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MYC: a multipurpose oncogene 
with prognostic and therapeutic implications 
in blood malignancies
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Abstract 

MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, 
apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regu-
lated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regula-
tion and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies 
are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic 
malignancies.
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Introduction
MYC (mostly referred to as c-Myc) is a super-transcrip-
tion factor encoded by the MYC gene located at chro-
mosome 8 q24.21 [1]. The MYC oncoproteins (C-myc, 
N-myc, and L-myc) controls the transcription of nearly 
15% of expressed genes [2]. MYC’s main downstream 
mediators, including those participating in ribosome 
biogenesis, mRNA translation, cell-cycle regulation, and 
stress responses, impact a vast range of biological events, 
such as proliferation, differentiation, survival, pro-
grammed cell death, and immune regulation [2, 3].

There is a high level of architectural homology in the 
motifs at the flanked domains of the MYC family mem-
bers, including the basic-region (BR), helix-loop-helix 
(HLH), and leucine-zipper (LZ) in C-terminal, and three 
extremely conserved regions called MYC boxes 1–3 (MB 

1–3) at the N-terminal [3–5]. MYC creates a heterodimer 
with its co-factor, Max (MYC/Max), via BR, HLH, and 
LZ motifs requisite for DNA–protein interactions (Fig. 1) 
[3–5]. The chromatin-modifying complex consisting of 
TIP60, TRRAP, TIP48, and GCN5 recruited by MYC/
Max heterodimer propels transcription through binding 
to the E-box DNA region (CAC​GTG​) within the regula-
tory domain of target genes [3–5]. Accumulation of MYC 
at the promoter sequences of target genes can also aug-
ment the transcriptional activity of genes (Fig. 2) [6].

The MYC expression pattern is tightly regulated in 
normal conditions, though MYC is often dysregulated 
in cancers. Retroviral integration, chromosomal rear-
rangements, activation of super-enhancers of its gene, 
and mutations in signaling pathways related to MYC 
can promote MYC’s instability and overexpression [3]. 
The MYC expression is highly controlled at several lev-
els, including transcription (initiation and elongation), 
mRNA stability, translation, and post-translation (pro-
tein stability). MYC is a very short-lived protein with 
a half-life of about 20–30  min because of quick turn-
over through the ubiquitin–proteasome system [7]. 
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Consequently, the MYC protein level is strongly con-
trolled by ubiquitin–proteasome degradation.

The pivotal role of MYC in the cell cycle regulation 
and the proliferation rate has been deeply investi-
gated in several studies. Reduced need for growth fac-
tors, increased cell division, and size can be seen in 
response to transfection or transduction with MYC 
[8–10]. Entering and exiting cell-cycle is achievable 
by decreasing or increasing MYC expression [11, 12]. 
After mitogenic stimulation of MYC expression, which 
is undetectable in quiescent cells, MYC increases rap-
idly and mediates cell entry to the G1 phase. This is fol-
lowed by a decrease in MYC mRNA and protein levels 
[13]. A better understanding of cell-cycle regulation by 
MYC helps find novel therapeutic approaches to target 
the MYC.

The role of MYC in cell damage has been investigated 
in numerous studies. In DNA damage caused by UV 
irradiation or other agents, MYC levels are decreased 
through different mechanisms, including alternation in 
MYC transcription and protein turnover [14–16]. The 
results of several studies exhibit that decreased levels of 
MYC are seen as a DNA damage response (DDR) [15, 17, 
18]. A decreased MYC levels and accumulation of p53 
in DDR is a normal response to regulating cell damage 
[14]. MYC promotes apoptosis via increasing the p53 lev-
els indirectly, in turn, p53 suppresses MYC expression. 
DNA repair inhibition, ROS generation, and increased 
replication stress are among the MYC-induced DDR 

mechanisms [19]. In cancer however, this fine-tuned 
interplay between p53 and MYC is mostly deregulated.

The first oncogene reported to induce apoptosis was 
MYC [20]. A well-known fundamental function of MYC 
is induction of apoptosis. MYC transcription factor has a 
dual role in tumor cells. It can activate and repress vari-
ous downstream pathways that can induce proliferation 
or apoptosis [6]. Apoptosis has a role in physiological 
processes, such as embryonic development, tissue mor-
phogenesis cellular hemostasis life. Hence, MYC-induced 
apoptosis indicates this transcription factor’s normal 
function in controlling cell death [21]. Indeed, MYC 
exerts a safeguard mechanism by induction of apoptosis. 
It should be noted that a higher level of MYC is required 
for apoptosis compared to the concentrations needed to 
trigger cell proliferation, indicating that under normal 
conditions, cells are able to proliferate [22].

The MYC is a “global” transcription factor contributing 
to various cellular processes, one of which is hematopoie-
sis. In the bone marrow (BM) of adults, 300 million cells 
are produced every minute [23]. Regulation of hemat-
opoiesis requires cell–cell interactions, cytokines, and 
coordinated activity of transcription factors. Studies have 
revealed that MYC has a significant role in nearly every 
step of the way [23, 24].

Uncontrolled MYC expression is observed in human 
leukemias and lymphomas. Generally, MYC overexpres-
sion does not stem from point mutations in the gene [25–
27]. Rather in hematological malignancies such as acute 
lymphoblastic leukemia (ALL), chronic lymphocytic leu-
kemia (CLL), and myeloid neoplasms, overexpression 
is mainly due to the gene amplification, chromosomal 
translocations, and dysregulation at the transcriptional 
level [28]. Overall, given MYC’s functions, it is not sur-
prising that deregulation and deletion of MYC can con-
tribute to tumorigenesis, particularly in hematological 
cells.

Aberrant MYC expression usually confers a poor prog-
nosis. Targeting the MYC family, especially MYC, is of 
utmost significance in identifying treatment options for 
hematological malignancies [29]. Here, we explain the 
role of MYC in various cellular functions, including cell 
cycle, MYC-mediated DDR, and apoptosis, as well as 
MYC regulatory processes. In particular, different types 
of hematological malignancies and their association 
with MYC deregulation have been thoroughly discussed 
in this review along with the effects of various MYC 
inhibitors.

MYC regulation
MYC regulation and transcriptional activity are criti-
cal to maintaining normal cellular processes such as 
cell growth, differentiation, and programmed cell death. 

Fig. 1  Crystal structure of MYC/MAX heterodimer. MYC usually forms 
as a heterodimer with MAX (MYC/MAX) to bind to DNA in E-box 
region (CAC​GTG​). This structure mainly contains the basic-region (BR), 
helix-loop-helix (HLH), and leucine-zipper (LZ), which are required for 
DNA binding
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Deregulation of MYC oncogene has been shown to con-
tribute to more than half of human cancers [4, 30].

The mechanisms that control MYC transcription are 
complex. Several promoters of MYC such as P0, P1, P2, 
P3, and initiation regions are involved. Multiple signals, 
transcription factors, and chromatin components have a 
role in the regulation of MYC mRNA levels [31, 32]. The 
nuclear factor of activated T cells (NFAT) family of tran-
scription factors includes four Ca2+-regulated members 
(NFAT1-NFAT4) initially discovered in T lymphocyte 
as transcriptional activators of interleukin 2 [33]. Previ-
ous studies indicate that NFAT1/2 can regulate MYC 
gene expression by binding to specific sequence elements 
within the proximal MYC promoter [34]. Mognol and 
et  al. demonstrated that the Ca2+\calcineurin\NFAT1 

signaling pathway in mouse T lymphocyte regulates MYC 
expression, the difference is that NFAT1 binds to the dis-
tal site of the MYC promoter. Since the lack of NFAT1 in 
the studied cells shows decreased levels of MYC, NFAT1 
is known as a positive regulator of MYC expression [35].

In addition to transcriptional regulation, MYC stabil-
ity and activity are regulated by several post-transla-
tional modifications (PTM), such as phosphorylation, 
acetylation, methylation, ubiquitination, sumoylation, 
and glycosylation. There are multiple domains in MYC 
that different proteins interact with. The transactiva-
tion domain (TAD), is a 143 amino acid acidic domain 
localized at the N-terminus. It contains two conserved 
regions, Myc box (MB) I and II, mainly required for MYC 
regulation and cofactor recruitment, respectively [36, 

Fig. 2  Schematics of MYC protein and its transcriptional activity. A: MYC gene on chromosome 8 alongside MYC protein (439 aa) that mainly 
contains the basic-region (BR), helix-loop-helix (HLH), and leucine-zipper (LZ) at C-terminal, and three extremely conserved regions called MYC 
boxes 1–3 (MB 1–3) at the N-terminal. B: The chromatin-modifying complex consisting of TIP60, TRRAP, TIP48, and GCN5 recruited by MYC/Max 
heterodimer propels transcription through binding to the E-box DNA region (CAC​GTG​) within the regulatory domain of target genes. C: the 
accumulation of MYC at the promoter sequences of target genes increases the transcriptional activity. NLS nuclear localization sequence
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37]. MYC contains two phosphorylation sites near its 
within MB I, Threonine 58 (Thr-58), and Serine 62 (Ser-
62), which are highly conserved across all mammalian 
MYC isoforms [38, 39].

Phosphorylation of Ser-62 MYC by extracellular recep-
tor kinase (ERK) and cyclin-dependent protein kinase 2 
(CDK2) lead to stabilizing MYC whereas Thr-58 phos-
phorylation by glycogen synthase kinase (GSK-3β) results 
in degradation of MYC through the ubiquitin–proteas-
ome pathway [40]. It has been shown that both Raf\MEK\
ERK kinase cascade and the phosphoinositide 3-kinases 
(PI3K) \Akt signaling pathway significantly elevate the 
half-life of MYC through negative feedback. Mitogenic 
stimulation can promote production and stability of Myc 
and activation of Ras. Ras increases MYC protein stabil-
ity by ERK-mediated phosphorylation of Ser-62 [40, 41]. 
Ras induces activation of PI3K\Akt cascade that leads 
to preventing phosphorylation of Thr-58 by suppressing 
GSK-3β and stabilizing and elevating MYC protein levels. 
During the late G1 phase of the cell cycle, reduced Ras 
activity, leads to Akt signaling downregulation, which 
results in destabilization and degradation of MYC [42]. 
Studies show that interaction between Ser-62 and Thr-
58 play a vital role in regulating MYC expression during 
induced cell proliferation.

Bromodomain protein 4 (BRD4) is an epigenetic and 
transcriptional regulator with intrinsic histone acetyl-
transferase (HAT) and\or kinase activities localized 
at its carboxy-terminal and amino-terminal domains, 
respectively [43]. Similar to GSK-3β, BRD4 directly inter-
acts with Myc and phosphorylates it at Thr-58, resulting 
in Myc destabilization. GSK-3β is mostly cytoplasmic 
and translocates to the nucleus in response to inducing 
extrinsic signaling, but BRD4 is predominantly in nucleus 
thus, it is more likely that BRD4 plays a more critical 
role in maintaining hemostatic levels of Myc. Moreover, 
BRD4, ERK1, and Myc form a trimeric complex and reg-
ulator network to sustain hemostatic levels of Myc. On 
the contrary, Myc can suppress the HAT activity of BRD4 
and thereby regulate BRD4 function while ERK1 inhibits 
the BRD4 kinase activity [44].

The Ras\Raf signaling cascade has an important role in 
the regulation of the MYC promoter. Small GTP-binding 
protein Ras promotes MYC expression by inducing the 
Raf\MAPK\MEK pathway. Platelet-derived growth fac-
tor (PDGF) receptors and Src kinase also can augment 
the activity of Ras proto-oncogene, which results in acti-
vating the mitogen-activated protein kinase (MAPK) 
pathway [45]. However, both PDGF receptors and Src 
mediate the induction of MYC expression independently 
of Ras. Indeed, in response to PDGF, Src activates a sign-
aling pathway known as the Src pathway that culminates 
in the transcription of MYC. Src phosphorylates Vav2 

mediator, resulting in the activation of Rho proteins such 
as Rho, Rac, and cell division complex 42 (cdc42). Evi-
dence shows that activated Rac highly stimulates MYC 
promoter and increases MYC mRNA levels in NIH3T3 
cells. Rho and cdc42 also induce MYC promoter and 
MYC expression [46].

Protein phosphatase 2A (PP2A) is a major substrate-
specific Serine/Threonine phosphatase that regulates 
MYC protein levels. PP2A is a heterotrimeric protein 
composed of a scaffold A subunit, catalytic C subunit, 
and a third highly variable regulatory B subunit [47, 48]. 
Structural A and catalytic C subunits exist in two iso-
forms, α or β. Regulatory B subunits fall into more than 
23 isoforms belonging to four unrelated families named 
B\B55, B′/B56, B″, and B‴. B56 subunits include α, β, 
γ, δ, and ε isoforms. B56α is the only B subunit able to 
negatively regulates MYC protein stability and func-
tion [49, 50]. PP2A complex targeting the MYC protein 
phosphorylated at Ser-62 and Thr-58, dephosphorylates 
Ser-62 residue and regulate MYC turnover through ubiq-
uitin-mediated proteasomal degradation [50]. Moreover, 
PP2A, which contains the B56α subunit, also can activate 
GSK-3β by dephosphorylating it [51].

