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CORRESPONDENCE

Targeting ERRα promotes cytotoxic 
effects against acute myeloid leukemia 
through suppressing mitochondrial oxidative 
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Abstract 

Acute myeloid leukemia (AML) is an aggressive blood cancer with poor clinical outcomes. Emerging data suggest that 
mitochondrial oxidative phosphorylation (mtOXPHOS) plays a significant role in AML tumorigenesis, progression, and 
resistance to chemotherapies. However, how the mtOXPHOS is regulated in AML cells is not well understood. In this 
study, we investigated the oncogenic functions of ERRα in AML by combining in silico, in vitro, and in vivo analyses 
and showed ERRα is a key regulator of mtOXPHOS in AML cells. The increased ERRα level was associated with worse 
clinical outcomes of AML patients. Single cell RNA-Seq analysis of human primary AML cells indicated that ERRα-
expressing cancer cells had significantly higher mtOXPHOS enrichment scores. Blockade of ERRα by pharmacologic 
inhibitor (XCT-790) or gene silencing suppressed mtOXPHOS and increased anti-leukemic effects in vitro and in 
xenograft mouse models.
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To the Editor,
Acute myeloid leukemia (AML) is the most common 

type of leukemia with an unsatisfactory clinical outcomes 
(5-year survival = 24%) [1, 2]. While recent studies have 

highlighted the significance of excessive mitochondrial 
respiration, metabolism, and oxidative phosphorylation 
(mtOXPHOS) in leukemogenesis [3–5], the key regula-
tors of mitochondrial function in leukemic cells remain 
unknown. In this study, we report that, estrogen-related 
receptor-α (ERRα), an orphan nuclear receptor involved 
in mitochondrial biogenesis and metabolic homeostasis 
[6, 7], plays an oncogenic role in AML by combining in 
silico, in vitro, and in vivo analyses.

We first investigated whether ERRα expression is asso-
ciated with AML tumorigenesis and progression. ERRα 
expression was significantly higher in leukemic cells 
than in hematopoietic stem and progenitor cells from 
healthy donors (Fig.  1A), in the bone marrow of AML 
patients than in healthy controls (Fig.  1B), and in AML 
cell lines than its level in normal immune cells (Fig. 1C). 
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Immunohistochemistry staining further confirmed ERRα 
is expressed in bone marrow of AML patients but not 
of non-leukemia controls (Fig.  1D). Furthermore, ERRα 
expression was associated with patient survival rates in 
two independent AML cohorts (Fig.  1E). These results 
together suggest that ERRα plays an important role in 
AML tumorigenesis and progression. As a transcription 
factor binding promoter regions of its target genes [6–8], 
ERRα target genes in myeloid leukemia cells were identi-
fied by intersecting genes with predicted ERRα binding 
sites in their promoter regions, and genes co-expressed 
with ERRα in AML cell lines (Fig.  1F, Additional file  1:  
Data 1). ERRα activity scores based on the target genes 
were associated with patients’ survival (Additional file 3: 
Fig. S1A and B). The ERRα+ target genes were signifi-
cantly enriched in the mtOXPHOS pathway (Fig.  1G, 
Additional file 3: Table S1) suggesting ERRα as a regula-
tor of the mtOXPHOS pathway in AML cells.

At the single-cell level, ERRα was expressed significantly 
higher in aneuploid compared to diploid cells (Fig.  1H 
and I). mtOXPHOS genes were expressed at significantly 
higher levels in aneuploid than diploid cells (Fig.  1J) and 
ERRα-expressing aneuploid cells showed significantly 
higher mtOXPHOS enrichment scores than aneuploid 
cells without ERRα expression (Fig. 1K). In the three AML 
samples from van Galen et  al. [9], mtOXPHOS genes 
were expressed at higher levels in the ERRα-expressing 
malignant cells than in normal or other malignant cells 
(Additional file 3:  Fig. S1C and D) confirming that ERRα 
expression is associated with higher mtOXPHOS in AML 
cells. From the transcriptomic profiling of KG1α cells with 
control and treatment of XCT-790 (an ERRα inverse ago-
nist [10, 11]), the differentially expressed genes (Additional 
file 2: Data 2) significantly overlapped with the ERRα tar-
get genes, validating that transcription levels of the ERRα 
target genes were regulated by ERRα. XCT-790 treatment 
significantly downregulated the mtOXPHOS pathway and 
mitochondrial genes (Fig. 2A, Additional file 3: Table S2).

