou'*, Xiaoling Li'?, Yong Li®, Guiyuan Li"% Zhaoyang Zeng'?,

Wei Xiong"?'® and Can Guo'*’

Abstract

The N6-methyladenosine (m6A) modification is a dynamic and reversible epigenetic modification, which is co-
transcriptionally deposited by a methyltransferase complex, removed by a demethylase, and recognized by reader
proteins. Mechanistically, m6A modification regulates the expression levels of mRNA and nocoding RNA by
modulating the fate of modified RNA molecules, such as RNA splicing, nuclear transport, translation, and stability.
Several studies have shown that m6A modification is dysregulated in the progression of multiple diseases,
especially human tumors. We emphasized that the dysregulation of m6A modification affects different signal
transduction pathways and involves in the biological processes underlying tumor cell proliferation, apoptosis,
invasion and migration, and metabolic reprogramming, and discuss the effects on different cancer treatment.
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Background

Epitranscriptomics, a study of RNA modification and its
biological functions, is a frontier field of epigenetics.
Chemical modification of the RNA can induce functional
epigenetic changes within the transcriptome and the
modified RNA participates in various biological processes
associated with post-transcriptional regulation. There are
more than 160 chemical modifications of RNA [1], among
which N6-methyladenosine (m6A) is considered to be the
most abundant type in messenger RNAs (mRNAs) and
long non-coding RNAs (IncRNAs). The m6A modification
that has been reported in eukaryotes, bacteria, and viruses
[2, 3] involves a methylation modification on the 6th
nitrogen (N) atom of adenine (A) in RNA, with the
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consensus motif “RRACH” ([G>A] m6AC [U>A>C(C)).
Similar to DNA methylation, m6A modification is also
dynamic and reversible and can be co-transcriptionally
deposited by the methyltransferase complex and removed
by demethylase. Functionally, although m6A modification
does not alter the base complementary pairing rules, it
determines the distinct fate of modified RNA molecules,
such as RNA splicing, transport, translation, and decay.
The m6A modification of RNA plays a key role in the
progression of various diseases, especially tumors. Studies
have shown that m6A regulators, such as writers, erasers,
and readers are often dysregulated in various types of
cancer, which globally alters m6A modification abun-
dance. Interestingly, some non-coding RNAs, including
miRNA, IncRNA, circRNA, and even piRNA, have been
found to change the level of m6A in cells [4-8]. Thus,
accurate detection and quantification of m6A are pre-
requisites for a molecular-level understanding of the
impact of m6A modification of RNA. Methylated RNA
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immunoprecipitation sequencing (MeRIP-seq), introduced
in 2011, identified m6A modification abundance in humans
and mice on a large-scale and high-throughput basis for the
first time and revealed significant enrichment of the m6A
modification in the 3'-untranslated region (3'-UTR) near
the stop codon of mRNAs [9, 10]. Despite being widely
used, MeRIP-seq has certain limitations, such as the need
for greater amounts of RNA samples and low specificity
and sensitivity. Meanwhile, some enzyme-dependent m6A
modification site identification methods were introduced,
such as m6A-REF-seq and MAZTER-seq, which rely on
the MazF enzyme [11, 12], and DART-seq, which relies on
the APOBECI1 enzyme. These antibody-free m6A modifica-
tion detection methods provide new options for the precise
identification of m6A modification sites. However, none of
the methods identified all possible m6A modification sites.
Even newly developed chemical labeling-based methods
include m6A-SEAL-seq [13] and m6A-label-seq [14], which
rely on the assistance of demethylase (FTO) and methyl-
transferases (METTL3/METTL14).

In this paper, we focused on m6A modification via
regulation of the expression of different target RNA
molecules affects different signal transduction pathways,
which in turn, results in the regulation of the molecular
mechanisms of cancer-related biological processes, includ-
ing cell proliferation, apoptosis, invasion and metastasis,
metabolic reprogramming, and discussed the subsequent
impact of this modification on cancer treatment.

m6A regulators: function and mechanism of action
Writers

A multi-component m6A methyltransferase complex
(MTC) that co-transcriptionally deposits m6A modifica-
tion involves the heterodimer formed by METTL3/14 as
a core member and WTAP, KIAA1429, RBM15/15B,
and ZC3H13 as the additional auxiliary subunits. METT
L3, the first discovered m6A methyltransferase, has an
S-adenosylmethionine (SAM) binding domain and can
catalyze the transfer of methyl groups. Importantly,
when modified by SUMO1, the SUMOylation at K177/
K211/K212/K215 of METL3 can significantly inhibit the
activity of its m6A methyltransferase [15]. Furthermore,
the phosphorylation at S43/S50/5S525 of METL3 can in-
hibit its ubiquitination and contribute to the stability of
the methyltransferase complex [16]. Although METT
L14 has no catalytic activity, it can form a stable com-
plex with METTL3 to recognize the substrate RNAs
[17]. In addition, the arginine methylation of METTL14
affects the binding of METTL14 to RNA substrates and
the interaction with RNA polymerase II [18]. Moreover,
when the ubiquitination process of METL14 is inhibited,
it contributes to the stability of METL14 and its methy-
lation of target RNA [19]. WTAP can interact with the
METTL3/14 complex and recruit it to nuclear speckles,

(2021) 40:146

Page 2 of 20

mediating nuclear RNA m6A deposition [20]. RBM15
binds to the m6A complex and recruits it to specific
RNA sites. KIAA1429 mediates 3'-UTR and m6A modi-
fication close to the stop codon by recruiting the methyl
transfer complexes. It can also interact with CPSF5 to
influence the length of the 3'-non-coding region of the
mRNA [21]. ZC3H13 can reduce nucleation of the
methyltransferase complex and improve its catalytic
activity [22]. METTL16, as a newly discovered methyl-
transferase, catalyzes the m6A modification of hairpin
(hpl) in the 3'-UTR of MAT2A. The modification
induces efficient splicing, thereby regulating the homeo-
stasis of SAM content in cells. METTL16 also binds to
pre-mRNA and non-coding RNA [23, 24]. Recent find-
ings indicate that METTL16 deposits m6A at the site of
intron polyadenylation (IPA), which underscores its
potential role in IPA and splicing [25].