The Pin1 prolyl isomerase is an essential controller of 
the phosphorylation signaling pathway that explicitly 
recognizes and isomerize the phosphorylated Serine\
Threonine-Proline (phospho(p)Ser\Thr-Pro) motifs [52]. 
Pin1 can also convert the cis conformation to trans. The 
double-phosphorylated MYC (pThr-58 and pSer-62) is 
recognized and undergoes isomerization by Pin1, which 
catalyzes conversion of Pro-63 Myc to the trans confor-
mation. This isomerization at Pro-63 Myc makes it an 
ideal substrate for PP2A-B56α to remove stabilizing Ser-
62 residue and targets pThr-58 Myc for ubiquitin-medi-
ated proteasomal degradation by the E3 ubiquitin ligases 
[53–55]. Furthermore, the MYC can be a substrate for 
Pin1 directly. WW phospho-binding domain of Pin1 is 
required for interaction with MYC, which recognizes 
phosphorylated sites. Phosphorylation at Thr-58 and 
Ser-62 residues can affect Pin1 interaction with the MBI 
site of MYC. The evidence indicates that the role of Thr-
58 compared with Ser-62 is more critical for Pin1 bind-
ing to MYC [56]. Pin1 also affects pSer-62 MYC through 
stabilizing Pro-63 in the cis conformation. This results in 
protecting Ser-62 phosphate from PP2A-B56α-mediated 
dephosphorylation. This function of Pin1increases Myc 
stability, prolongs its interaction with DNA, and alters 
its transcription activity [57]. Thus, Pin1 could have a 
dual function by catalyzing the conformational change 
between cis and trans.

The main mechanism for controlling Myc family pro-
tein turnover is ubiquitin-mediated degradation by dif-
ferent E3 ubiquitin ligases. MYC is poly-ubiquitinylated 
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by several E3 ubiquitin ligases, including Fbw7, Skp2, 
TRUSS, HectH9, TRIM32, and CHIP [58–63]. Fbw7 (also 
named hCdc4 or hSel 10) is a well-known E3 ubiquitin 
ligase. It is a member of the F-box proteins family that 
are components of SCF-type (Skp-Cullin-F box) ubiq-
uitin ligase [64]. The Fbw7 human gene encodes three 
isoforms (Fbw7α, Fbw7β, and Fbw7γ), by alternative 
splicing. These isoforms are distinct in their subcellular 
localization (Fbw7α: nucleoplasmic, Fbw7β: cytoplas-
mic, Fbw7γ: nucleolar). Among them, both the Fbw7α 
and Fbw7γ isoforms are involved in regulating Myc pro-
tein turnover [65, 66]. MYC phosphorylation at Thr-58 
and Ser-62 is required for Fbw7 to regulate MYC stabil-
ity. Fbw7 recognizes the phospho-degron sequence that 
includes Thr-58 and Ser-62 within MBI. They control the 
Fbw7-mediated turnover of MYC. When Pin1 and PP2A-
B56α dephosphorylate Ser-62, Fbw7 E3 ligase recognizes 
pThr-58 and mediates degradation of MYC by 26S pro-
teasome [54, 59].

The multi-domain scaffold protein Axin1 stimulates 
formation of a complex between GSK-3β, PP2A-B56α, 
Pin1 and MYC. This complex can undergo ubiquitin-
mediated degradation to suppress MYC transcriptional 
activity. Chromatin immunoprecipitation detects Axin1 
on Myc promoter along with Fbw7, GSK-3β, PP2A-B56α, 
Pin1 complex and parts of 26S proteasome [55, 57].

F-box protein Skp2 is another E3 ubiquitin ligase and 
belongs to the Cullin-RING ligase that is identified for 
MYC ubiquitination and degradation. Skp2 interacts 
with two conserved and functionally vital regions of the 
MYC, basic-helix-loop-helix-leucine zipper (bHLHZ) 
motif (amino acids 379–418) and MBII (amino acids 
129–147). During G1 to S phase transition this stimu-
lates MYC degradation [60, 67]. Unlike Fbw7, which is 
associated with the MBI domain of MYC, Skp2-medi-
ated ubiquitination is phosphorylation independent [67]. 
Although Skp2 reduces MYC protein stability and induce 
its degradation, this complex has the opposite effect on 
MYC transcriptional activity, which means that Skp2 as 
a cofactor of MYC promotes its transcriptional activity 
[60].

In addition to Fwb7 and Skp2 as the two main path-
ways of ubiquitin-mediated degradation of MYC, the 
other pathways exist for Myc degradation. Chung and 
colleagues first reported Romo1 (Reactive oxygen species 
modulator 1) in 2006 as a protein that enhances cellular 
ROS levels [68]. Romo1 is located in the mitochondrial 
membrane and induces ROS release produced by com-
plex III of the mitochondrial electron transport chain 
into the cytosol [69]. Indeed, Romo1 can cause cytoplas-
mic translocation of Skp2 and Myc promoting its ubiq-
uitination and degradation. Romo1\ROS\Skp2 is another 
pathway involved in Myc turnover. Romo1 also can 

promote Skp2\Myc interaction and Myc ubiquitination. 
Lee et al. demonstrated in a negative feedback loop, Myc 
stimulates Romo1 expression to increase cellular ROS 
levels. ROS in turn enhances cytoplasmic translocation 
of Skp2, which results in Myc ubiquitination and degra-
dation [70].

Li et  al. studies indicate the 11S proteasome activa-
tor REGγ as a novel ubiquitination-independent path-
way to promote MYC turnover [71]. Unlike the other 
two isoforms of REG (REGα, REG β) that are predomi-
nantly localized in the cytoplasm, REGγ is mainly located 
in the nucleus and related to the 20S proteasome [72]. 
REGγ can interact with MYC. The C-terminal domain 
of MYC is responsible for this interaction between REGγ 
and MYC. Ectopic expression of REGγ suppresses MYC 
transcriptional activity and promotes the degradation of 
MYC. This study showed that the knockdown of REGγ 
significantly elevates the stability of the MYC protein. 
REGγ also negatively regulates MYC-mediated gene 
expression and cell growth [71].

Pirh2 (p53-induced RING-H2 protein), also called 
Rchy1, has an important role in tumorigenesis with 
ubiquitin ligase activity [73]. As shown in the studies of 
Hakem et  al., Pirh2 can control MYC stability through 
polyubiquitination and proteolysis of MYC. Of note, 
Skp2 interacts with MBII and C-terminal domain of 
MYC and N- and C-terminal domain of Pirh2. It was also 
shown that in Pirh2-knocked down human RKO cells 
and Pirh2 deficient murine cells, the level of MYC pro-
tein significantly increased. This shows that Fbw7, Skp2 
and Pirh2 play a critical role in MYC turnover [74].

The transcription factor PLZF (promyelocytic leuke-
mia zinc finger), also known as zbtb16, belongs to the 
POZ-Krüppel (POK) family that binds to a specific DNA 
sequence and regulate various biological process includ-
ing cell proliferation, differentiation, and organ devel-
opment [75]. Wild type (wt) PLZF directly binds to the 
MYC promoter, which mediates repression of the MYC 
promoter and reduces the level of MYC mRNA and 
phosphorylation [76]. PLZF can regulate MYC post-
transcriptionally, through its impact on the Akt\MAPK 
pathway. Indeed, PLZF modulates the MAPK pathway, 
decreasing phosphorylation of MYC at Ser-62. As well, it 
reduces phosphorylation of Thr-58, resulting in increased 
MYC stability whereas reducing its transcriptional activ-
ity [77].

In recent decades, the importance of microRNAs (miR-
NAs) as oncogene\tumor suppressors has been recog-
nized. miRNAs are short non-coding RNA molecules 
ranging from 21 to 25 nucleotides in length, which bind 
to a target sequence within the untranslated region (3’-
UTR) of an mRNA [78, 79]. miRNAs can regulate gene 
expression in a post-transcriptional manner. miR-34c is 
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a member of the miR-34 family that targets MYC dur-
ing DNA damage. To restrict Myc-induced DNA synthe-
sis, repression of MYC by miR-34c is a crucial event in 
response to DNA damage. It inhibits continuous DNA 
synthesis and proliferation in the face of damaged DNA 
[80, 81].

The role of MYC in cell cycle regulation
The pivotal role of MYC in the cell cycle regulation and 
the proliferation rate has been assessed in several stud-
ies (Figs.  3, 4) [8–10]. Entering and exiting cell cycle in 
quiescent cells is achievable by MYC regulation [11, 12]. 
MYC has an important role in entering the G1 phase. 
This phase is longer in MYC deficient rat fibroblasts in 
comparison to the wildtype-cells [82]. The human ubiq-
uitin ligase HectH9 contributes in MYC-mediated cell 
cycle progression and activation of target genes. In 
human tumor cell lines lacking HectH9, cells cannot pro-
gress beyond the G1 phase of cell cycle [58]. The stability 
of MYC is regulated by the Raf-MEK-ERK and the PI3K-
Akt cascades. ERK-mediated MYC phosphorylation at 
Ser26 protects it from degradation, while GSK-3β phos-
phorylates MYC at Thr58 and exposes it to ubiquitin–
proteasome mediated degradation. In the early G1 phase, 
Ras-induced ERK activation leads to GSK-3β inhibition, 
but in the end of G1 phase, GSK-3β is activated upon 
decreased function of Ras-PI3K-Akt pathway [40, 83, 84].

Ectopic MYC expression induces cells to enter S-phase 
and mediates mitosis in the absence of growth fac-
tors [85]. Schuhmacher et al. studied the effects of fine-
tuned MYC protein on proliferation rate and cell cycle 
distribution in human lymphoblastoid p493-6 cell line. 
They observed that the steady increase in the fraction 
of cells in the S- and G2/M- phase, increased prolifera-
tion rate, and cell size relies on high levels of MYC in a 
dose-dependent manner, [86, 87]. Using MYC antisense 
oligonucleotides in human lymphoid and myeloid cells 
prevents entry into S-phase [88, 89]. Depletion of MYC 
in 23 cell lines with short-hairpin in a systematic study 
led to cell cycle arrest in G0/G1 in normal and some 
tumor-derived cell lines, whereas G2/M arrest happened 
in other tumor-derived cell lines [90]. Cell proliferation is 
hampered by the action of Mxd proteins that antagonize 
MYC transcriptional activity [37, 91, 92]. Expression of 
MadMYC a dominant negative MYC mutant containing 
the DNA binding and dimerization domains of MYC and 
the trans-repression domain of Mxd1 (also called Mad1), 
can inhibit the cell cycle arrest [93, 94]. The expression 
of this mutant blocks CCNB1 (cyclin B1) upregulation 
following stimulation of starved cells with serum [95]. 
In response to moderate hypoxia, HIF-1α inhibits MYC 
causing cell cycle arrest, but HIF-2α can reverse it [96, 
97]. The results of these studies reveal that MYC regu-
lates cell cycle progression.

Fig. 3  A brief overview of MYC regulation. Multiple regulators from different classes are involved in MYC regulation. Red and green arrows point to 
the negative and positive regulatory effects of each factor on MYC, respectively
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A family of serine-threonine protein kinases consist-
ing of a regulatory subunit, cyclin, and a catalytic subunit 
or CDK [98, 99]. The levels of cyclin oscillate through-
out the cell cycle, resulting in CDK activation. In con-
trast, the activity of CDKs remains stable during the cell 
cycle (CDK1, 2, 4, and CDK6 for G1 phase, CDK2 for S 
phase, and CDK1 for G2 and M phases) [100]. Decreased 
activity of CDK4, 6 and CDK2 as well as prolonged G1- 
and G2-phase were seen in MYC-deficient cells [101]. 
Hypophosphorylated Rb sequesters and forms a com-
plex with E2F1 transcription factor to suppress tran-
scription of genes related to S-phase [102, 103]. At the 
early G1 phase, Rb is phosphorylated and E2F transcrip-
tion factors are released upon the activation of CDK4/6 
by D-type cyclins [104, 105]. G1/S transition relies on 
the CDK2 activation by cyclin E. Transition to S phase 
requires the expression of E2F target genes, which is 
dependent on further Rb phosphorylation by the action 
of cyclin E1/2-CDK2 in the end of G1 phase [106]. Cyclin 
E is degraded and replaced by cyclin A that is required 
for DNA replication and transition from S to M phase 
[107, 108]. CDK1 activation by B-type cyclins promotes 
transition into M phase [98, 109].

CDK inhibitory proteins (CKIs) comprising of the 
INK4 and the CIP/KIP (CDK interacting protein/kinase 
inhibitory protein) families downregulate CDKs and 
[110, 111]. The members of INK4 family including p15, 
p16, p18, and p19 bind to CDK4/6 to hamper their kinase 
activity and impair the CDK4/6-cyclin D interaction 
[110, 111]. p15 and p16 impede Rb phosphorylation and 
S-phase entry [112]. In response to high levels of p15, 
cell proliferation as the consequence of p27 redistribu-
tion from cyclin D-CDK4/6 to cyclin E-CDK2 is blocked 
[113].

ARF (alternative reading frame) gene is located in the 
INK4A/ARF/INK4B locus on chromosome 9p21 and 
shares the exon 2 and 3 with p16. ARF causes cell cycle 
arrest in G1 and G2 and favors MYC-mediated apopto-
sis via both p53- dependent and -independent pathways 
[114–116]. ARF sequesters MDM2 from p53, which is 
followed by p53 stabilization and activation and after 
that induction of p21 and other proteins triggers apop-
tosis in a p53-dependent pathway [117]. Moreover, ARF 
interaction with MYC has been shown in several studies 
[118, 119]. Following the elevation of MYC levels, ARF 
binds with MYC and prevents its transactivation ability 

Fig. 4  Diverse mechanisms are considered for MYC collaboration in cell cycle progression. The positive regulators of cell cycle are induced or 
activated by MYC. Through multiple mechanism, MYC blocks the activity of cell cycle regulators
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to induce hyperproliferation and transformation; albeit, 
ARF cannot prevent MYC-induced apoptosis. The under-
lying mechanism is possibly due to the transrepression of 
particular anti-apoptotic genes by MYC [120–123].

The members of CIP/KIP family (p21, p27, and 57) are 
involved in the suppression of cyclinA, E, D/CDK com-
plex catalytic activity [124–126]. MYC engages in cell 
cycle regulation not only by the upregulating of genes 
necessary for cell cycle progression but also by impairing 
the negative regulators of cell cycle [127, 128]. Different 
mechanisms are considered to explain MYC participa-
tion in cell cycle regulation. MYC- mediated E2F family 
induction by binding to E box in their promoter leads to 
S-phase progression [129–132]. In addition, RB phos-
phorylation by cyclin/CDK complexes rescues E2F tran-
scription factors from inhibitory interaction with Rb and 
mediates the expression of E2F target genes implicated 
in cell cycle promotion [104, 105, 127]. The increased 
levels of cyclin/CDK complexes by MYC are mediated 
through different mechanisms, whether by inducing gene 
expression or by regulating phosphorylation and dephos-
phorylation of diverse residues of CDK proteins [128]. 
Moreover, MYC induces miR-221, which modulate Rb 
mRNA [133, 134].