The associations between ERRα and the mtOXPHOS 
pathway were further investigated using 3 AML cell lines 
with high ERRα expression and mixed CD34 expression 
(Additional file 3: Fig. S2A) and primary cells (Additional 
file  3: Table  S3). First, ERRα inhibition by either XCT-
790 or shRNA specific to ERRα (shERRα) significantly 
reduced the mRNA expression of mtOXPHOS complexes 
(NDUFS3, UQCRFS1, COX5A, and COX5B) (Fig.  2B, 
and Additional file 3: Fig. S2B). In addition, ERRα block-
ade suppressed protein levels of mtOXPHOS complexes 
in AML cell lines (Fig. 2C and Additional file 3: Fig. S2C; 
Complex I, III, and IV by XCT-790 and Complex I and III 
by shERRα, respectively). Notably, XCT-790 treatment 
decreased the levels of mtOXPHOS complexes (Complex 
I, III, and IV in THP-1 cells) in the presence or absence of 
Z-VAD (Additional file 3: Fig. S2D), a pan-caspase inhibi-
tor, suggesting that these proteins are suppressed by ERRα 
inhibition, not by cell death (Additional file  3: Fig. S2D). 
Further, cellular respiration and ATP generation were sig-
nificantly decreased with ERRα targeting either by genetic 
knockout (Fig.  2D) or XCT-790 treatment (Additional 
file  3: Fig. S2E) in AML cell lines. Again, a decrease in 
basal/maximal respiration as well as a loss of ATP produc-
tion was observed in XCT-790-treated cells independent 
from Z-VAD treatment (Additional file 3: Fig. S2E), indi-
cating that the OCR differences were driven by ERRα inhi-
bition rather than cell death. ERRα silencing also increased 
the number of damaged mitochondria with swollen and 
distorted cristae structures (Fig. 2E and Additional file 3: 
Fig. S2F), leading to decrease cell proliferation (Additional 
file 1: Fig. S2G). XCT-790 treatment decreased cell viabil-
ity in AML cells (Fig.  2F and 2G, Additional file  3: Fig. 
S2H). More importantly, XCT-790 showed significantly 
stronger cytotoxicity to AML cells compared to normal 
monocytes (Fig. 2G), highlighting its potential as a thera-
peutic target. XCT-790 treatment in AML cells stimulated 
caspase 9 cleavage and apoptosis (Fig. 2H and I, Additional 
file 3: Fig S2I–K). ERRα knockdown in HL-60 also induced 

Fig. 1  ERRα expression and OXPHOS pathway higher in AML cells. A ERRα expression comparison between hematopoietic stem or progenitor cells 
in 7 healthy donors and leukemic sub-population in 21 AML patients. Subtype information as well as CD34 status of individual sample is available 
in GSE63270; Hematopoietic stem cell (HSC), Multipotent progenitors (MPP), Common Myeloid Progenitor (CMP), Lymphoid-primed multipotent 
progenitor (LMPP), Granulocyte-erythroid progenitor (GMP), Megakaryocyte-erythroid progenitors (MEP). B ERRα expression comparison between 
healthy controls and AML patients in two independent cohorts (E-MTAB-220 and GSE9476). C ERRα expression comparison between AML cell 
lines (n = 32) and LM22 immune reference cells (n = 195). A–C P values were calculated by two-tailed t test. D Immunohistochemistric analysis of 
ERRα protein expression in bone marrow samples from three non-leukemic donors and four AML patients. E KM plots showing survival probability 
differences among patients stratified by mean and standard deviation of ERRα expression into low, medium, and high groups. P values were 
calculated by log-rank test (LRT). F Schematic definition of ERRα target genes from integration of ChiP and RNA-Seq data. G HALLMARK genes 
set significantly enriched (FDR < 0.01) within ERRα + genes in AML cell lines. H Clustering 5162 cells into aneuploid, and diploid cells based on 
copy number alterations determined by CopyKat (left). ERRα expression among the 5162 cells (right). I Comparison of ERRα expression between 
aneuploid and diploid cells. J Comparison of OXPHOS pathway activity between individual aneuploid and diploid cells. K Comparison of OXPHOS 
pathway activity between ERRα expressing aneuploid cells and other aneuploid cells. (I–K) P values were measured by two-tailed Wilcoxon rank 
sum test. Each dot in the figure represents a single cell

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Fig. 2  (See legend on next page.)
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mitochondria-associated apoptosis (Additional file 3: Fig. 
S2L and M). Our data suggest that blockade of ERRα can 
induce apoptotic cell death in AML cells.