Erasers

FTO (alias ALKBHY), famous as an obesity-related gene,
is a member of the a-ketoglutarate-dependent dioxygen-
ase protein family and was the first m6A demethylase to
be identified [26]. Subsequent studies reported that FTO
can also catalyze the demethylation of m6Am at the
5’end cap of mRNA. This triggered a controversy: is the
substrate of FTO m6A or m6Am [27]? Detailed research
revealed that compared to m6Am, m6A is more abun-
dant in cells, and FTO can first convert m6A into inter-
mediate hm6A (N6-hydroxy methyladenosine), then into
N6-formyladenosine (fm6A), finally becoming adenine
(A) and completing the process of demethylation [28].
However, due to the structural similarity between m6A
and m6Am, FTO can also act on m6Am. A reasonable
explanation is that the FTO in the nucleus mainly
functions in the demethylation of m6A rather than that
of the end cap m6Am, while the FTO located in the
cytoplasm can mediate the demethylation of both m6A
and the end cap m6Am [29].

Recent studies have found that the SUMOylation on
FTO will synergize with ubiquitination to cause the
degradation of FTO protein, thus increasing the level of
m6A in cells [30]. In addition, its deubiquitination will
up-regulate FTO protein expression [31]. Another iden-
tified demethylase is ALKBH5, which is different from
FTO in that it can directly remove the methyl group of
m6A and directly form adenine (A) [32].

Readers

The m6A reader protein recognizes the m6A modification
and determines the fate of the modified RNA molecule,
which plays a vital role in the downstream biological func-
tions of m6A modification. Currently, there are three main
types of m6A reader proteins, which contain different struc-
tural domains, have different mechanisms for recognizing
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the m6A motifs, and determine the distinct fate of RNA
molecules. The first type of readers has a special RNA
binding domain: the YTH domain (including YTHDF1,
YTHDF2, YTHDF3, YTHDC1, YTHDC2, and many
more), which can directly bind to the m6A motif.
YTHDF]1 binds to the m6A site located near the mRNA
stop codon and can recruit the eukaryotic initiation
factor 3 (elF3) to promote the translation of m6A-
modified mRNA. YTHDF2 recognizes the m6A
modification on RNA and recruits the CCR4-NOT
multi-subunit deadenylase complex by interacting with
CNOT1 to accelerate the deadenylation and degrad-
ation of RNA. Interestingly, the SUMOylation of YTHD
F2 can enhance its ability to bind to m6A-mRNA,
thereby promoting the degradation rate of mRNA [33].
However, phosphorylation at serine39 and threo-
nine381 of YTHDF2 has been reported to stabilize the
YTHDEF?2 protein [34]. On the contrary, the ubiquitination
modification of YTHDF2 will promote its degradation
[35]. YTHDEF3 can cooperate with YTHDF1 to promote
protein translation and synthesis, and with YTHDF2 to
promote RNA degradation [36-38]. It has been reported
that all three proteins (YTHDF1/2/3) promote degrad-
ation of RNA with m6A modification [39]. However, a
recent study rejected this conclusion and confirmed that
m6A modification regulates the translation efficiency in
various ways. This diversity partly depends on the
sequence background around the m6A modification site
and the binding of other RNA-binding proteins [40].
YTHDCI1 is the only versatile reading protein located
within the nucleus. It recruits SRSF3 while inhibiting the
binding of SRSF10 to RNA, promoting alternative splicing
of pre-mRNA [41]. A recent study reported that YTHDC1
induces the degradation of certain chromatin-related
nuclear RNAs by interacting with the subunits of the
NEXT complex [42]. A latest research reported YTHDC1
to induce the degradation of certain chromatin-related
nuclear RNAs by interacting with the subunits of the
NEXT complex [43]. YTHDC2 contains > 1400 amino
acids. In addition to the YTH domain, it also contains
various other domains with different functions. YTHDC2
can interact with MEIOC and XRN1 bridge interactions
between m6A-containing mRNAs and ribosomes and im-
proves the mRNA translation efficiency [44—46].

The m6A modification induces changes in the local
RNA structure, thereby regulating the binding strength of
the RNA-binding proteins to substrates. This mechanism,
referred to as the “m6A-switch,” is utilized by the second
type of readers to combine with m6A-containing tran-
scripts. These readers utilize splicing factors, including
HNRNPC, HNRNPG, and HNRNPA2BI, to regulate the
splicing and processing of target RNA molecules, such as
primary micro-RNA (pri-miRNA) and precursor mRNA
(pre-mRNA) [47, 48].
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The newly discovered third category of reader pro-
teins, which includes IGF2BP1, IGF2BP2, IGF2BP3, and
FMRP, utilizes the shared RNA binding domains (KH
structure and RGG domain) and its flanking regions to
recognize m6A-containing transcripts. IGF2BPs recognize
and bind to the m6A site at the 3'-UTR and enhance
mRNA stability. IGF2BP2 specifically binds to HuR,
MATRS3, PABPC]I, and other proteins, and works together
with them [49]. The newly discovered reader FMRP is dis-
tributed in both the cytoplasm and nucleus, and mainly
promotes the nuclear export of specific RNA [50] (Fig. 1).

N6-methyladenosine can be associated with
cancer cell proliferation

Continuous proliferation is characteristic of cancer cells
[51-53]. In multiple ways m6A modification participates
in cancer cell proliferation. For example, m6A modification
can modulate either the regulating cell cycle processes or
the various signal transduction pathways. Moreover, m6A
modification can regulate the oncogenes and tumor
suppressor genes at the post-transcriptional level, thereby
affecting cancer cell proliferation.