It was demonstrated that MYC induces the CDK genes 
including CDK4 [135] and CDK6 [136, 137], but there is 
controversy with regards to CDK2. Yap et  al. observed 
both mRNA and protein levels of CDK2 were induced 
upon MYC overexpression [137], but another experi-
ment shows a different role for this gene [138]. Based 
on ChIP assay, MYC binds to CDK1 promoter [139], but 
other proteins such as Ras [140] or cyclin C [141] coop-
erate with MYC to augment the expression of CDK1. 
Increased activity of CAK (CDK activating kinase) by 
MYC is also required for complete activation of cyclin/
CDK complexes, since CAK carries out the activat-
ing phosphorylation of CDK T loop [142–145]. Moreo-
ver, MYC counteracts the inhibitory phosphorylation of 
CDKs either by targeting Wee1 through miR-221 induc-
tion or provoking Cdc25 phosphatase [133, 134, 142, 143, 
146, 147]. Mir-221 also targets mRNAs of p27, p57, and 
Rb [133, 148].

In addition to inducing CDK genes, MYC also regulates 
the expression of cyclins. MYC has conflicting roles in 
cyclin D1 regulation. Depending on the cell types, MYC 
can increase, suppress or not affect the expression of cyc-
lin D1 [138, 149–152]. On the other hand, MYC induces 
the expression of cyclin D2 [153, 154], D3 [155], E1 [156, 
157], E2 [157, 158], A [138, 159–161], and B1 [95, 162, 
163]. MYC recruits TRRAP to induce histone acetyla-
tion and subsequently cyclin D2 expression [154]. MYC 
mediates cyclin E1 induction either directly or by induc-
ing E2F transcription factors [164]. Serial analysis of gene 

expression was done by Menssen et al. to identify MYC 
target genes. CDC2-L1, cyclin B1, and cyclin E binding 
protein 1 are among the MYC-induced cell cycle regula-
tors involved not only in G1/S transition but also in G2 
progression [95].

Apart from inducing positive cell cycle regulators, 
MYC also represses the activity of cell cycle inhibitors 
[127]. TGF-β signaling inhibits MYC and induces p15 
and p21 to mediate cell cycle arrest in G1 phase. TGF-
β-induced p21 is abolished through AP4 transactivation 
by MYC [165]. TGF-β treatment in lung epithelial cells 
downregulates MYC rapidly and induces p15 expression. 
Exogenous MYC expression blocks TGF-β -induced p15 
expression [166]. After TGF-β treatment, Miz-1 binds 
to transcriptional initiator site (Inr) within the proximal 
region of the p15 promoter to augment p15 activity [167, 
168]. MYC collaborates with other proteins, including 
Miz-1, SP1, and SMAD to block p15 induction. MYC 
and SP1 switch from transcriptional activator to tran-
scriptional repressor upon their interaction with MYC 
and following their co-activators replacement [167–170]. 
Miz-1-mediated p300 recruitment and p15 induction are 
at the mercy of Miz-1 interaction with MYC [167, 168]. 
MYC forms an inhibitory complex with SP1 and SMAD 
to repress p15 upon TGF-β treatment [170].

Induction of E2F1 transcription factor, which induces 
ARF expression, and counteracts ARF ubiquitination and 
degradation by ULF ubiquitin ligase has been considered 
for MYC-induced ARF upregulation [171–174].

MYC regulates p21 in different ways. It overrides p21 
induction by p53 and paves the way for p53-induced 
apoptosis [175]. Cell cycle cessation upon DNA damage 
is thwarted by MYC counteraction with p53-induced p21 
and GADD45 [176–180]. Nuclear localization of Cyclin 
B1 is reduced by the action of GADD45, yielding Cdc2 
kinase activity inhibition [181]. The binding of MYC 
and Miz-1 is one of the mechanisms that either directly 
inhibits p21 expression or indirectly via recruiting the 
DNA methyltransferase DNMT3a [182–184]. The abil-
ity of MYC to form a ternary complex with histone dem-
ethylase KDM5B and the transcriptional factor TFAP2C 
conflicts with p21 induction [185]. Besides, MYC inter-
ference with SP1 and Ras-mediated p21 induction [186, 
187], and MYC-induced transcription factor AP4 [188] 
and miR-17-92 [189, 190] result in p21 suppression.

The expression of p27 and MYC shows an opposite pat-
tern in several studies, as high levels of MYC are asso-
ciated with low levels of p27 [191–194]. MYC represses 
p27 at both transcriptional and post-transcriptional lev-
els. p27 regulation at the transcriptional level is mediated 
by MYC interaction with Inr element within the p27 pro-
moter or its interaction and inhibitory effect on Foxo3a, 
a transcription factor required for p27 upregulation [195, 
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196]. MYC-mediated mir-221 and miR-222 upregula-
tion repress 27 at the post-transcriptional level [134, 
148]. MYC-induced cyclin E transcription directly or 
through E2F transcriptional induction bypasses G1/S 
arrest and antagonizes p27 [156, 197, 198]. MYC seques-
ters p27 from cyclin E-CDK2 complex by inducing the 
expression of D-type cyclin and CDK4 and CDK6 [153, 
199, 200]. MYC-mediated cyclin E induction also stimu-
lates p27 phosphorylation at Thr-187 and makes it more 
prone to be recognized and degraded by the SCFSKP2 
ubiquitin ligase complex. Moreover, the expression of 
several subunits of SCFSKP2 ubiquitin ligase complex are 
induced by MYC to promote p27 proteasome degrada-
tion [201–206].

The transcription factor FoxM1 is a MYC target gene 
and controls G2/M promotion [207]. MYC targets sev-
eral genes related to DNA replication and mitosis. It 
promotes DNA replication in both transcriptional-
dependent and -independent manner. A number of ori-
gin recognition complex (ORC) genes, including ORC1, 
ORC2, ORC4, and ORC5 are among MYC target genes 
[137, 157]. Ctd1 [208], the main component of the pre-
replicative complex, cdc6 [136, 157] and MCM proteins 
[157, 209, 210] as MCM3, MCM4, MCM5, and MCM6, 
proteins required for initiation and elongation of DNA 
replication, are induced by MYC. MYC also interacts 
with pre-replicative complex to increase replication ori-
gin activity [211]. In addition to CDK1, MYC regulates 
other genes encoding proteins involved in mitosis. MYC 
mediates mitosis progression by provoking subunits 
of anaphase promoting complex/cyclosome (APC/C), 
including Anapc5, cdc16, and cdc23, to increase the deg-
radation of cyclin B1 and securin, which controls the 
transition of metaphase-anaphase transition [137, 212, 
213]. On the other hand, it was shown that MYC has a 
different role as Anapc2. As well as securin degradation, 
MYC represses securin gene expression (PTTG1) [137]. 
Cells overexpressing MYC showed delayed anaphase 
onset through transactivation of MAD2 (mitotic arrest 
deficient) and BubR1 [214].

A study reported that in response to anti-mitotic drugs, 
such as taxol, nocodazole, Eg5 inhibitor, and other drugs 
disrubpting mitosis, MYC augments apoptosis [215]. Fol-
lowing treatment with the aforementioned agents, cells 
with low levels of MYC showcased less apoptosis com-
pared to cells having high levels of MYC. Besides, cells 
overexpressing MYC exhibited more anomalies, since 
MYC exacerbates drug-induced micronuclei formation, 
a hallmark of chromosome instability [215]. Although 
normal mitosis took place in both high- and low-levels 
of MYC, mitotic timing and spindle morphology were 
under the control of MYC levels. In cells having high 
level of MYC, the spindle length and metaphase plate 

width were reduced and increased, respectively. Fur-
thermore, acceleration of nuclear envelope breakdown 
(NEBD) to metaphase and delayed anaphase was seen 
in cells with high level of MYC. MYC modulates mitosis 
by controlling mitosis related events, including centriole 
biogenesis, kinetochore assembly, proteolysis,abscission, 
and cytokinesis [215].

Ciribilli et  al. identified the genetic events associated 
with cell cycle and apoptosis in MYC transgenic lung 
tumors [216]. The expression of CDK4 and its related 
cyclin D1, and transcription factor DP1, a heterodimeric 
partner of E2Fs, were increased, while p19 was down-
regulated. CDK1 and cyclin B1 and B2 were overex-
pressed. In addition, upregulation of several genes such 
as the serine/threonine kinases Nek6 and Stk6 (Aurora-A 
kinase), Cks1 (cdc28 protein kinase), Cks2 (cdc28 protein 
kinase regulator subunit 2), cdc20, regulators of cytoki-
nesis Prk1 (protein 1) and kinesin family members were 
seen. Moreover, increased ect2 expression, an oncogene 
required for cytokinesis [217], and downregulation of 
Lats2 that is a negative regulator of cell cycle [218] were 
observed. Another transcriptional alteration in lung 
tumors of MYC transgenic mice models is reversal of 
p53-induced cell cycle arrest mediated by repression of 
transcription factors involved in regulation of p53 activ-
ity. These include Klf-4 [219], Hey-1 [220], Gas-1 [221], 
and Hspa9a [222].

In addition to inducing miRNAs that target the nega-
tive regulators of cell cycle, MYC also suppresses miR-
NAs that acting as barriers to cell cycle progression [223]. 
Let-7 family members, miR-15a/16-1, miR-26a, and 
miR-34a are among the targets of MYC. Let-7 miRNAs 
regulate Cdc25a, CDK6, cyclin A, cyclin D1, D2, and D3. 
MiR-34a negatively regulates expression of CDK4, CDK6, 
cyclin E2, and E2Fs; miR-15a/16-1 participates in the reg-
ulation of CDK6, E2F3, cyclin D1 and D3; and miR-26a 
represses cyclin D2 and E2 [224–227].

MYC also induces the H19 long-non coding RNA 
(lncRNA), which silences Rb and promotes prolifera-
tion [228–231]. MYC-induced long noncoding RNA 
(MINCR) is another LncRNA induced by MYC that has a 
close correlation with its expression. MYC binding to the 
promoter of selective cell cycle genes is weakened follow-
ing MINCR knockdown [232].

The role of MYC in DNA damage response
The role of MYC in DNA damage signaling has been 
investigated in numerous studies. MYC levels are 
decreased through different mechanisms depending on 
the extent of DNA damage, including alternation in MYC 
transcription and protein turnover [14–16]. The results 
of several studies exhibit that decreased levels of MYC 
are assumed as a step in DDR [15, 17, 18] (Fig. 5).
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Decreased MYC protein levels and p53 accumula-
tion has been observed in UV-induced DNA damage in 
which the proteasome-dependent degradation mecha-
nism was implicated for MYC level reduction [14]. 
Jiang et al. suggested tripchlorolide-induced DNA dam-
age causes proteasome-dependent MYC degradation, 
resulting in apoptosis induction [15]. Moreover, Fbw7 
ubiquitin ligase mediates MYC degradation in response 
to DNA damage due to the USP28 disassociation from 
Fbw7 [18], which is required for MYC stability [233]. 
Exposure of MCF-7 breast tumor cell line to DNA-
damaging agents such as topoisomerase II inhibitors 
VM-26, m-AMSA, and doxorubicin, or ionizing radia-
tion is capable of suppressing MYC mRNA [234–237]. 
Moreover, continuous treatment of MCF-7 with VM-26 
suppresses both mRNA and protein levels of MYC, 
and its transcriptional activity in response to sustained 
DNA damage [238]. Treatment of MCF-7 cells with 
camptothecin at the concentrations, causing DNA dam-
age results in MYC suppression, while in lower concen-
trations, this attenuation in MYC expression vanishes 
due to the absence of detectable DNA damage [239]. 
In response to DNA damage, pRb is dephosphorylated 
[240] and in the complex with E2F1 represses MYC. 
Another factor influencing MYC is a acetyl-transferase 
called TIP60, which has a co-regulator activity towards 

MYC. Intriguing, TIP60 obstacles tumor progression 
by modulating DDR [241], and its low levels in differ-
ent cancers are associated with tumor progression and 
inferior survival [242].

MYC-mediated activation or repression of many target 
genes such as Bax, GADD45A, and ONZIN are involved 
in DDR [243–245]. Pusapati et al. observed MYC overex-
pression in a transgenic mouse model causing p53 acti-
vation following DNA damage and ATM was required 
for p53 activation to augment apoptosis and interfere 
with MYC-mediated tumorigenesis [246]. MYC exists 
upstream of PI3K related to DDR and augments signal 
transduction following DNA damage [247]. This onco-
gene has multiple effects on DDR.

MYC can enhance DDR, as the activation of ATM-
dependent checkpoints relies on it. Guerra et  al. 
observed that in response to DNA damage, nuclear foci 
formation of the Nijmegen breakage syndrome 1 (Nbs1) 
and subsequently phosphorylation and activity of ATM 
and its downstream effectors were reduced in the cell 
line lacking MYC, resulting in impairment in p53stabili-
zation and delayed DDR [248]. A previous study showed 
Nbs, a member of MRN complex, is a target gene for 
MYC [249]. Nbs1 senses DNA breaks and is essential for 
ATM activation in the presence of DNA damage [250, 
251]. Therefore, MYC-mediated Nbs1 expression affects 
DNA damage-induced signal transduction pathways. 
In unstressed conditions, Miz1 associates with topoi-
somerase II binding protein1 (TopBP1), but upon UV 
irradiation, TopBP1 detaches from Miz1 [19]. TopBP1-
Miz1 association negates TopBP1 proteasomal degrada-
tion that ATR-dependent signal transduction is relied 
on. MYC has a negative effect on ATR-dependent signal 
transduction in response to DNA damage. This involves 
TopBP1-Miz1 disassociation and TopBP1 degradation by 
HectH9 [252].