Lastly, we tested the effects of ERRα inhibition using 
in  vivo xenograft mouse models. First, we evaluated the 
effect of tumor progression depending on ERRα expression 
using two different AML xenograft mouse models (Fig. 2J 
and K; heterotopic and orthotopic murine models of AML, 
respectively). In NOD/SCID mice, the tumor growth of 
subcutaneously injected KG1α transduced with shERRα 
(shERRα-KG1α) was significantly impeded, when com-
pared with that of nonspecific shRNA-transduced KG1α 
cells (shNS-KG1α) (Fig.  2J). In addition, the survival rates 
were significantly increased in the NOD/SCID/IL2Rγnull 
(NIG) mice intravenously engrafted by shERRα-KG1α cells, 
compared with those engrafted with shNS-KG1α (Fig. 2K). 
The leukemic burden of the bone marrow was significantly 
decreased in the XCT-790-treated HL-60-transplanted 
NOD/SCID mice than those in the vehicle-treated group 
(Fig. 2L); however, there were no differences of body weights 
between the vehicle- and XCT-790-treated groups (Addi-
tional file 3: Fig. S2N). Together, targeting ERRα promotes 
antileukemic effects through suppression of mtOXPHOS 
and inducing apoptotic cell death of AML cells. Considering 
the long-lasting interest of ERRα action on the solid cancers 
[12], the current data provide new insights into the role of 
ERRα as a therapeutic target in hematologic cancers.
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Fig. 2  ERRα inhibition induces AML cell death through intrinsic apoptosis. A Venn diagram showing the overlap between down-regulated genes 
by XCT-790 treatment in RNA-Seq and ERRα + genes among HALLMARK OXPHOS genes. Four genes selected for further experimental validations 
were marked in red. B Relative expression of NDUFS3, UQCRFS1, COX5A, and COX5B significantly downregulated by XCT-790 treatment (10 µM for 
24 h) in AML patient-derived cells (n = 9). C. Western analysis of mtOXPHOS complexes in THP-1 cells by XCT-790 treatment (5 µM; for lanes 2 and 
3, 24 and 48 h, respectively) and at multiple concentrations (2.5 µM, 5 µM, 10 µM; 48 h). D Oxygen consumption rate (OCR) evaluated by Seahorse 
XF analysis between wild-type and ERRα knockout (KO #13 and #20) cells. E Representative electron microscopic images between wild-type (WT) 
and ERRα KO KG1α cells. Damaged, swollen, and disturbed cristae in the mitochondria of ERRα KO KG1α cells are marked with arrows. Scale bars, 
1 µM and 0.2 µM. Quantification of the cristae width between WT (n = 20) and ERRα KO (n = 18) cells (right). F, G, and I CCK8 assay for KG1α cells 
(F, I), patient-derived AML cells, and primary monocytes from healthy controls (HC) (G). F and G, XCT-790 for 72 h; I, XCT-790 and/or Z-VAD-FMK 
(Z-VAD) for 30 h. H Western analysis of apoptotic proteins in KG1α cells by XCT-790 treatment (5 µM; for lanes 2 and 3, 24 and 72 h, respectively) 
and at multiple concentrations (2.5 µM, 5 µM, 10 µM; 72 h). J Progression of tumor volumes in NOD/SCID mice subcutaneously injected with KG1α 
cells transduced with targeting ERRα (shERRα-KG1α) or non-targeting control shRNA lentivirus (shNS-KG1α). K. Survival rates of NIG mice injected 
with shERRα-KG1α or shNS-KG1α (4 × 106 cells/mice). Median survival times are 56 and 36 days for the shERRα-KG1α-engrafted mice (n = 10) 
and the shNS-KG1α-engrafted mice (n = 14), respectively. L Flow cytometric analysis of engrafted HL-60 cells into NOD/SCID mice at 4 weeks 
post-transplantation. A representative image of the engrafted HL-60 cells (human CD45+ (hCD45+) and murine CD45− (mCD45−)) by XCT-790 
(8 mg/kg) for three weeks (left); the quantitative data of tumor burdens in the bone marrows (right). P < 0.05 (*), P < 0.01 (**) and P < 0.001 (***) 
were used to determine statistically significant differences. Two-tailed t test (B, E right, L right), extra sum of square F test (G, J), log-rank test (K) or 
one-way ANOVA (F, I). Data are the combined results from three independent experiments (K), representative of three independent experiments 
(C, E left, H, and L left). Data represent means ± SD from three or four independent experiments performed in triplicate (B, D, E right, F, G, I, J, and L 
right)
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