Cell cycle-dependent protein kinases, CDK inhibitors,
and cyclins regulate the cell cycle progression. Cell
proliferation can be influenced by m6A modification of
these cell cycle regulatory proteins. For example, in the
G1/S checkpoint, FTO deficiency increases the level of
m6A modification of cyclin D1, which is a key regulator
of G1 phase progression. m6A modification promotes
the degradation of the mRNA encoding cyclin D1, lead-
ing to G1/S phase arrest [54]. In addition, another study
showed that m6A modification of the CDS region of
CCND1 mRNA can stabilize and promote the expres-
sion of CCNDI1 through IGF2BP3and promote the
transition of the G1/S phase [55]. Interestingly, m6A
reader-cooperating IncRNA (DMDRMR) enhances the
activity of IGF2BP3 and synergistically stabilizes CDK4
mRNA, leading to the G1/S transition [56]. m6A modifi-
cation can stabilize CCNE1 mRNA levels and accelerate
the cell cycle transition from G1 to the S phase [57]. In
addition, m6A modification can promote the translation
of ADAR1 mRNA through a YTHDFI-dependent
mechanism, and ADAR1 plays a cancer-promoting role
independently of its deaminase activity by binding CDK2
mRNA [58]. Transcript encoding E2F1, a positive regula-
tor of the G1/S checkpoint, can be stabilized by an
IGF2BP1-dependent m6A modification pathway, thus
promoting G1/S cell cycle transition [59]. In the G2/M
checkpoint, down-regulation of WTAP decreases the
level of m6A modification, thereby blocking G2/M phase
transition in liver cancer cells. Mechanistically, m6A
modification promotes the degradation of ETS1 by redu-
cing the interaction of ETS1 with the RNA stabilizing
protein HUR. ETS1 can also mediate G2/M phase arrest
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by combining with the promoter of gene encoding p21/
p27 to stimulate transcription [60]. In addition, ALKBH5
activates PER1 after transcription in an m6A/YTHDEF2-
dependent manner. Up-regulation of PER1 reactivates
the ATM-Chk2-p53/CDC25C signal, resulting in G2/M
phase transition block and inhibition of pancreatic
cancer cell proliferation [61].

Modulation of the signal transduction pathways by
m6A modification, changes the fate of specific RNA
molecules. Signaling pathways such as AKT, nuclear fac-
tor-kB (NF-kB), Wnt/B-catenin, and mitogen-activated
protein kinase (MAPK) can be regulated by m6A modifi-
cation. For example, METTL3-mediated m6A modifica-
tion stabilizes and promotes the expression of IKBKB,
which then phosphorylates IkB activating the NF-kB sig-
naling pathway. NF-kB dimers (p65 and p50) on entering
the nucleus activate the expression of downstream MYC
proteins and thereby promote cell proliferation [62]. In
endometrial cancer, m6A modification promotes the
translation of negative and positive AKT regulators, PHLP
P2 and mTORC2, in an YTHDF1-dependent and YTHD
F2-dependent pathway, respectively to inhibit the AKT
signaling pathway. The low expression of METL3 and the
hot spot R298P mutation in METLI4 decreases the
cellular levels of mRNA encoding m6A, activates the AKT
pathway, and ultimately enhances cell proliferation and
tumorigenicity [63]. For example, YTHDF1 promotes the
translation of key WNT receptors Frizzled5 (FZD5) and
Frizzled7 (FZD7) in an M6A-dependent manner, leading
to the activation of its downstream Wnt/B-catenin
pathway [64, 65]. The m6A modification stabilizes and
promotes the expression of CTNNBI encoding [-catenin,
a key molecule of the classic Wnt/p-catenin pathway.
High expression of CTNNBI activates the Wnt/p-catenin
pathway [66]. The increased expression of transcription
factor TCF1 by IGF2BP2-mediated m6A modification
pathway, binds to B-catenin and activates the Wnt/p-ca-
tenin pathway and subsequent expression of the down-
stream effector molecules [67]. YTHDF2 can directly bind
to and degrade epidermal growth factor receptor (EGFR)
mRNA, inhibiting its expression. The reduced levels of
EGEFR inhibit the MAPK pathway, and prevent cell prolif-
eration [68]. The METTL3-mediated m6A modification
reduced the stability of BATF2 and RDM1 mRNA and
decreased their expression. Both BATF2 and RDM1 can
bind to p53 and enhance its stability, thereby inhibiting
the phosphorylation of extracellular signal-regulated kin-
ase (ERK) and subsequent ERK signaling pathway [69, 70].

m6A modification can also affect cell proliferation by
regulating some oncogenes or tumor suppressor genes
at the RNA level. For example, abnormal amplification
of MYC-encoding MYC proteins, which are key regula-
tors of cell proliferation, increasingly promotes prolifera-
tion of the cancer cells. In acute myeloid leukemia
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(AML), abnormal expression of m6A regulatory factors,
including METL3, METTL14, FTO, ALKBH5, and
IGF2BP1/2/3, can regulate the expression of MYC.
METTLS3 recruited to the chromatin by CEBPZ induces
m6A modification in the coding region of target mRNA
transcripts (SP1 and SP2) and promotes their translation
[71]. SP1 and SP2 are important transcription factors
that can bind to the promoter region of MYC and en-
hance its expression. Similar to METTL3, METTL14
regulates the m6A abundance of target mRNA (MYB
and MYC), maintains mRNA stability and translation,
and finally promotes the proliferation of AML cells [72].
The FTO activity inhibited by R-2-hydroxyglutaric acid
(R-2HG) increases the level of m6A modification and
promotes the degradation of MYC and CEBPA through
an YTHDF2-dependent pathway, resulting in inhibited
growth of leukemia cells [73]. Conversely, when a low
level of AMPKa2 leads to an increase in the expression
of FTO, the expression of MYC increases, which pro-
motes the proliferation of colorectal cancer cells [74].
Demethylase ALKBH5 has been reported to indirectly
regulate the expression of MYC. ALKBH5 directly tar-
gets and removes the m6A modification of TACC3 and
promotes its expression, which then activates the expres-
sion of downstream MYC, promoting the growth of
AML cells [75]. It has also been reported that m6A
modification can stabilize and promote the expression of
MYC through the IGF2BP pathway [5, 49, 76], or by
stabilizing AFF4, maintaining the transcription of MYC
and affecting cell proliferation [77]. Interestingly, IncRNA
KB-1980E6.3 can bind to the recognition protein IGF2BP1
to synergistically stabilize c-Myc mRNA [78]. In addition
to MYC, the well-known tumor suppressor gene PTEN is
also regulated by m6A modification. In AML, m6A modi-
fication induced by METTL3 can promote the translation
of PTEN [79]. In bladder cancer, METTL3 interacts with
the microprocessor protein DGCR8 to promote the mat-
uration of pri-miR221/222 in an m6A-dependent manner.
The resultant miR221/222 targets and inhibits the expres-
sion of PTEN and promotes cell proliferation [80].