Upon DNA damage, p53 induces the expression of p21 
[176] and GADD45 [177] to mediate cell cycle arrest. 
MYC has the opposite role, and it represses these genes 
[178–180] and attenuates p53-mediated cell cycle arrest 
[253, 254]. However, it drives p53 functions toward apop-
tosis induction instead of cell cycle arrest [255]. Upon 
DNA damage induced by gamma irradiation and dauno-
rubicin, MYC interacts with Miz-1 and downregulates 
p21 expression to favor apoptotic arm of p53 signaling 
[255]. MYC forms a transcriptional repressor complex 
with Miz-1 in order to suppress p21 [19, 126]. Transac-
tivation of AP4 by MYC allows cells to re-enter cell cycle 
even in the presence of DNA damage. Jung et al. showed 
that after treatment of MCF-7 cells with etoposide, the 
protein levels of MYC and AP4 were reduced. To the 
contrary, p21 and p53 levels were elevated. These results 
show AP4 abrogates p53-mediated cell cycle arrest by 

Fig. 5  MYC has multiple effects on the DNA damage response. 
MYC is essential for NBS1 expression and the activity of ATM and 
its downstream effectors such as p53. In turn, p53 suppresses 
MYC expression in a pulsatile pattern. MYC drives cell fate toward 
apoptosis and overrides cell cycle arrest. MYC also participates in the 
generation of DNA damage. DNA repair impairment, ROS generation, 
and increased replication stress are among other MYC-provoked DNA 
damage response mechanisms
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suppressing p21 and favors apoptosis induction, resulting 
in cells sensitization to DNA-damaging agents [165].

MYC can inhibit both G1/S and G2/M arrest. After 
irradiation, in human mammary epithelial cells (HMEC) 
overexpressing MYC, G1/S arrest was impaired due to 
inappropriate hyperphosphorylation of Rb and subse-
quent reappearance of cyclin A, which leads to the entry 
of cells into S phase [256]. Overexpression of MYC also 
attenuates G2/M arrest by upregulating cyclin B1, and 
stimulates cells with damaged DNA to enter mitosis 
[257]. The human ubiquitin ligase HectH9 is essential for 
MYC-mediated cell cycle progression and activation of 
target genes. In human tumor cell lines lacking HectH9, 
cells accumulate in the G1 phase of cell cycle [58]. In 
the study by Robinson et  al. primary human fibroblasts 
overexpressing MYC exhibited accelerated S phase in 
contrast to prolonged S phase in the cells lacking MYC. 
They showed the Werner DNA helicase protein (WRN) 
is required for the repair of stress-induced DNA damage. 
WRN depletion resulted in DNA damage accumulation 
in cells overexpressing MYC [258].

MYC promotes apoptosis by bypassing p53-mediated 
cell cycle arrest [19, 126, 255] and drives cells with dam-
aged DNA toward S phase [247, 259]. Moreover, MYC 
suppresses the expression of anti-apoptotic proteins such 
as BCL-XL and BCL-2 [260]. PER1 can push DDR in 
favour of apoptosis via upregulating MYC. In response to 
DNA damage, high levels of MYC and concomitantly p21 
reduction were seen in cells overexpressing PER1, high-
lighting the positive effect of PER1 on apoptosis induc-
tion [261]. On the other hand, heat shock protein HSP70 
opposes MYC-evoked apoptosis in response to etopo-
side and camptothecin [262]. BRCA1 stands in the way 
of apoptosis induction ensuing exposure to DNA dam-
aging agents [263, 264]. Further investigation revealed 
that BRCA1 cooperates with MYC to suppress psoriasin, 
resulting in resistance to etoposide [265].  Upon treat-
ment with DNA damaging cytotoxic drugs, the physi-
ological level of MYC is required for strong apoptosis 
induction through the activation of Bid and Bax and pro-
apoptotic enzyme PLKδ. Apoptosis is abrogated in MYC 
null cells, confirming that apoptosis is dependent on 
expression of this oncogene [266, 267].

MYC depletion in colorectal cancer cell lines promotes 
cell-cycle arrest rather than apoptosis due to the alter-
nation in p53 signaling and its downstream effectors. In 
fact, p21 is increased, whereas the levels of pro-apoptotic 
genes such as Bax are decreased [255]. Moreover, under 
irradiation, fibroblasts undergo apoptosis as a result of 
MYC function that targets BCL-XL [268]. In colon can-
cer cell lines overexpressing MYC, camptothecin treat-
ment results in effective apoptosis induction, indicating 
MYC overexpression contributes to colon cancer cells 

sensitization to this agent. Following camptothecin treat-
ment, the levels of p53 and its target genes are upregu-
lated, while overexpression of MYC induces p53 and 
overrides p21 induction [269].

The mechanism underlying chemosensitivity in small 
cell lung cancer cell lines harboring p53mutations was 
investigated by Supino and colleagues [270]. They showed 
upon treatment with doxorubicin, MYC is upregulated 
to induce apoptosis independent of p53 and renders the 
cells more prone to chemotherapy. The Y box binding 
protein (YB1) is a transcription factor with the ability to 
modulate the outcome of anticancer agents treatment 
and is responsible for drug resistance [271–273]. p73 
interacts with MYC and promotes the formation of 
MYC-MAX complex to increase the transcriptional 
activity of MYC, resulting in YB1 upregulation-mediated 
drug resistance [274].

Etoposide causes DNA damage in S phase and provokes 
apoptosis in G2 [275]. A study showed MYC is indispen-
sable for apoptosis in G2 phase. The same does not hold 
true in G1 phase [276]. It was observed that treatment of 
MYC null cells with etoposide abrogated apoptosis, while 
cisplatin exposure causes DNA damage irrespective of 
cell cycle stage.

MYC is capable of activating the transcription of genes 
involved in DNA repair, including NBS1, KU70, BRCA2, 
Rad50, and Rad51 [136, 210, 249, 277]. Cui et al. demon-
strated that MYC affects the repair of DSB (double strand 
breaks) caused by ionizing irradiation (IR). The ability 
to repair DSB was attenuated in MYC-knockdown cells 
Hela-630 after exposure to IR due to the reduction in 
DNA damage-induced ATM phosphorylation and DNA-
PK kinase activity [278]. Moreover, the upregulation of 
genes involved in the repair of DSBs through HR and 
NHEJ is dependent on MYC and HIF2α [279].

It has been suggested that MYC participates in p53 
regulation [280–282]. Phesse et al. observed DNA-dam-
aging agents can no longer cause apoptosis when MYC is 
deleted in the adult murine cells [282]. Tight regulation 
of MYC levels is essential for precise kinetic apoptosis 
in response to DNA damage. Treatment of Rat-1 fibro-
blast cell line with DNA-damaging agent VP-16 demon-
strated MYC is required to achieve the optimal apoptotic 
response [283].

It has been suggested that p53 is involved in MYC 
modulation. Besides the transactivation of genes involved 
in cell cycle arrest, p53also represses MYC through a 
mechanism dependent on histone deacetylation [284]. 
Following irradiation, the mRNA levels of MYC were 
reduced in AML-3 cells expressing wild type p53. In 
K562 cells lacking p53however, there was no reduction 
[285]. In some studies, the dynamic behavior of p53ac-
counts for its broad function. Several models have been 
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proposed for acquiring p53dynamic response [286–288]. 
Porter and colleagues showed that MYC and p53have an 
inverse concentration relationship [289]. In response to 
DSB, p53induces MYC repression in a pulsatile pattern, 
which is thought to be due to p53binding to downstream 
enhancer within a MYC super-enhancer region [290]. 
This is consistent with previous studies that showed p53 
has the potential to suppress MYC [291, 292]. A study 
stated that MYC, a non-linear transcription factor is 
capable of universally affecting active genes, but not ones 
induced priorly to MYC  [6, 293]. p53-mediated MYC 
repression however has different impacts on global tran-
scription. Cell fate is affected by this transcriptional inhi-
bition effect of p53 on MYC. Proper cell cycle arrest and 
apoptosis prevention are the consequence of p53-medi-
ated MYC repression.

Several miRNAs are involved in the negative regulation 
of MYC [294–296]. In a study that was done by Cannell 
and colleagues [80], the levels of p53, p21, and miR-34c 
were upregulated in HEK293 after treatment with etopo-
side, while MYC protein levels but not MYC mRNA lev-
els were decreased. p53is a crucial regulator of miR-34 
family. These are important mediators of DDR [297–301] 
that control MYC levels [302, 303]. Nevertheless, it has 
been shown that p38 MAPK/MK2 pathway also mediates 
miR-34c induction to prevent aberrant MYC-induced 
replication even in the absence of p53 [80]. In fact, DNA 
damage-mediated miR-34c induction gives rise to MYC 
repression to halt cell cycle at the S phase and counteract 
DNA synthesis and replication. Li et al. showed that after 
exposure to UV-induced DNA damage, ribosomal pro-
tein L11 is released from the nucleolus to the cytoplasm 
to promote miR-130a recruitment, resulting in decreased 
levels of MYC mRNA and protein [304].

Upon DNA damage, bridging integrator 1 (BIN1), a 
nucleocytoplasmic protein, is activated to mediate apop-
tosis [305, 306]. Loss of BIN1 attenuates cell response 
to DNA-damaging agents [306]. This adaptor protein 
interacts with MYC and perturbs MYC-mediated trans-
activation of target genes [305, 307, 308]. Pyndiah et al. 
observed that regardless of TP53 gene status, BIN1 
exerts essential roles in enhancing DNA damage caused 
by cisplatin. The mechanism behind this chemosensi-
tivity is dependent somewhat on BIN1-MYC interac-
tion. BIN1 interaction with PARP1 which is followed 
by inhibition of the latter is another mechanism that 
inhibits MYC-induced transactivation, G2/M transition, 
and sensitizing cells to DNA damage [309]. PARP1 acts 
as a scaffold, and interacts with proteins involved in the 
base excision repair (BER) [310–312]. BIN1-mediated 
PARP1 inhibition also impairs BER pathway and results 
in chromosomal destabilization. Moreover, BIN1 inhib-
its indoleamine 2,3-dioxygenase (IDO), resulting in the 

intracellular NAD reduction and PARP1 activity restric-
tion [313–315]. In addition to PARP1, BIN1 interacts 
with proteins involved in non-homologous end joining 
(NHEJ) pathway [316, 317]. It is noteworthy that MYC 
overexpression restores PARP1 activity by blocking BIN1 
activation by Miz-1 to overcome BIN1-mediated PARP1 
repression [309].

In another study, the regulatory effects of epigenetic 
alterations on DDR have been demonstrated [318]. 
SMAD nuclear interacting protein 1 (SNIP1) has the 
potential to regulate DDR, apoptosis, and cell cycle [319, 
320]. SINP1 interacts with the ten-eleven translocation 
dioxygenase 2 (TET2). This interaction mediates TET2 
binding to several transcription factors such as MYC in 
order to recruit TET2 to the promoter of MYC target 
genes and therefore regulates their expression [318].

In addition to being involved in DDR modulation, 
MYC is also considered an element that causes genomic 
instability [253, 259, 321–325]. Several mechanisms 
contribute to MYC-elicited genomic instability. These 
include inducing DNA damage, gross chromosomal rear-
rangement, aberrant cell cycle progression, and disrupt-
ing DNA repair processes [326]. Moreover, cells with 
damaged DNA like MYC-induced DSB can re-enter the 
cell cycle in response to MYC overexpression, resulting 
in genomic instability [253]. In addition, MYC can pro-
mote DNA damage independent of ROS [324]. Increased 
DNA replication stress is another mechanism that under-
lies DNA damage induced by MYC [323, 327–329]. 
Dominguez-Sola et  al. noticed the non-transcriptional 
role for MYC in DNA replication. This oncogene inter-
acts with pre-replicative complex and modulates replica-
tion origin activity. They showed MYC overexpression 
increases replication origin activity, and consequently 
persuades replication-dependent DNA damage [211]. 
In addition to non-transcriptional control of DNA rep-
lication, MYC activates CTD1 transcription [208], a key 
component of pre-replicative complex required for origin 
licensing [330–332]. It was shown Polη, a Y-family trans-
lesion synthesis polymerase, relieves MYC-induced rep-
lication stress by mediating fork progression to suppress 
DSB formation [333]. P300 regulates MYC negatively and 
so counteracts aberrant DNA synthesis [334, 335]. P300 
knockdown results in entry into S phase followed by 
deregulated replication origin activity and DNA synthe-
sis due to MYC induction, leading to the DDR-activated 
apoptosis [336].

MYC can also play a role in genomic instability through 
interrupting DSB repair. It has been observed that MYC 
has the potential to interfere with DNA damage repair 
[259, 337]. Li et  al. showed MYC inhibits the repair of 
DSBs caused by IR or the action of RAG1/RAG2 during 
V(D)J recombination [338]. Based on ChIP array studies, 
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there is an association between MYC and the promoter 
of several DSB repair-related genes including Rad51, 
Rad51B, Rad51C, XRCC2, Rad50, BRCA1, BRCA2, 
DNA-PKcs, XRCC4, Ku70, and DNA ligase IV [136, 210, 
249, 339]. Song et al. showed that MYC disrupts homol-
ogous recombination-mediated DNA repair through 
upregulating miR-1245 to suppress BRCA1 expression, 
resulting in hypersensitivity to γ-irradiation [337]. In 
tyrosine kinase-activated leukemias, elevated generation 
of ROS, and DNA damage as well as activation of error-
prone repair process has been seen [340, 341]. Muvarak 
et al. [342] proposed MYC overexpression is involved in 
the activation of alternative NHEJ, an error-prone repair 
pathway [343, 344], via upregulating the expression of 
LIG3 and PARP1, which is dependent on expression of 
FMS-like tyrosine kinase-3 (FLT3)/ITD and BCR-ABL1. 
Jin et al. showed BCL2 binds to MYC and boosts its tran-
scriptional activity to hindering DNA repair through tar-
geting APE1, a member of the BER pathway [345].