In addition to MYC and PTEN, other proliferation-
related transcripts are also regulated by m6A modification.
For example, the m6A modification mediated by METT
L3 can maintain the stability of the transcripts of SRSFs
[81], HBXIP, ATAD?2 [82], and SOCS2 [83], promote the
translation of ANKLEI [84], and participate in cell prolif-
eration. On the contrary, FTO can directly target ASB2
and RARA UTR, and negatively regulate the m6A level.
The m6A modification reduces the stability of ASB2 and
RARA transcripts and promotes cell proliferation [85].
FTO can also target and remove the m6A modification of
the 3-‘UTR of BNIP3, resulting in degradation of BNIP3
and subsequent proliferation of the breast cancer cells
[86]. The removal of m6A modification can also enhance
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the stability of the transcript. For example, the removal of
m6A promotes the binding of FOXMI pre-mRNA to the
RNA-binding protein HuR, and improves its stability,
resulting in enhanced expression of FOXM1 protein,
which in turn promotes the proliferation of the glioma
cells [87]. This is consistent with the observation in renal
cell carcinoma where ALKBH5 directly binds to AURKB
mRNA in an m6A-dependent manner, enhancing the sta-
bility of the AURKB transcript and promoting its expres-
sion, ultimately leading to cell proliferation [88].

The m6A modification generally affects the stability of
oncogenic long non-coding RNA, which in turn
regulates cell proliferation. The m6A modification alone
has a positive effect on the stability of LNCAROD,
RHPNI-AS1, CCATI, and CCAT2. LNCAROD can
function as a scaffold for the YBX1/HSPAIA protein
complex to prevent the proteasome degradation of
YBX1 [89], while RHPN1-AS1 promotes cell prolifera-
tion via miR-596/LETM1 axis [90]. CCAT1 and CCAT2
regulate the downstream MYC by enriching Let-7A and
miR-145, respectively, and promote cell proliferation
[91]. In addition, m6A modification can stabilize IncRNA
DANCR through IGF2BP2-dependent pathways, and
promote cell proliferation and stem cell-like properties [92].
YTHDE2-dependent m6A modification reduces the expres-
sion of IncRNA PVTI. On removal of m6A modifica-
tion by ALKBHS5, the expression of IncRNA PVTI and
the proliferation of osteosarcoma cells were promoted
[93]. In addition, m6A modification can be recognized
by YTHDF1 or YTHDEF2, which affects the expression
of oncogenic IncRNA THOR, thereby affecting cell
proliferation [94] (Fig. 2).

N6-methyladenosine can influence the apoptosis-
associated signaling pathway

In order to maintain the stability of the internal environ-
ment, normal cells actively and orderly trigger cell apop-
tosis through signal transduction mechanisms [95-101].
However, cancer cells can inhibit apoptosis by partici-
pating in these signaling pathways. According to the sig-
nal molecules that induce apoptosis, there are three
main apoptosis signaling pathways: the mitochondrial,
endoplasmic reticulum (ER), and death receptor path-
ways. The key molecules of these pathways are regulated
by m6A modification to alter the apoptosis process.

For example, in the mitochondrial pathway, the Bcl-2
family of proteins regulates the apoptosis by controlling
the permeability of the mitochondrial membrane. The
anti-apoptotic protein Bcl-2 is located in the outer
mitochondrial membrane and inhibits the release of
cytochrome C. In AML, METTL3 promotes BCL2 trans-
lation and thereby inhibits cellular apoptosis in an m6A-
dependent manner [79]. In breast and ovarian cancer,
the down-regulation of m6A modification level caused
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by METTL3 knockout inhibits the expression of BCL2
and accelerates cell apoptosis [102]. Moreover, in
ovarian cancer, YTHDF2 can binds to BMF mRNA and
promotes its degradation. BMF is a Bcl-2 family protein,
which can bind to anti-apoptotic proteins, like Bcl-2, to
induce cell apoptosis [35].

In the ER pathway, disruption of the ER Ca>* balance
or excessive accumulation of ER proteins activates the
expression of Caspase 12 protein in the ER membrane
and induces the transfer of cytoplasmic Caspase 7 to the
ER surface. Caspase 7 activates Caspase 12 on the
membrane, which then cleaves Caspase 3 to trigger cell
apoptosis. SEC62, a transporter protein present in the
ER membrane plays a vital role in ER pathway-mediated
apoptosis. METTL3 can promote the expression of
SEC62 through m6A/IGF2BP1 pathway and thereby
inhibits the apoptosis of gastric cancer cells [103].

In the death receptor pathway, the transmembrane
death receptor protein on sensing external stimuli
transmits the apoptotic signals through different signal
transmission systems to mediate cell apoptosis. The
m6A modification reduces the half-life of various m6A
transcripts, including death receptor, namely tumor
necrosis factor receptor TNFRSF2 by YTHDF2. The degrad-
ation of TNFRSF2 interrupts the TNF signaling pathway,
leading to inhibition of AML cell apoptosis [104].

In breast cancer, FTO knockdown increases the level
of m6A modification in the 3'-UTR of BNIP3 mRNA
and thereby increases its expression, which in turn in-
duces cell apoptosis [86].

In nasopharyngeal carcinoma, overexpression of
METTL3 can promote the expression level of ZNF750.
ZNF750 can bind to the promoter of FGF14 and promote
its expression, leading to inhibition of cell apoptosis [105].
In prostate cancer, the METTL3-mediated m6A modifica-
tion of GLII enhances its stability and expression level.
GLI1 being a transcriptional effector molecule of the
hedgehog pathway, its overexpression activates the hedge-
hog pathway and subsequently inhibits cell apoptosis
[106] (Fig. 3).

N6-methyladenosine can regulate cancer invasion
and metastasis

Invasion and metastasis are important characteristics of
malignant tumors [107—-113]. Regulation of the signaling
pathways, such as tumor growth factor beta (TGE-p),
phosphatidylinositol-3-kinase (PI3K)/AKT, MAPK, and
Hippo, by m6A modification can influence the invasion
and metastasis of tumor cells.