Partlin et  al. observed that MYC has the potential to 
interact with MLH1 mismatch repair protein and inhibits 
its activity [346]. It was reported that MYC downregula-
tion rendered melanoma cells susceptible to IR-induced 
apoptosis through inhibition of MLH1 and MSH2, 
resulting in DNA repair prevention and DNA damage 
accumulation, followed by induction of apoptosis in a 
p53-independent manner [347].

MYC and apoptosis
A well-known fundamental function of MYC is the prop-
erty to sensitize cells to apoptosis. The first oncogene 
reported inducing apoptosis was MYC [20]. Deregulated 
MYC expression, along with anti-proliferative signals, 
can lead to apoptosis [348]. Even in the presence of sur-
vival factors, deregulated MYC sensitizes cells to apop-
totic stimuli such as irradiation, hypoxia, heat shock, 
interferons, TNF alpha, and Fas [349]. MYC needs to 
bind to DNA with its partner Max to induce apoptosis 
[20].

Two main pathways initiate apoptosis, the intrinsic 
(mitochondrial) and extrinsic pathways. These two path-
ways have a pivotal role in MYC-induced apoptosis. Dif-
ferent cellular stresses such as oncogene activation, DNA 
damage, and hypoxia can initiate intrinsic pathway and 
release of apoptogenic factors, including cytochrome 
c (cyt c), smac\DIABLO, and apoptosis-inducing fac-
tor (AIF) [350]. The release of mitochondrial cyt c into 
the cytosol facilitates the formation of the apopto-
some complex, consisting of cyt c, Apaf-1, and procas-
pase-9. The apoptosome complex activates caspase-9 to 
directly cleave and activate effector caspases, caspase-3, 
and caspase-7. These caspases finally trigger apopto-
sis [351]. BCL-2 protein family has an essential role in 

regulating mitochondrial-outer-membrane permeabi-
lization (MOMP), which is required for the release of 
cyt c. BCL-2 family has three subfamilies based on their 
functions: (1) anti-apoptotic members (BCL-2, BCL-
XL, MCL-1, etc.), (2) BH3-only (pro-apoptotic) proteins 
(BAD, BID, BIK, BIM, PUMA, NOXA, etc.), (3) pore-
formers or ‘executioner’ (pro-apoptotic) proteins (Bax, 
Bak, Bok) (9). Bax and Bak induce the release of cyt c 
by oligomerization and forming pores in the mitochon-
drial outer membrane. Anti-apoptotic proteins such as 
BCL-2 and BCL-XL inhibit Bax and Bak translocation 
and oligomerization, resulting in suppression of MOMP 
and prevention of cyt c release [352, 353]. The balance 
between pro- and anti-apoptotic members regulates the 
release of cyt c from mitochondria so that when anti-
apoptotic proteins are predominant, they inhibit the 
release of cyt c [354].

On the other hand, the extrinsic pathway is initiated 
through death-ligand binding to cell-surface death recep-
tors. Death receptors are a subset of the tumor necrosis 
factor receptor (TNFR) superfamily that contains eight 
members: TNFR1, Fas (CD95), DR3, TNF-related apop-
tosis-inducing ligand receptor 1 (TRAILR1; also called 
DR4), TRAILR2 (DR5), DR6, ectodysplasin A receptor 
(EDAR) and nerve growth factor receptor (NGFR). The 
presence of about 80 amino acid death domain (DD) in 
the cytoplasmic region of death receptors has an essential 
role in activating the signaling cascade and induction of 
apoptosis [355]. Death receptors ligation create a death-
inducing signaling complex (DISC), including adaptor 
molecule FADD, the initiator procaspase-8\10, and an 
inactive homolog of caspase-8, c-FLIP (cellular FLICE-
like inhibitory protein). Interaction between FADD with 
procaspase-8 promotes homodimerization and autocata-
lytic cleavage of procaspase-8, leading to the formation 
of active caspase-8. This active form in turn cleaves and 
activates downstream caspases such as caspase 3 and 7 
that execute cell apoptosis [356–358]. Caspase-8 also 
cleaves Bid pro-apoptotic protein to truncated Bid (tBid), 
which can translocate to mitochondria and release cyt c 
by inducing MOMP. Bid acts as a bridge between extrin-
sic and intrinsic apoptosis pathways [359, 360]. c-FLIP 
is a master anti-apoptotic regulator for death receptor-
mediating apoptosis, which carries out its function by 
competing with procaspase-8 to bind to FADD, thus 
interferes with caspase-8\FADD interaction [361].

When studies show that MYC could provoke transloca-
tion of cytochrome c from the mitochondria, it was sug-
gested that MYC could play a role in apoptosis [362]. The 
activation of Bax and Bak by MYC is an upstream mecha-
nism of cytochrome c release  (Fig. 6). Bax is one of the 
transcriptional targets of MYC and the primary media-
tor of MYC-dependent apoptosis. Expression of MYC 
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induces Bax upregulation or, indirectly, controls Bax 
oligomerization [363, 364]. Bax and Bak are required for 
efficient apoptosis response, and MYC activation alone is 
not adequate to provoke apoptosis; hence Bax and Bak’s 
deficient cells are significantly resistant to MYC-induced 
apoptosis [365]. Overexpression of BCL-XL acts as a bar-
rier that inhibits the MYC-induced conformational acti-
vation of Bak. Indeed, BCL-XL is a pivotal factor for the 
mitochondrial apoptosis pathway by its inhibitory effect 
on Bak activation [366]. Recent studies indicate MYC 
can induce suppression of both BCL-2 and BCL-XL anti-
apoptotic proteins. By blocking MOMP through Bax and 
Bak inhibition, MYC-dependent apoptosis is prevented 
[367]. Based on the evidence provided by Muthalagu 
et  al., Bim pro-apoptotic protein is a major mediator of 

MYC-dependent apoptosis in several solid tissues. MYC 
appears to stimulate apoptosis through binding to the 
Bim promoter and elevates Bim expression [22].

MYC is known as a stimulant that can sensitize cells 
to several death stimuli such as TNF-α, CD95/Fas, and 
TRAIL [368, 369]. The molecular mechanism that MYC 
promotes extrinsic apoptosis pathway is not well estab-
lished; however, the inhibitory effect of MYC on the 
NF-kB pathway and suppression of survival genes along 
with its pro-apoptotic activities has been proposed [370–
372]. Klefstrom and colleagues showed that receptor-
interactive protein (RIP) is a serine\threonine kinase that 
initiates programmed cell death by.

FADD and caspase-8 dependent pathway. The MYC-
mediated promoted expression of RIP can significantly 

Fig. 6  MYC and apoptotic pathway. Expression of MYC can sensitize cells to a broad range of proapoptotic stimuli such as DNA damage, death 
receptor, hypoxia, and nutrition deprivation. Through various pathways and possibly by inducing activation of Bax proapoptotic molecule, MYC 
promote the release of cytochrome c from mitochondria into the cytosol. Activation of Bax forming pores results in mitochondrial outer membrane 
permeabilization (MOMP). When cytochrome c releases into the cytoplasm, it interacts with APAF-1 and procaspase 9 to form apoptosome. Caspase 
9 is activated in the presence of ATP, which in turn cleaves and activates caspase3 and 7, eventually triggering apoptosis. MYC is also involved in the 
death receptor pathway of apoptosis. Ligand-death receptor binding initiates interaction of adaptor molecules like FADD with death receptor. FADD 
auto-activates by recruiting procaspase 8. Caspase 8 can directly activate caspase3 and 7. Caspase 8 can also activate BH3-only protein BID, which 
stimulates MOMP. MYC induces apoptosis by p53dependent and independent mechanisms. Regulation of p53\MDM2\ARF by MYC, can stabilize 
p53and promote apoptosis
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enhance the apoptotic activity via FADD, caspase-8. 
Both caspase-8 and FADD are crucial for apoptotic syn-
ergy between RIP and MYC. [373]. MYC also acts as an 
inhibitor of c-FLIP expression, which enhances TRAIL-
dependent activation of caspase-8 and apoptosis. The 
ectopic expression of FLIP represents the suppression 
of MYC-induced apoptosis. Caspase-8 can be increased 
directly or indirectly through post-translational modifi-
cation by MYC [374]. Previous studies demonstrated that 
MYC also induces FasL up-regulation in T-lymphocytes 
and increases susceptibility to Fas-mediated apoptosis 
[375].

p53 pathway can become involved in MYC-dependent 
apoptosis through several mechanisms. p53 accumulates 
in the nucleus, where it is activated, and promotes growth 
arrest and/or apoptosis. It stimulates multiple apoptotic 
genes that have an important role in a different stage of 
apoptosis by transcription-dependent and independ-
ent mechanisms. p53 induces apoptosis via both intrin-
sic and extrinsic pathways [376, 377]. Post-translational 
modifications such as phosphorylation, acetylation, ubiq-
uitination, and methylation as well as protein–protein 
interactions with cooperating factors stabilize and acti-
vate p53 [378]. Stable p53 can interact with pro-apoptotic 
genes such as Puma, Noxa, Apaf-1, and Bax, upregulat-
ing their expression. It can also suppress expression of 
anti-apoptotic proteins like BCL-2, BCL-XL, and MCL-1 
[379]. As mentioned above, p53 is an unstable and short-
lived protein. under normal conditions, an MDM2 E3 
ligase, a primary negative regulator of p53, keeps it at a 
low level due to continuous degradation. MDM2 inhib-
its p53 activity by ubiquitination, proteasome-dependent 
degradation, and promoting its nuclear export [380]. 
The ARF also known as p14ARF in humans and p19ARF 
in mouse is a tumor suppressor gene derived from 
INK4a-ARF locus. ARF inhibits MDM2 and prevents 
p53 degradation. Ectopic MYC expression upregulates 
ARF. This inhibits MDM2-mediated degradation of p53 
and induces expression of p53 directly, which triggers 
apoptosis [280, 381]. Activated p53 translocates to the 
mitochondria, interacting with pro-apoptotic proteins 
and anti-apoptotic members directly [382, 383]. Several 
studies show that lack of ARF and p53 attenuate MYC 
related apoptosis, but some groups suggested an alter-
native pathway for MYC because even in the absence 
of both ARF and p53, MYC can induce apoptosis [381, 
384]. Death-associated protein kinase (DAPK) is a posi-
tive mediator of apoptosis activated by MYC and E2F-1. 
DAP kinase effect on activating p53 is exerted through 
an ARF-dependent mechanism, which results in p53-
induced apoptosis [385, 386]

According to Maclean et al. MYC can increase gamma 
irradiation (γ-IR)-induced apoptosis by inhibiting 

BCL-XL. In the mouse embryo fibroblasts (MEFs) and 
Eμ-MYC transgenic mice B cells, MYC functions in syn-
ergy with γ-IR to sensitize cells and induce apoptosis 
independent of p53 [268]. Indeed, MYC does not alone 
induce the DNA damage response in MEFs but stimu-
lates apoptosis in synergy with γ-IR. MYC along with 
γ-IR suppress BCL-X gene in the B cells of Eμ-MYC 
transgenic mice. The loss of BCL-X alone, even without 
BCL-2, is sufficient to sensitize MEFs to γ-IR induced 
apoptosis. Finally, activation of MYC can cause a 
decrease in the steady-state levels of BCL-XL protein by 
reducing BCL-X transcript and suppressing its promoter 
activity [268].

Reactive oxygen species (ROS) are reactive chemi-
cal species containing superoxide, hydroxyl radical, and 
hydrogen peroxide with a key role in cell signaling and 
maintaining homeostasis. Cellular processes, such as 
metabolism and respiration generate ROS. Excessive 
ROS can induce apoptosis mediated by mitochondria, 
death receptors, and the endoplasmic reticulum (ER) 
[387]. The study conducted by Tanaka et al. determined 
that in serum deprivation circumstances, overexpression 
of MYC and E2F-1 inhibit NF-kB activity and suppress 
superoxide dismutase (SOD). Due to the SOD suppres-
sion ROS levels elavete, and cells become vulnerable to 
apoptosis in serum-deprived conditions [388]. Ornithine 
decarboxylase (ODC) is another downstream transcrip-
tional target of MYC. ODC encodes the rate-limiting 
enzyme that catalyzes the first step in the polyamine bio-
synthesis pathway, converting ornithine to putrescine. 
MYC stimulates ODC activity to elevate synthesis and 
catabolism of more polyamine storage. In response to 
excess polyamine accumulation, polyamine oxidase cat-
abolizes polyamine to ROS and finally induces apoptosis 
[389].

Initially, in murine B cell lymphoma it was found that 
FOXO is an antagonist of MYC [390]. FOXO3a is a mem-
ber of the FOXO protein family that plays a key role 
in modulating MYC stability and mitochondrial gene 
expression [391]. Mad/Mxd protein family members are 
important FOXO3a downstream effectors that dimerize 
with MYC-associated factor X (MAX) and bind to pro-
moter regions of MYC target genes to block MYC func-
tion [392]. FOXO3a can also inhibit MYC activity by 
enhancing the expression of miRNAs that disrupt trans-
lation of MYC mRNA [391, 393]. Taken together, it seems 
that FOXO3a has an integral role in MYC regulation. In a 
negative feedback loop, MYC can displace FOXO3a from 
the promoter of its downstream targets such as GADD45 
and PUMA, and downregulates FOXO3a activity [394].