In the AKT signaling pathway, DGCR8 and the micro-
processor complex are recruited by m6A modification to
promote the mature processing of pri-miR-25. The miR-
25 inhibits AKT negative regulator PHLPP2 and acti-
vates the oncogenic AKT-p70S6K signaling pathway to
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promote the progression of pancreatic cancer [114]. In
colorectal cancer, SOX4 serves as the target of METL14-
mediated m6A modification. Knockdown of METTLI14
significantly reduced the m6A modification of SOX4
mRNA, and inhibited the m6A/YTHDF2 dependent
degradation pathway, thereby enhancing SOX4 mRNA
expression. SOX4 can promote the invasion and migration
of colorectal cancer cells through the epithelial-mesenchymal

transition (EMT) process and PI3K/AKT signaling
pathway [115]. In prostate cancer, m6A degrades the
tumor suppressor LHPP and NKX3-1 mRNA in a
YTHDF2-dependent manner, thus promoting AKT
phosphorylation and inducing tumor proliferation and
migration [116]. In the MAPK signaling pathway,
METTL3-mediated m6A modification can recruit the
DGCR8/Drosha complex to promote the processing
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and maturation of pri-miR-1246. The miR-1246 in-
hibits SPRED2, resulting in the inhibition of the
downstream RAF/MEK/ERK pathway, which in turn
promotes the invasion and metastasis of colorectal
cancer cells [117]. In kidney cancer, under the catalysis of
extracellular adenosine triphosphate (ATP), P2RX6 can
promote Ca** influx and activate p-ERK1/2/MMP9 signal-
ing. The METTL14-mediated m6A modification promotes
splicing of P2RX6 pre-mRNA and reduces the P2RX6
mRNA levels, thereby inhibiting invasion and migration

[118]. In the Hippo pathway, METTL3-mediated m6A
modification promotes the translation of YAP mRNA by
recruiting YTHDF1/3 and elF3b into the translation
initiation complex. YAP is a key downstream effector of the
Hippo signaling pathway. Overexpression of YAP promotes
the invasion and metastasis of lung cancer cells [119]. Inter-
estingly, m6A modification can also promote the expression
of YAP by enhancing the stability of MALATI IncRNA,
which enriches miR-1914-3p through the competing
endogenous RNA (ceRNA) mechanism. In addition, m6A
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modification can degrade IncRNA GAS5 through a YTHD
F3-dependent mechanism; IncRNA GAS5 directly binds to
the WW domain of YAP, promotes the translocation of
YAP from the nucleus to the cytoplasm, and promotes
YAP phosphorylation and YAP degradation [120].

EMT is associated with normal cell growth and
homeostasis [121-123]. m6A modification regulates
EMT, which in turn influences the invasion and metas-
tasis of cancer cells. TGF-B is an important factor in
inducing EMT. The m6A modification of the 5-UTR
and coding sequence (CDS) regions of TGF-f promotes
the degradation of mRNA encoding TGF-f} and thereby
inhibits the TGF-B signaling pathway and the subse-
quent downstream EMT process as well [124, 125].

The demethylase ALKBH5 can remove the m6A modi-
fication of YAP, which results in its reduced expression
in the non-small-cell lung carcinoma (NSCLC) through
an YTHDF1/2-dependent pathway. m6A modification
also inhibits YAP activity through the miR-107/LATS2
axis. This decrease in the YAP expression levels inhibits
the Hippo signaling pathway and the EMT process,
thereby inhibiting tumor cell invasion and metastasis
[126]. In addition, some key molecules of the EMT
process are also regulated by m6A modification. For
example, METTL3-mediated m6A modification can pro-
mote the translation of Snail, a key transcription factor
for EMT, through the YTHDF1 pathway [127, 128].
m6A modification stabilizes and promotes the expres-
sion of Snail through the IGF2BP2 pathway, and thereby
affects the EMT process of cells [129]. Moreover, m6A
modification can stabilize and increase the nuclear
accumulation of IncRNA RP11, which then promotes
the mRNA degradation of two E3 ligases, Siahl and
Fbxo45, by forming a complex with hnRNPA2B1. This
prevents the ubiquitin-proteasome degradation of ZEB1
and promotes the EMT process of colorectal cancer
[130]. Furthermore, METTL3-mediated m6A modifica-
tion stabilizes and promotes the expression of ZMYM1
through a HuR-dependent pathway. ZMYMI1 mediates
repression of the E-cadherin promoter by recruiting the
CtBP/LSD1/CoREST complex. Low expression of E-
cadherin can reduce cell adhesion and promote gastric
cancer cell metastasis and EMT [131]. METTL3-medi-
ated m6A modification can degrade ZBTB4 mRNA
through a YTHDF2-dependent mechanism. In addition,
lower levels of ZBTB4 are associated with upregulation
of EZH2, which enhances H3K27me3 combination with
an E-cadherin promoter, lower E-cadherin levels, and in-
duction of EMT [132]. m6A modification in the 3'-UTR
region of ITGA6 mRNA can promote the translation of
ITGA6 through the YTHDF1/3 pathway [133]. More-
over, m6A modification can maintain the stability of
IncRNA FAM225A. The FAM225A IncRNA increases
the expression of ITGB3 by adsorbing miR-590-3p/miR-
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1275 [134]. As a member of the integrin family, high ex-
pression of the proteins ITGA6 and ITGB3 can result in
cell invasion and migration.