FOXO3a activation leads to a decrease in mito-
chondrial metabolism and gene expression. As well, 
FOXO3a reduces ROS production in response to stress. 
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In contrast, MYC elevates mitochondrial output and 
energy production, promoting cells to re-enter cell 
cycle. Increased ROS levels cause cell damage [395], and 
FOXO3a counterbalances this by increasing mitochon-
drial superoxide dismutase (SOD2) and catalase produc-
tion [391]. FOXO3a also disrupts the MYC-dependent 
expression of nuclear encoded mitochondrial genes 
[396]. Furthermore, activation of FOXO3a, independent 
of SOD2 activation, alters mitochondrial function and 
decreases cellular ROS [396, 397]. Overall, the interplay 
between MYC, FOXO3a, and mitochondrial proteins 
seems to be critical in regulating MYC and ROS-related 
activities.

Moreover, cell division cycle 25 (cdc25) phosphatase, 
a dual-specificity protein phosphatase, is composed of 
three members: cdc25A, cdc25B, cdc25C. while both 
cdc25B and cdc25C play an important role in promoting 
G2\M progression, cdc25A plays a more extensive gen-
eral function [398]. Cdc25A is a direct transcriptional 
target of MYC, and its activation contributes to MYC-
mediated apoptosis [399]. However, inhibition of cdc25A 
expression does not suppress MYC-mediated apopto-
sis because other MYC target genes can compensate for 
the lack of cdc25A. MYC can stimulate the expression of 
cdc25A through MYC\MAX heterodimer binding to its 
promoter. MYC activation can increase cdc25A mRNA 
and protein levels [147, 400]. The Pim-1 oncogene is 
another partner for MYC in apoptosis induction. Post-
translational phosphorylation of MYC by Pim-1 kinase 
increases the stability of MYC protein and enhances its 
transcriptional activity [401]. In addition, Pim-1 can 
phosphorylate cdc25A as a substrate, and regulates its 
phosphatase activity. Therefore, evidence indicates that 
cdc25A links Pim-1 to MYC and plays a vital role in 
apoptosis induction [402].

The role of MYC in hematopoiesis 
and hematological malignancies
MYC is a “global” transcription factor contributing to 
various cellular processes, one of which is hematopoie-
sis. Studies have determined that MYC has a quintes-
sential role in nearly every step of the way [23, 24]. 
The architecture of hematopoiesis is highly organized. 
Long-term hematopoietic stem cells (LT-HSCs) differ-
entiate into multipotent progenitors (MPPs) first. Both 
LT-HSCs and MPPs are LSK (Lin−/Sca1+/c-Kit+) cells, 
which turn into common myeloid and lymphoid pro-
genitors (CMPs and CLPs) [403–405]. Throughout these 
steps, the self-renewal potential of LT-HSCs is reduced. 
MYC expression however stays high, indicating its 
essential role in regulating differentiation and prolifera-
tion. High amounts of MYC can be regulated by a single 
E3 ubiquitin ligase called Fbw7 [406, 407]. The in  vitro 

MYC-mediated inhibition of hematopoietic cell differen-
tiation was first discovered in the 1980s [408]. Later on, 
a GFP-fused MYC knock-in mouse model was designed 
to pave the way for MYC-related in  vivo studies [409]. 
The highest MYC expression levels are seen in LSK-origi-
nated myeloerythroid progenitor cells, a continuous pro-
liferating cell population [406]. Compared to LT-HSCs, 
the MYC expression in MPPs is higher [406]. Also, LSK 
cells of the mice fetal liver shows increased MYC expres-
sion during the proliferation period [410, 411], which all 
are consistent with the study indicating that MYC hin-
ders differentiation in hematopoiesis and consequently 
propels proliferation [412].

MYC has a role in maturation and expansion of mye-
loid and lymphoid cells. Initial studies on lymphoid 
cells showed that the expression of MYC elevates at the 
transcriptional level during the maturation of pro-B 
cells into pre-B cells. Thereafter, MYC level would only 
be increased upon BCR-mediated activation of mature 
B cells [413–415]. The expression pattern of MYC dur-
ing T-cell development and the TCR signaling pathway 
is similar to B-cells [413, 416, 417]. It has been demon-
strated that MYC promotes the proliferation of both T 
and B lymphocytes, as well as synergizing the prolific 
effects of IL-7 [409, 418].

Compared to the lymphoid differentiation, the myeloid 
lineage undergoes a more convoluted path. Although 
MYC involvement in the development of lymphoid cells 
has received more attention, recent studies have shown 
that MYC also plays an important role in myeloid cell 
maturation [419]. The MYC−/− in mice showed not only 
a diminished lymphocyte production but also demon-
strated dysregulated myeloid proliferation, including 
thrombocytosis, monocyte and neutrophil reduction, 
and severe anemia [420]. Unlike other cells, megakaryo-
cytes were increased in the MYC−/− model, and despite 
their small size, they could produce high number of 
platelets, causing thrombocytosis. This indicates that 
megakaryocytes are not affected in the same manner as 
other myeloid cells [420]. All in all, it is not surprising 
that deregulation of MYC can contribute to tumorigen-
esis, particularly in hematological cells. In the subsequent 
sections, we elaborate on the role of MYC in different 
types of hematological malignancies.

Role of MYC in lymphocytic leukemia
The first demonstrations of MYC oncogenic capabilities 
in hematological neoplasms were seen in Eμ-MYC trans-
genic mice [421–423]. In this model most tumors were 
developed after 2–5  months, along with mutations in 
the Arf-Mdm2-p53 pathway [280, 424]. Eμ-MYC trans-
genic mice models, which overexpress MYC in lymphoid 
cells mostly develope T-cell lymphoma [425]. Although 
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Burkitt lymphoma is a hallmark of MYC-induced B-cell 
lymphoma in humans, mice models with induced MYC 
in their lymphoid lineage could not completely turn to 
Burkitt lymphoma. To address this, using yeast artifi-
cial chromosome (YAC) technology, transgenic mice 
with 240-kb IgH/MYC translocation region were devel-
oped, in which B-cell tumor developed even without 
Eμ enhancer. This model could mimic B-ALL and Bur-
kitt lymphoma [426–428]. Other mice models were also 
designed through inserting MYC cDNA into specific 
regions that transformed mice to Burkitt lymphoma and 
plasmacytoma model with t(8;14) and t(12;15), respec-
tively [429, 430]. In a more adaptive approach, HSCs 
derived from fetal liver cells were transduced with either 
mutant or wild-type MYC-expressing retroviral vectors 
to produce lymphoma [431]. Although the MYC overex-
pression has an oncogenic effect, the p53 can counteract 
it. When the bone marrow (BM) cells with p53wt/wt and 
null p53−/− phenotypes were transduced with a MYC-
encoding retroviral vector, B-cell lymphoma occurred 
only in p53 null cells [432]. Intriguingly, transduction of 
BM-obtained p53−/− B-cell lymphoma progenitors by 
MYC expressing retrovirus, turn the cells into a myeloid 
lineage in  vitro. However, the cells can shift back into 
B-cell lymphoma upon returning to in vivo environment. 
This oscillation can be confined via overexpressing Pax5, 
which maintains the cells in the lymphoid form [433]. 
Other MYC family members, namely N-MYC, can also 
contribute to developing AML [434]. Overall, these mod-
els have helped to delineate the role of MYC in lymphoid 
malignancies [435, 436].

Generally, MYC overexpression does not come from 
mutations in its gene, although some mutations stabi-
lize the MYC protein. Dysregulation of MYC in leukemia 
and lymphoma, which mostly leads to overexpression, is 
mainly due to gene amplification, chromosomal trans-
locations, aberrant transcription, and increased stabil-
ity of mRNA and protein [28]. The high levels of MYC 
in lymphoid neoplasms mostly confer poor prognosis. It 
has been revealed that more than 20% of B-ALL patients 
in different age groups and various demographic back-
grounds have MYC overexpression, which implies that 
routine MYC immunostaining could aid in diagnosing 
patients at higher risk [437].

B‑ALL with t(9;22)
The B-cell receptor–ABL proto-oncogene 1 rearrange-
ment reffered to as t(9;22) (BCR-ABL1) occurs in 20–30% 
of ALL cases. The resulted shorten chromosome 22 is 
called the Philadelphia chromosome (Ph) [438]. The 
product of BCR-ABL1 fusion gene is a tyrosin kinase that 
can induce MYC activation in mice pre-B cells. How-
ever, the BCR-ABL1-mediated activation of MYC does 

not suffice for tumoriogensis. A second hit by oncopro-
teins such as c-RAF, c-JUN, or RAS is needed for cells to 
go through a malignant transformation [439, 440]. The 
suppression of MYC diminishes BCR-ABL1-mediated 
transformation, meaning that MYC not only possesses 
a complementary role but also is essential for ensur-
ing the malignant transformation [439, 441]. Moreover, 
upon pre-BCR activation in lymphoblasts, MYC would 
be induced via a spleen tyrosine kinase (SYK)-mediated 
signaling pathway located in its upstream. Subsequently, 
MYC induction results in increased transcription of 
BCR-ABL1 in a positive feedback loop to increase the 
transcription of MYC oncogene [442, 443]. A study 
reported that MYC oncogene’s transcription could be 
diminished if SYK is inhibited by small molecules like 
PRT318 [443]. Parallel to SYK, Sphingosine kinase 2 
(SK2) has the ability of acetylating histone H3 within the 
MYC gene, which induces a MYC-mediated oncogenic-
ity in ALL-mouse models. Inhibiting SK2 or ablating the 
SK2 gene in murine models can drastically reduce ALL 
development through reduction in MYC expression and 
its downstream target genes [444]. In principle, SK2 
inhibitors like ABC294640 may be a potential therapeu-
tic approach toward down-regulating MYC expression in 
different hematological malignancies [445]. Albeit, some 
clinical trials with SK2 inhibitors have been conducted on 
diffuse large B-cell lymphoma (DLBCL) (NCT02229981) 
and multiple myeloma (MM) (NCT02757326).

A thoroughly studied oncogenic pathway is the 
Wnt signaling cascade that can promote MYC onco-
genicity. The β- and γ-catenins, which are involved in 
the Wnt signaling pathway [446], can contribute to 
the pathogenesis of BCR-ABL1-mediated leukemias, 
including CML and Ph-positive B-ALL [447]. In CML, 
BCR-ABL1 in HSCs exerts its effects via β-catenin 
without induction of MYC expression [448]. Contrary 
to CML, BCR-ABL1 in Ph-positive B-ALL is able to 
phosphorylate γ-catenin directly and indirectly by SRC 
family kinase. Subsequently γ-catenin can induce MYC 
overexpression [447, 448]. On the other hand, following 
IgM signaling, the MYC mRNA becomes more stable 
through activation of eIF4 and eIF4GI, supplying higher 
levels of MYC [449–451]. A positive feedback loop 
between eIF4 and MYC boosts their activities [452], by 
which MYC cooperates with MAX, leading to enhanced 
expression of the BCR-ABL gene [453]. As it was men-
tioned, BCR-ABL provokes MYC overexpression in a 
multitude of ways. BCR-ABL1-mediated activation of 
JAK2 and STAT5 in both CML and Ph-positive B-ALL 
can sustain elevated MYC levels through promoting its 
gene expression and guarding MYC against ubiquitina-
tion and proteasome-dependent degradation (Fig.  7) 
[454, 455].
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BCR-ABL tyrosine kinase inhibitors (TKIs), are used 
in treatment of CML and Ph-positive B-ALL patients. 
Dasatinib, a second generation of TKI, has a dual func-
tion against BCR-ABL positive cells and inhibits BCR-
ABL and SRC family kinase [456]. However, in some 
Ph‐positive cases there are mutations that confer resist-
ance to TKIs. A medium-chain fatty-acid derivative 
named AIC-47 is capable of suppressing BCR-ABL at the 
transcriptional level and eliminating the Warburg effect 
[457, 458]. Further, it was demonstrated that AIC‐47 
could act as an anti-leukemic agent via down-regulating 
the MYC regardless of BCR-ABL mutations [459].

B‑ALL with t(12;21)
The ETV6/RUNX1 (TEL/AML1) rearrangement, as 
a result of t(12;21) has been reported in 20–30% of 
childhood B-ALL cases [460, 461]. The MYC onco-
genic pathway can synergize with ETV6/RUNX1, lead-
ing to promoted MYC oncogenic activity. This is due 
to a slight homology between the N-terminal region 

of ETV6 and bHLH region of MYC [28]. The ETV6 
can fuse with PAX5 as well and mediates the induc-
tion of MYC target genes, leading to ALL progression 
[462, 463]. In ETV6/RUNX1-rearranged ALL, the MYC 
gene can be overexpressed by the GTP-binding pro-
tein RAC1 [464, 465]. RAC1 enhances the phospho-
rylation of STAT3, and as a result, MYC expression 
increases. Therefore, STAT3 inhibitors can enhance in 
B-ALL cells by decreasing MYC expression [464, 466]. 
An RNA-binding protein named IGF2BP1 can stabi-
lize the ETV6/RUNX1 rearrangement at the post-tran-
scriptional state, leading to an increased level of MYC 
[467, 468]. In a recent study, ETV6/RUNX1 fusion in a 
B-ALL model was knocked out using the CRISPR-Cas9 
system, causing an enhanced level of apoptosis and 
reduced proliferation rate. This can eventually diminish 
the growth of tumor cells [469]. Abrogating the ETV6/
RUNX1 seems to decrease the growth of B-ALL cells 
and this is due to its role in supporting the oncogenic 
factors like MYC.