In addition, m6A modification can affect the RNA
levels of some metastasis-related genes. For example,
m6A modification stabilizes and promotes the expres-
sion of SOX2 through IGF2BP2-dependent pathways
and increases the expression of its downstream targets
(CCND1, MYC, and POUS5F1), which in turn promotes
the occurrence, invasion, and metastasis of colorectal
cancer [135]. m6A modification can degrade regulators
of the tumor suppressor gene, such as SETD7, KLF, and
OCT4, through the YTHDF2-dependent pathway, thereby
promoting cell proliferation and invasion [136, 137]. m6A
modification can also promote the translation of EIF3C
through the YTHDF1-dependent pathway, and at the
same time enhances the overall translation output, pro-
moting the occurrence and metastasis of ovarian cancer
[138]. m6A modification can enhance the translation of
ST6GALNACS5, GJA1l, and EGFR mRNA through the
YTHDEF3 pathway and promote the brain metastasis of
breast cancer cells [139]. The removal of m6A modifica-
tion helps stabilize the tumor suppressors GNAO1 [30]
and PERP [140], leading to inhibition of cell invasion and
metastasis. ALKBH5-mediated m6A demethylation leads
to post-transcriptional inhibition of LYPDI, which can be
recognized and stabilized by IGF2BP1 [141]. Interestingly,
IncRNA can assist the formation of m6A modifications.
Under the guidance of GATA3-AS, KIAA1429 induces
m6A modification of GATA3 pre-mRNA. The binding of
HuR is inhibited by m6A modification, resulting in the
degradation of GATA3 pre-mRNA, and promotes cell
proliferation, invasion, and metastasis [142].

It has also been reported that m6A modification can
affect the fate of non-coding RNA molecules, thereby
affecting tumor invasion and metastasis. For example,
METTL14-mediated m6A modification recruits DGCR8
to promote the maturation of pri-miR-126 and pri-miR-
375. miR-126 associated with metastasis can directly
target METL14 and relieve its inhibitory effect in
metastasis [143]. Conversely, miR-375 can inhibit the
migration and invasion of colorectal cancer cells by
targeting the SP1 pathway [144]. In addition, modifica-
tion by m6A can promote the degradation of carcino-
genic IncRNA XIST through the YTHDF2-dependent
pathways and inhibit the proliferation and metastasis of
colorectal cancer [145]. m6A modification can also
stabilize LncNEAT1, which acts as a bridge between
CYCLINL1 and CDK19, and promote the phosphoryl-
ation of Pol II ser2, leading to bone metastasis of
prostate cancer [146]. LINC00460 directly interacts with
IGF2BP2 and DHX9 to assist the recognition protein
IGF2BP2 to recognize and stabilize HMGA1 mRNA, en-
hance the protein expression of HMGA1, and promote
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the proliferation and metastasis of colorectal cancer
[147]. Furthermore, tandem m6A modification on the
IncRNA MALAT1 can function as a scaffold to recruit
YTHDC1 to nuclear speckles, thereby regulating the
expression of several key oncogenes including JUN,
TWIST2 and PIM1, and ultimately promoting the inva-
sion and metastasis of cancer cells [148]. In general, the
complex and variable interaction between m6A modifi-
cation and non-coding RNA affects the metastasis
process of cancer (Fig. 4).

N6-methyladenosine cancer plays a role in
metabolic reprogramming

Metabolic reprogramming, a characteristic of tumor
cells, is essential for providing nutrients to the growing
tumor [149-153]. The Warburg effect indicates that
even under conditions of normal oxygen concentration,
tumor cells metabolize glucose into lactate due to the
expression level of the key enzymes of glycolysis. m6A
modification of the glycolysis enzymes directly or indir-
ectly regulates the expression and thereby participates in
the process of tumor glycolysis.

Glucose uptake is the first step of aerobic glycolysis.
METL3-mediated m6A modification stabilizes and pro-
motes the expression of GLUT1 and increases glucose
uptake directly or indirectly through the IGF2BP2/3-
dependent pathways [154]. The conversion of glucose to
glucose-6-phosphate depends on the enzyme hexokinase
(HK). m6A modification can stabilize and promote HK2
expression through the IGF2BP2-dependent pathway
[155]. The third step of aerobic glycolysis relies on the
catalysis of phosphofructokinase. Studies have found that
under the inhibition of R-2-hydroxyglutarate, the activity
of FTO decreases, and m6A modification can degrade
platelet phosphofructokinase (PFKP) and lactate de-
hydrogenase B (LDHB) mRNA through the YTHDEF2-
dependent pathway, thereby inhibiting oxygen glycolysis
[156]. In addition, the expression of MYC, a regulator of
glycolysis, is also enhanced by the IGF2BP2-dependent
m6A modification pathway. MYC activates the tran-
scription of related metabolic enzymes, such as GLUT1,
PKM2, and LDHA [157]. Interestingly, IncRNA LINRIS
prevents the K139 ubiquitination of IGF2BP2 and its
degradation through the autophagolysosomal pathway.
Knockdown of LINRIS inhibits the stabilizing effect of
IGF2BP2 on MYC mRNA. PKM2 can convert phospho-
enolpyruvate to pyruvate, while LDHA can convert
pyruvic acid to lactate. Moreover, METTL3-mediated
m6A  modification can promote HDGF expression
through the IGF2BP3-dependent pathway. HDGF in the
nucleus activates the expression of GLUT4 and ENO?2
[158]. ENO2 in turn promotes the conversion of 2-
phosphoglycerate to phosphoenolpyruvate. It has also
been reported that m6A modification can inhibit the

(2021) 40:146

Page 10 of 20

aerobic respiration of cells, allowing more glucose to
participate in glycolysis. For example, METTL3-medi-
ated m6A modification can recruit eEF2 to promote the
translation process of PDK4 in an YTHDFI-dependent
pathway and maintains the stability of PDK4 mRNA
through the IGF2BP3-dependent pathway. High levels of
PDK4 inhibit the conversion of pyruvate into acetyl-CoA
and promote aerobic glycolysis in cells [159].