Fig. 7  The interactions between BCR-ABL and MYC in B-cell lymphocytic leukemia with t(9;22). Dashed arrows represent an indirect pathway 
of action, and thick arrows show the mediator’s direct effect. Both mature and immature BCR signaling cascades are able to increase the MYC 
expression. sIgM signaling increases the MYC mRNA stability, which results in a higher level of MYC, and increase the BCR-ABL expression. BCR-ABL 
can induce MYC expression. Pre-BCR signaling can increase MYC stability and expression. Inhibitors of these signaling mediators can significantly 
reduce the activity and expression of MYC
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B‑ALL with the MLL rearrangement
The histone-lysine methyltransferase MLL gene, the so-
called KMT2A, is located on chromosome 11 band q23. 
Chromosomal translocations in this gene frequently 
occur in both pediatric ALL and AML, representing a 
considerably poor prognosis in infant leukemia [470–
472]. The transloactions involving MYC gene at chro-
mosome 8 are more found in lymphoma comparted to 
leukemia [471]. It is worth mentioning that the deletion 
of the CDKN2 gene is frequent in B-ALL patients. It has 
been shown that t(8;14) is less frequent in cases with 
wild-type CDKN2 [473]. Furthermore, RS4;11 (KMT2A-
AFF1), a B-cell leukemic cell line containing isochromo-
some i(8q), shows a duplicated MYC gene [474]. The 
KMT2A-AFF1 rearrangement mostly participates in the 
leukemic progression as a second hit, and B-ALL patients 
with this fusion protein possess a significantly promoted 
MYC gene expression in comparison to patients with 
AML [475, 476].

Nearly 135 different MLL rearrangements have been 
found in acute leukemias, which mostly include AF4 
(AFF1), AF9, and ELN [477]. The oncogenic activation 
of the MYC gene mediated by MLL-fusion proteins such 
as MLL-Fusion/MYC/LIN-28 and MLL-ELN has been 
reported in B-ALL cases [478, 479]. As mentioned above, 
p53 can counteract the oncogenic activity of MYC. How-
ever, in leukemia cases with MLL rearrangement, MLL 
protein fusion with USP2 deubiquitinating protein expe-
dites the degradation of p53 by enhancing the promoting 
USP2 activity. In such cases, MYC activity rises indirectly 
[480, 481].

The bromodomain and extra-terminal domain (BET) 
family members are BRD2, BRD3, and BRD4 proteins. 
These proteins are part of a foundation complex which 
also includes the super-elongation complex (SEC) 
and RNA Pol II‑associated factor 1 (PAF1) that all are 
required for binding of MLL-fused proteins to DNA 
[482]. The MLL-rearranged proteins bind to a particu-
lar complex in the MYC gene’s regulatory domains, 
promoting gene expression at the transcriptional elon-
gation level [483, 484]. Indeed, ChIP and expression 
analyses have shown that SEC is directly associated 
with MYC expression in myeloid and lymphoid leuke-
mias [485]. The MLL-SEC rearrangement is stated to be 
involved in pathogenesis, progression, and metastasis 
of MLL-rearranged leukemia [486]. Since the BET pro-
teins are therapeutic potential targets, BET inhibitors 
(iBET) such as iBET-151 and JQ1 (a potent inhibitor of 
BRD4) were developed to inhibit transcriptional elon-
gation stage of MYC’s transcription [483]. 7SK-snRNP 
complex as the regulator of transcription elongation 
consists of multiple proteins such as TFEb with kinase 
activity and HEXIM1, which are positive and negative 

regulators of transcription elongation, respectively. In 
order to inhibit TFEb, it is necessary HEXIM1 to inter-
act with other members of 7SK-snRNP complex such 
as 7SK-RNA. The TEFb is required for initiating the 
transcriptional elongation of MYC. MYC’s coopera-
tion with BRD4 would be needed if p-TEFb is recruited. 
This tight interplay between MYC, BRD4, and 7SK-
snRNP complex is critical for a fine-tuned transcrip-
tion elongation [487–490]. The oral iBET Birabresib 
(OTX015, also known as MK-8628) has been shown 
to reduce MYC expression and increase HEXIM1 in 
various types of hematological malignancies [491–493]. 
The evaluation of OTX015 in AML, ALL, MM, and 
DLBCL has already passed phase I of a clinical trial 
(NCT01713582), showcasing promising results [494, 
495]. CPI-0610, a BRD4-targeted small molecule can 
also reduce MYC expression in different types of leu-
kemias [496–498]. It is currently in phase II of a clinical 
trial (NCT02158858). Additional to agents that indi-
rectly inhibits the MYC activity, there are some direct 
MYC inhibitors in pre-clinical stage that have been 
listed in Table 2. For more delineation on clinical trials 
of MYC inhibitors, a list of clinical trials by these agents 
in various diseases has also been provided in Table 3.

Overexpression of HDACs such as HDAC9 and SIRT1 
have an adverse prognosis in MLL-rearranged lympho-
blastic leukemia [499], noteworthy, the latter alters the 
acetylation of critical genes including TP53, MYC, and 
NF-kβ, causing drug resistance [28, 499–503]. Indeed, 
a vast spectrum of HDAC inhibitors (iHDACs) are in 
development, and some have obtained FDA approval 
[504]. Contrary to other HDACs, HDAC7 which 
down-regulates MYC is mostly decreased in various 
types of leukemia including ones with MLL rearrange-
ment [505]. A study showed that ectopic expression of 
HDAC7 is potentially anti-oncogenic in B-ALL cells 
[505]. iHDACs have been used individually and in com-
bination with chemotheraputic agents such as cisplatin, 
etoposide and azacitidine. Moreover, combination of 
imatinib with iHDACs has shown promising results in 
MYC-mediated leukemia [506, 507].

The blood enhancer cluster (BENC), a super-
enhancer fragment located within MYC gene governs 
the oncogenic MYC-expression during the proliferation 
of B-cell precursors. The BENC confers a vast region of 
accessible chromatin to transcription factors, enhanc-
ing gene expression [508–510]. The adverse MLL–AF9 
rearrangement has been reported in both childhood 
myeloid and lymphoid leukemias [511]. Deletion of 
BENC demonstrated a drastic reduction of leukemic 
cells as well as improved prognosis of MLL–AF9-rear-
ranged leukemia [512].
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Chronic lymphocytic leukemia (CLL)
Chronic lymphocytic leukemia (CLL) is a disease with 
chronic proliferation of B lymphocytes due to impaired 
apoptosis and enhanced growth [449, 513]. CLL is a 
heterogeneous disease with various genetic alterations, 
such as mutations in immunoglobulin heavy chain 
variable region (IGHV), MYC translocation, del(11q), 
del(13q), and del(17p) [514, 515]. MYC translocations 
are extremely rare in CLL. A comprehensive study evalu-
ated the frequency of MYC translocations in 3405 CLL 
patients, and showed only a 0.2% (8/3405) occurrence 
rate [515]. Among them, t(2;8), t(8;22), and t(8;14) were 
seen in one, two, and five patients, respectively. All CLL 
patients with MYC rearrangements had poor prognosis, 
complex cytogenetic abnormalities, and more than 10% 
prolymphocytes [515]. Some rare CLL cases with MYC 
translocation have been reported with typical morphol-
ogy, and proper response to chemotherapy [516, 517]. 
Another study on 20 patients found that pathogenesis 
of MYC rearrangements in CLL rely on other genetic 
abnormalities. For example, complex karyotype is often 
seen with Richter syndrome transformation, while non-
complex karyotype is often associated with proper 
respons to therapies and achieving remission [518].

Richter syndrome is an aggressive form of CLL and 
lymphoma associated mostly with molecular aberra-
tions in MYC, CDKN2A/B, NOTCH1, and TP53 [519]. 
Gain of function mutations of MYC has been shown in 
70% of Richter syndrome cases [520]. Despite genetic 
aberrations in the MYC gene, the MYC hyperactiva-
tion in transformed CLL could be as a result of miR-
17-92 cluster activity [521], mutations or deletions of 
MYC regulator MGA [522], and NOTCH1 gene [523], 
CD40L activation of NF-kβ [524] or BCR (B-cell recep-
tor) signaling [525]. Mutations in CD79 or CARD11 as a 
part of BCR signaling can provoke chronic BCR signal-
ing in malignant B-cells leading to MYC overexpression 
[526]. Additionally, the surface immunoglobulin (Ig) of 
malignant B-cells in some CLL cases is fully glycosylated 
and mannosylated in the constant and variable regions, 
respectively. Such an Ig can interact with lectins pre-
sent in the environment, including DC-SIGN and the 
mannose receptor [527–529]. Opposite to normal BCR 
signaling, this Ig can continuously send signals with-
out BCR-antigen endocytosis and upregulates the MYC 
expression vigorously [527]. Furthermore, the miR-17-
92 cluster participates in BCR-mediated upregulation of 
MYC in which a higher level of MYC leads to induction 
of miR-17-92, establishing a feed-forward regulatory loop 
in aggressive forms of CLL [530–532].

The FOXP1 is a transcription factor acting in favor of 
CLL progression. Although FOXP1 levels should be reg-
ulated by miR-150 and miR-34a, the MYC binds to their 

genes and decreases the gene expression, inducing gain of 
FOXP1 activity [533, 534]. Fludarabine and doxorubicin 
are agents capable of swiftly inducing the miR-34a-me-
diated inhibition of BCR signaling in B-cell neoplasms. 
These agents are ineffective at hampering BCR signaling 
in cells with impaired p53 pathway [534, 535].

Unmutated IgHV of BCR, along with heightened sur-
face IgM (sIgM) signaling capability, is associated with 
high MYC mRNA translation in CLL [450]. Therefore, 
inhibition of BCR signaling-related factors, BTK and 
SYK, by Ibrutinib and Tamatinib respectively, can sup-
press the translational responses [450]. The mutation rate 
in IgHV depends on the proliferation rate of CLL cells. 
Cells with accelerated division have less IgHV mutation; 
in contrast, a higher mutation rate is associated with 
cells having a slow dividing pattern [536]. Though it is 
not entirely understood, patients with unmutated IgHV, 
compared to ones with mutated IgHV, seem to have an 
inferior survival rate [536, 537]. Mutations in NOTCH1 
gene are prominent in CLL cases with unmutated IgHV 
and intensified sIgM signaling [538]. The gain of function 
mutations like c.7541_7542delCT in the PEST domain of 
NOTCH1 gene accumulates and stabilizes the protein, 
driving an aggressive CLL with high MYC translation 
[538–540]. Overall, due to cross reaction of NOTCH1 
signaling with BCR, use of BCR inhibitor Ibrutinib in 
CLL could downregulate NOTCH1 activity [541]. This 
could be a promising approach in downregulation of 
MYC in CLL.

Various types of BCR signaling inhibitors, such as 
Ibrutinib, Idelalisib (PI3K inhibitor), Venetoclax (BCL-2 
inhibitor), and other novel inhibitors have been devel-
oped, and some are approved for standard of care [542, 
543]. The BET inhibitors, like the novel GS-5829, target 
CLL cells, inducing apoptosis via disrupting signaling 
pathways of MYC, BLK, AKT, and ERK1/2 [544]. Addi-
tionally, combinatorial use of BET and BCR inhibitors, 
have demonstrated further anti-leukemic effects [544, 
545]. Despite all the promising results from the stan-
dalone targeted- and personalized-therapies, combina-
tion chemo-immunotherapy should be used for CLL 
[537, 546].

Lymphoma
Strong evidence showing MYC’s role in human cancer 
was first found in Burkitt lymphoma [547]. The role of 
MYC in causing lymphoma was further demonstrated in 
B-cell and rarely in T-cell lymphoma. [548].

Burkitt lymphoma invariably shows a translocation of 
MYC gene to the immunoglobulin gene loci [549]. Eighty 
percent of these translocations are within the immuno-
globulin heavy chain gene locus 14q32. Less frequently 
the immunoglobulin light chain genes, IGκ or IGλ at 
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2p12 or 22q11 are involved [550, 551]. The transloca-
tions result in MYC hypermutation, creating MYC vari-
ants with increased oncogenic activity [552–554]. A 
study suggested that MYC translocation by itself does not 
cause Burkitt lymphoma, arguing that inhibitor of DNA 
binding (ID) proteins are another key factor [555]. MYC 
and ID3 were identified as the most mutated genes in 
Burkitt lymphoma [556]. Additionally, there is an inter-
play between BCR, ID3, and MYC in which, upon BCR 
signaling, MYC and ID3 would be activated. BCR, ID3, 
and MYC are all in a positive feedback loop [28, 557]. 
Robust BCR activation requires a functional PI3K. In 
Burkitt lymphoma, MYC-induced miR-19 inhibits the 
PI3K inhibitor PTEN, paving the way for lymphomagen-
esis [531, 555, 558, 559]. PI3K inhibitors may therefore be 
effective in treating Burkitt lymphoma (Table 3).

MYC rearrangement occurrence rate in DLBCL as the 
most common type of non-Hodgkin lymphoma is only 
10% [549]. Frequent rearrangements in DLBCL involve 
BCL6 and/or BCL2 (t(14;18)(q32;q21)), which can be 
seen nearly in 30% of cases [560]. On the other hand, 
MYC amplification and gain of functions in DLBCL cases 
come with high MYC copy number and poor progno-
sis, which indicates an alternative MYC-dependent lym-
phomagenesis [561]. MYC gene SNPs in DLBCL cases 
directly correlate with increased cellular proliferation 
[28].

MYC stability depends on GSK-3β activity. MYC is 
degraded following GSK-3β-mediated phosphorylation 
of MYC’s Thr-58 residue [562]. In DLBCL, PI3K activa-
tion hampers GSK-3β-mediated downregulation of MYC 
[525]. Furthermore, PTEN, the natural PI3K inhibitor, 
is often absent in germinal center B-cell-like DLBCL 
[563]. In a positive feedback loop, MYC upregulation 
in DLBCL promotes further BCR signaling via recruit-
ing the MIR17HG cluster [532, 564]. These observations 
imply that inhibitors of the BCR signaling pathway might 
be effective in blocking this feedback loop.

Based on WHO classification, cases carrying MYC 
rearrangement accompanied by either BCL2 or BCL6 
translocation are designated as double-hit lymphoma 
(MYC+/BCL2+ or MYC+/BCL6+) [565]. Lympho-
mas bearing all three translocations (MYC+/BCL2+/
BCL6+) are known as triple-hit lymphomas [566]. These 
two types are labelled as high-grade B-cell lymphomas 
[567]. Additionally, double-hit lymphomas with MYC+/
BCL2+ translocations carrying a TP53 mutation lead 
to further inhibition of p53-induced apoptosis [568]. 
Hence, impaired p53-mediated apoptosis, enhanced 
BCL2-mediated cell survival by BLC2, and promoted 
MYC-induced proliferation can together form an aggres-
sive phenotype. The first-line treatment for double-hit 
lymphoma is R-CHOP chemotherapy [565]; however, a 

recent study demonstrated that targeted therapy using 
iBET (JQ1, I-BET, and OTX015) alongside BCL-2 inhibi-
tor (ABT-199) could remarkably minimize proliferation 
and cell survival [569].