In addition, m6A modification can stabilize and pro-
mote the expression of IncRNA ABHDI11-AS1, which
then recruits EZH2 and inhibits the transcription of
KLF2, ultimately leading to suppression of the Warburg
effect [160, 161] (Fig. 5).

m6A modification in cancer therapies: targeted
therapy, chemotherapy, radiotherapy, and
immunotherapy

Many cancer studies have shown that the overall level of
m6A is often dysregulated, which is caused by an abnor-
mal decrease or increase in the m6A regulatory factors,
including writers, erasers, and readers. The overall level
of m6A is often dysregulated, affecting the occurrence,
development, and treatment of tumors, which provides a
basis for developing new cancer treatment methods. At
present, some inhibitors for m6A regulatory factors that
have been developed as anti-cancer agents have
exhibited positive effects. Among them, the inhibitors
developed against m6A demethylase FTO are the most
popular. MO-I-50, the first reported FTO inhibitor,
shows an ability to inhibit the survival and colony
formation ability of the cancer cells in triple-negative in-
flammatory breast cancer cell lines [162]. Subsequently,
it was discovered that a non-steroidal anti-inflammatory
drug, meclofenamic acid (MA), could specifically inhibit
the activity of FTO demethylase and increase the m6A
level of mRNA. Further studies have confirmed that MA
can inhibit the growth and survival of glioblastoma stem
cells [163, 164] and enhance the efficacy of the chemo-
therapeutic drug temozolomide [165]. R-2HG is the
main metabolite of IDH1/2 mutants. In the treatment of
AML, R-2HG and DNA methyltransferase inhibitors,
such as decitabine, have a synergistic effect [73]. In
addition, two derivatives of MA have been found to be
FTO inhibitors, including FB23 and FB23-2. Although
FB23 and FB23-2 show stronger effects in inhibiting the
FTO activity and viability of human AML cells, the
degree of inhibition is not satisfactory [166].

Two newly reported small molecule inhibitors, CS1
(Bisantrene) and CS2 (Brequinara), can directly bind to
the enzymatic reaction center of FTO, interrupting its
binding with target gene mRNA and thereby inhibiting
its demethylase activity. Both CS1 and CS2 compounds
have broad-spectrum anticancer properties and have
exhibited significant killing effects on a series of solid
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Fig. 4 N6-methyladenosine and cancer invasion and migration. a m6A modification can regulate the tumor cell invasion and metastasis by
affecting the different signaling pathways, including mitogen-activated protein kinase (MAPK), AKT, and Hippo signaling pathways. b m6A
modification can affect the process of epithelial-mesenchymal transition (EMT) by regulating the tumor growth factor beta (TGF-f) and Hippo
signaling pathway, or by regulating the roles of key molecules associated with EMT, such as E-cadherin, Snail, and Zeb1

tumors (breast cancer, pancreatic cancer, and glioblastoma)  preferentially targets YthdF2-expressing cells to inhibit
[167]. A recent study proposed that nicotinamide adenine =~ GSC activity but does not affect the growth of NSCs and
dinucleotide phosphate (NADP) enhances the activity of  glioblastoma in vivo [169].

FTO, thereby regulating the level of m6A modification Chemotherapy, radiotherapy, targeted therapy, and im-
[168]. Furthermore, the small molecule BTYNB can dis- munotherapy are the common methods currently used
rupt the stabilization of IGF2BP1 and inhibit tumor growth  for cancer treatment [170-178]. However, resistance of
[59]. In addition, the IGF1/IGFIR inhibitor Linsitinib the cancer cells against these treatment options results

Glucose b g Glucose
uptake Transporters

—Q.
—@

/

@

Glucose T

a L
1 — (k2D IGF2BP2/3 kl;G;F\ZBPZE LINRIS
: AN
Y V ;\/V\ : MYC/Stability
Glucose-6-P GLUT1/Stability T

! IGF2BP2
AN @

Fructose-6-P' 5 HDGF/Stability

1

i PFKP/decay

v

\;
2-PG

Ie @ « <— (GF2BP2 «— @
PEP A

HDGF/Stability

Pyruvate 20

@ MY C/Stability
1 —

|\j : YTHDF2 p—o—
AN AN
u Ltt LDHB/decay b
actate
(reky) GD
AN

PDK4/Stability

+ YTHDFA1
Acetyl- /\

CoA PDKd4/translation

——————

Fig. 5 N6-methyladenosine and cancer metabolic reprogramming. a m6A modification can participate in the glycolysis process by affecting the
RNA fate of key enzymes involved in the glycolysis process. b The m6A modification can also inhibit the aerobic respiration of cells, allowing
more glucose to participate in glycolysis




Tan et al. Journal of Experimental & Clinical Cancer Research

in treatment failure and disease recurrence. The poten-
tial mechanisms for resistance to drug and radiotherapy
are different, but numerous studies have revealed the
potential role of m6A modification in tumor radiother-
apy and drug resistance. For example, radiation can
cause increased levels of m6A in lung adenocarcinoma
cells, which amplifies the expression of VANGLI1
through the IGF2BP2/3 pathway and activates the down-
stream BRAF/TP53BP1/RAD51 cascade to protect DNA
from damage, thereby reducing the harmful effects of
radiation on LUAD ([179]. For example, FTO-mediated
reduction of m6A modification can promote the expres-
sion of B-catenin and enhance the resistance of cervical
squamous cell carcinoma to chemoradiation therapy
[180]. High expression of ALKBHS5 induces a lower m6A
level and increases radioresistance of glioma stem cells
by regulating homologous recombination (HR) [181].
Moreover, the reduction of m6A modification on METL3
knockout increases the sensitivity of pancreatic and glio-
blastoma stem cells to chemoradiation [182, 183]. m6A
modification can promote the translation of IGFIR mRNA
through the YTHDC2-dependent pathway, thereby activat-
ing the IGF1R-AKT/S6 signaling pathway and leading to
radiotherapy resistance in nasopharyngeal carcinoma [184].

In drug resistance, the role of m6A modification can
be demonstrated by the fact that it serves as an epigen-
etic driver of tolerance to tyrosine kinase inhibitors
(TKIs). During treatment with TKI, the reduction of the
overall m6A modification level mediated by FTO in-
duces the drug-resistant phenotype of leukemia cells
[185]. METTL3 can recognize the G>A mutation
(R273H mutation) in the 273 codon on the pre-mRNA
of TP53 and mediate the m6A modification. This
modification promotes the production of a mutant p53
protein (R273H), which then confers multidrug resist-
ance in colon cancer cells [186]. In addition, m6A modi-
fication can promote the translation of FOXO3 mRNA
through the YTHDF1-dependent pathways, making liver
cancer cells more sensitive to sorafenib [187]. However,
the m6A-mediated HNF3y reduction will cause liver
cancer cells to be resistant to sorafenib [188]. Interest-
ingly, m6A modification can stabilize CircRNA-SORE;
CircRNA-SORE can act as a miRNA sponge, adsorbing
miR-103a-2-5p and miR-660-3p, thereby competitively
activating the Wnt/p-catenin pathway and inducing so-
rafenib resistance [189]. This shows that the response of
m6A modification to drugs may not be single and easy
to understand. In addition, the down-regulation of m6A
modification can increase the sensitivity of pancreatic
cancer cells to gemcitabine, 5-fluorouracil, and cisplatin
[182]. Furthermore, the reduction of m6A modification
can inhibit the translation of YAP through the YTHD
F1/3 and elF3b pathways, thereby enhancing the sensi-
tivity of lung cancer cells to cisplatin [119]. Similarly, the
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increase of m6A modification can enhance the stability
of FZDI0, up-regulate the Wnt/p-catenin pathway, and
promote PARPi resistance in BRCA-deficient epithelial
ovarian cancer cells [190]. In pancreatic ductal adenocar-
cinoma, ALKBH5 can reduce the m6A modification on
WIF1 mRNA and enhance its stability. Overexpression of
WIE-1 inhibits the Wnt signaling pathway, increasing the
sensitivity of pancreatic ductal adenocarcinoma cells to
gemcitabine [191]. m6A modification is also closely
related to cancer immune checkpoint blocking therapy.
The therapeutic effect of PD-L1 blockade therapy in
YTHDFI knockout mice is greatly enhanced [192]. In
addition, FTO knockouts make melanoma cells sensitive
to interferon gamma (IEN vy), thereby increasing the sensi-
tivity of mouse melanomas to PD-1 monoclonal antibody
treatment [193]. Even more exciting is that targeting m6A
regulatory factors can improve the efficacy of immuno-
therapy. For example, deletion of METL3/14 and
ALKBHS5 increases the sensitivity of tumors to anti-PD-1
therapy [194, 195].

m6A modification provides a new potential option for
cancer treatment. The development of new m6A editing
tools may further promote the development of m6A
RNA methylation research. A site-specific m6A write
and erase tool has been developed to edit RNA methyla-
tion without changing the nucleotide sequence and over-
all m6A status [196]. The use of a dm6A clustered
regularly interspaced short palindromic repeats (CRIS
PR) system in tumor cells to target the RNA of the
oncogene EGFR/MYC can significantly reduce its ex-
pression level and inhibit the growth of tumor cells, thus
revealing the potential value of the dm6A CRISPR
system in cancer treatment [197].

Conclusion

This article reviews the regulation of different cancer
biological processes by m6A modification. The study
elaborates on the outcomes of the different fates of
modified RNA molecules on cancer treatment as a result
of m6A modification. The current research initially
revealed that m6A modification has a decisive effect on
the fate of non-coding RNA, including microRNA,
IncRNA, circRNA, rRNA, and even RNA related to
chromatin regulation. Interestingly, non-coding RNA
can also regulate m6A levels by regulating m6A regula-
tors. The interaction between the two is anticipated to
provide a better understanding of the role of m6A
modification.

However, to accurately study the impact of m6A
modification on modified RNA molecules, we first need
to develop new technologies with higher accuracy,
convenience, and high-throughput, as well as ones that
can be applied to m6A modification imaging. Third-
generation nanopore sequencing technology has been
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initially applied in the identification of m6A modification
sites. Although false positives are high, it is expected to
become more commonly used [198]. Notably, we need
to determine how methylases and demethylases achieve
accurate regulation of different target RNAs and figure
out the link of specific m6A modification sites with the
resultant phenotypes. It has been reported that miRNAs,
transcription factors, histone modifications, and RNA
binding proteins are involved in the specific regulation
of m6A modification [199-201].

Different cancer cells have many common characteris-
tics [202] which are targeted by the m6A modification
approach through posttranscriptional regulatory mecha-
nisms. In addition to proliferation, apoptosis, invasion
and metastasis, and metabolic reprogramming, m6A
modification can also interfere with the immune escape
of tumor cells by regulating the presentation ability of
dendritic cells and affecting the expression of immune
checkpoint genes (LILRB4) [167, 192]. Studies have also
initially revealed the role of m6A modification in regu-
lating genome instability and accumulation of R-loop
[203] and promoting homologous recombination repair
of double-stranded DNA breaks [204].

In addition, m6A modification can also regulate the
expression of VEGFA through the miR-143-3P/VASH1
axis [205], as well as through the regulation of SERP
INE2, IL11 [206], and HDGF stability, thus affecting
tumor angiogenesis [158]. These studies have shed
significant light on the research of m6A modification in
cancer. Reports have revealed the profound impact of
m6A modification on the treatment of tumors. Future
research should focus on the development of new drugs
targeting m6A modification regulators and verify their
clinical efficiency to achieve effective treatment of
tumors. An attractive strategy could be a combination of
m6A modified target drugs with radiotherapy, chemo-
therapy, and immunotherapy to obtain more successful
therapeutic effects.

In general, the study of m6A modification in cancer is
still worth exploring. m6A modification and other epi-
genetic regulation, including the interaction of chroma-
tin state, histone modification, and gene expression, are
newly emerging fields of m6A modification research.
Histone modifications help deliver m6A modifications to
actively transcribed nascent RNA [200], and m6A
modifications can also remove the methylation of the
suppressive H3K9me2 corresponding to the chromatin
region and activate gene transcription [207]. In addition,
m6A modification can participate in the adjustment of
the chromatin state by regulating the stability of
chromatin-related regulatory RNAs and affecting the dis-
tribution of activated histone modifications (H3K4me3
and H3K27ac) on the chromatin. Interestingly, although
YTHDEF2 has been reported to induce mRNA decay, new
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studies have found that YTHDEF2 stabilizes MYC and
VEGFA transcription in an m6A-dependent manner.
There will soon be more reports on the regulatory
effects of m6A modification on genes at the transcrip-
tional leve [169].

Current research has initially revealed that m6A modi-
fication has a decisive effect on the fate of non-coding
RNA, including microRNA, IncRNA, circRNA, rRNA,
and even RNA related to chromatin regulation. Interest-
ingly, non-coding RNA can also regulate m6A levels by
regulating m6A regulators. The interaction between the
two will surely generate more sparks and help us to
understand more deeply the role of m6A modification.
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