Some low-grade lymphomas like follicular lymphoma 
(FL) can transform to high-grade lymphomas such as 
DLBCL. FL is a sluggish type of non-Hodgkin lymphoma 
characterized by the t(14;18)(q32;q21) translocation 
[570]. In nearly 30% of cases, FL transforms to DLBCL 
[571]. The transformation of FL to high-grade lymphoma 
requires an additional hit [572]. Most transformed FL 
cases have intensified MYC expression in approximately 
one-fourth of their cells [573]. In addition to MYC, alter-
ations to TP53, CDKN2A, and c-REL are associated with 
the proliferative phenotype of transformed FL [572, 574]. 
Like FL, most mantle cell lymphoma (MCL) cases have 
heightened MYC expression [573]. Contrary to FL, MCL 
is considered an aggressive malignancy [575]. The genetic 
hallmark of MCL is the t(11;14)(q13;q32) translocation 
[576, 577]. MYC rearrangements are usually seen in dou-
ble-hit MCL [578, 579].

MCL is a heterogeneous disease in which cell-cycle, 
DNA damage response, and cell survival genes are mostly 
altered [580, 581]. MCL has two aggressive variants 
called the blastoid and pleomorphic [580]. In these sub-
types, MYC alterations such as t(8;14), t(2;8) and add(8)
(q24) accompanied by TP53 alterations lead to a more 
aggressive MCL [582–584]. Moreover, MALT1 a key fac-
tor in MYC stabilization is constitutively expressed in 
MCL, promoting disease progression.

Plasma cell neoplasms
Plasmablastic lymphoma (PBL) is another type of aggres-
sive non-Hodgkin lymphoma, and given the presence of 
CD138+, CD38+ and MUM1+ it originates from plas-
mablasts rather than B-cells [585]. PBL is usually found 
in HIV-positive or immunocompromised cases [586], 
although there are few studies reporting the occur-
ance of PBL in non-immunodificent patients [587, 588]. 
Here, BLIMP1-mediated gene repression in the plasma-
blasts, which is required for plasma cells differentiation 
downregulates several genes, including PAX5, BCL6 and 
MYC [589, 590]. It has been reported that 50% of PBL 
cases bear mutations in BLIMP1 gene (PRDM1), affect-
ing MYC regulation [591]. Intriguingly, 80% of cases have 
co-expression of BLIMP1 and MYC [591], highlighting 
a synergistic effect between the two molecules. Almost 
50% of PBL cases are found to have MYC rearrangements 
[592]. Gain of function mutations of MYC are also com-
mon in PBL [593]. Loss of p53, has also been shown to 
contribute to PBL’s aggressiveness [594]. BET inhibitors 
like JQ1 are capable of inducing cell cycle arrest [482] 
and may be effective in these cases.
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Similar to PBL, plasma cells involved in multiple mye-
loma (MM) also bear IGH-MYC translocation [595]. 
Hyperdiploidy, MYC structural variants, and mutations 
in RAS can also induce MM [595, 596]. A recent compre-
hensive study showed that the progression of MM heavily 
depends on MYC, RAS, and NF-κB signaling pathways 
[595]. Another study on 1342 MM patients showed those 
with MYC rearrangement had a lower survival rate [597]. 
There are several MYC targeted therapies for MM that 
are undergoing clinical trials (Table  3) [598]. Among 
all the agents, Lenalidomide, which can indirectly tar-
get MYC by inhibiting its transcription has gained FDA 
approval [599].

Role of MYC in myelocytic malignancies
MYC dysregulates myeloid differentiation [600], and The 
deletion of MYC in mice diminishes leukomogenesis. 
The dysregulated myelopoiesis, leads to notable throm-
bocytosis, drastic monocytopenia and neutropenia, and 
severe anemia [419, 420]. Several early studies on mye-
loid leukemia cell lines, such as MEL, K562, and U937, 
showed that MYC up-regulation could inhibit cell differ-
entiation [601–603]. Nonetheless, in some leukemic cells 
like NB4 (promyelocytic leukemia cell line), MYC boosts 
the retinoic acid-induced differentiation [604]. There 
have been many in  vitro- and in  vivo- based studies on 
the role of MYC in myeloid leukemias [419, 605–607]. 

Nearly all indicated that in both chronic and acute mye-
loid leukemia, MYC can impact progression and progno-
sis of the disease.

Acute myelocytic leukemia (AML)
AML has various subtypes with a broad spectrum of 
genetic abnormalities (summarized in Table  1). Unlike 
lymphoid malignancies, where MYC overexpression is 
mostly associated with its translocation, the cause of 
MYC aberrant expression and activity in myeloid malig-
nancies is not thoroughly established [29, 608]. However, 
a rare recurrent translocation t(3;8) (q26.2;q24), caus-
ing MECOM-MYC rearrangement, has been reported 
to be associated with therapy-related and relapsed AML 
as well as AML transformed from Ph+ CML [609, 610]. 
Recently, in a detailed and comprehensive study, hotspot 
mutations in the MYC gene have been identified in AML 
patients [611]. Other mutations can coincide with MYC 
mutation in AML. These include: MYC-FLT3, NPM1-
MYC, MYC-DNMT3A, NPM1-MYC-FLT3, NPM1-
MYC-DNMT3A, and MYC-FLT3-DNMT3A [611]. MYC 
acts in favor of the progression and maintenance of AML 
by participating in promoting transcription and trans-
lation of the genes involed in cell growth, self-renewal 
of leukemia stem cell, and chemoresistance [6, 139, 
502, 612, 613]. In all subtypes of AML with cytogenetic 
abnormanlities, MYC overexpression is mainly a sign of 

Table 1  Genetic abnormalities in AML

Type Biomarker Fusion protein/role References

Rearrangements t(8;21) (q22;q22.1) AML1-ETO or RUNX1-CBFA2T1 [616]

inv(16) (p13.1q22) or t(16;16)(p13.1;q22) CBFB-MYH11 [617]

t(15;17) (q22;q12) PML-RARA​ [618]

t(6;9) (p23;q24) DEK-NUp214 [619]

inv(3) (q21.3q26.2) or t(3;3) (q21.3;q26.2) GATA2-MECOM [620]

t(1;22) (p13.3;q13.3) RBM15/MKL1 [621]

t(9;22) (q43;q11) BCR-ABL1 [622]

t(6;11) (q27;q23) MLL-AF6 [623]

t(9;11) (p22;q23) MLL-AF9 [624]

t(9;11) (p21.3;q23.3) MLLT3-KMT2A [625]

t(6;9) (p23;q34) DEK-NUp214 [619]

t(3;8) (q26.2;q24) MECOM-MYC [609]

t(5;11) (q35;p15.5) NUP98-NSD1 [626]

Mutations FLT3, KRAS, NRAS, KIT, PTPN11, NF1 Signaling mediators [627]

DNMT3A, IDH1/2, TET2, ASXL1, EZH2, MLL/KMT2A Epigenetic mediators [627]

CEBPA, RUNX1, GATA2 Transcription factors [628]

TP53 Tumor suppressing factor [629]

SRSF2, U2AF1, SF3B1, ZRSR2, RBM25 Spliceosome complex [630]

NPM1 Nucleophosmin [631]

RAD21, STAG1, STAG2, SMC1A, SMC3 Cohesin complex [632]

MYC Proto-oncogene [633]
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inferior overall survival [614]. Since novel MYC-targeting 
agents show clinical efficiency in AML, understanding 
the MYC activity in AML is of critical important [615].

Inducing leukemogenesis through overexpressing 
MYC, is a common approach to study the effects of this 
proto-oncogene. MYC expression alone does not suffice 
for the transition of cells to AML; in fact, continuous 
co-stimulation with IL-3 and GM-CSF are also required, 
suggesting the vital role of microenvironment and 
cytokines in the development of MYC-mediated AML 
[634]. Most recently, leukemic microenvironment-origi-
nated exosomes have attracted significant attention. This 
is due to their ability to carry cargos like MYC between 
tumor cells, inducing leukemic progression [635]. Inves-
tigating leukemia-related exosomes seems beneficial to a 
better understanding of leukemogenesis, leukemia diag-
nosis, and efficient therapeutic strategy.

The fine-tunned balance between pro- and anti-apop-
totic signals are mostly dysregulated during tumorigen-
esis. All six members of the anti-apoptotic BCL family, 
including BCL2, BCLxl, BCLw, BCLb, BFL1, and myeloid 
cell leukemia 1 (MCL1), have been reported to advance 
the MYC-induced myeloid leukemogenesis [636]. Results 
from MYC-induced AML in mice have shown presence 
of highly expressed anti-apoptotic protein MCL-1 [637]. 
MCL-1 inhibitors such as AZD5991 (NCT0321868), 
S64315 (NCT0297936), AMG176 (NCT0267545), and 
AMG397 (NCT03465540) are under evaluation in phase 
1 clinical trials for AML patients.

Aberrant transcription factors encoded by AML-
related rearrangements such as AML1-ETO (RUNX1-
CBFA2T1), PML-RARα, and ZBTB16 (PLZF)-RARα 
have been reported to induce Wnt signaling, lead-
ing eventually to the upregulation of MYC [638–640]. 
The Wnt-induced upregulation of MYC in AML with 
RUNX1-CBFA2T1 fusion protein is associated with 
a feed-forward loop between RUNX1-CBFA2T1 and 
γ-catenin. The RUNX1-CBFA2T1 elevates γ-catenin 
expression and mediates the Wnt-induced MYC upreg-
ulation [638]. RUNX1-CBFA2T1 can also induce MYC 
upregulation by provoking the expression of β-catenin, 
another Wnt family member [638]. In addition to 
RUNX1-CBFA2T1, LEO1, a direct and specific substrate 
for phosphatase of regenerating liver-3 (PRL-3), can 
bind to β-catenin and increase its activity. This results 
in transactivation of the MYC gene [641]. Nearly 43% of 
AML cases are PRL-3+ in which they have exhibited sen-
sitivity to β-catenin inhibition. This shows AML-PRL-3+ 
is dependent on Wnt signaling [641, 642]. A study found 
that Kangai 1 (KAI1), also called CD82, is overexpressed 
in pediatric AML cases. This activates the Wnt/β-catenin 
pathway and its target MYC, supporting the proliferation 
of leukemic cells and -chemoresistance to doxorubicin. 

Remarkably, the knocking-down of CD82 led to apop-
tosis and repressed growth and reduced chemotherapy 
resistance in AML cells [643]. Apart from Wnt signal-
ing, proliferation and self-renewal in AML cells with 
RUNX1-CBFA2T1 significantly depends on TATA-Box 
binding protein associated Factor 1 (TAF1) [644]. Due to 
the considerable overlapping of binding sites of TAF1 and 
RUNX1-CBFA2T1, the knocking down of TAF1 or inhib-
iting it by Bay-364 can impair the MYC expression and 
promote differentiation and apoptosis in leukemic cells 
[644].

Protein phosphatase 2A (PP2A) endogenous inhibitor, 
ARPP19, might be a potential biomarker for patients with 
AML as it associated with the induction of MYC overex-
pression [645]. Based on the ELN risk group classifica-
tion for AML, in both favorable- and intermediate-risk 
groups, a high level of ARPP19 increases the necessity 
of BM transplantation while patients with low levels of 
ARPP19 can mostly be cured with chemotherapy [645].

Furthermore, FLT3 mutations are found in AML 
patients. These include internal tandem duplication 
(ITD) and tyrosine kinase domain (TKD) mutations 
[646]. These mutations can mediate ligand-independent 
activation of the canonical Wnt/β-catenin signaling path-
way, resulting in the upregulation of MYC and myeloid 
transformation [647]. Using merely FLT3 tyrosine kinase 
inhibitors might not be efficient to halt AML progres-
sion. This is due to MYC-mediated stabilization of the 
histone deacetylase SIRT1 which causes treatment resist-
ance in AML [502]. However, strategies such as disrupt-
ing Wnt/β-catenin signals or combining Pim-1 kinase 
inhibitors or PP2A activators with FLT3 inhibitors syn-
ergize and promote their anti-leukemic effects in AML 
[648–650]. Apart from signaling pathways, dysregula-
tion of mRNA splicing is also found in AML, where the 
splicing regulator RBM25 is reduced [651]. Decrease in 
RBM25 increases MYC levels followed by enhanced pro-
liferation along with reduced apoptosis in leukemic cells 
[651].

Cancer cells often utilize double minutes (dmin), 
homogeneously staining regions (hrs), and ring chro-
mosomes to do extra-chromosomal gene amplification 
[652]. This mechasnism of gene amplificationoccasionally 
happens in leukemias [653]. In this manner, two of the 
most amplified AML-related genes are MYC and MLL 
[654, 655],which the presence extra-chromosomal gene 
amplifier implies a poor prognosis although mechanism 
of action has not been elucidated [656].

Myeloproliferative neoplasms (MPNs)
MPNs are associated with the proliferation of one or 
more members of the myeloid lineage. There are mainly 
two categories based on presence of Ph chromose: Ph 
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(BCR-ABL)-positive CML and Ph-negative group includ-
ing essential thrombocythemia (ET), polycythemia vera 
(PCV), and primary myelofibrosis (PMF). In the Ph-
negative group the involvement of JAK2, MPL, and/or 
CALR aberrations are frequent [657, 658]. However, the 
co-occurrence of Ph-positive and other aberrations have 
been infrequently reported in CML [657].

The aforementioned feed-forward interplay between 
MYC and BCR-ABL thoroughly describes the BCR-ABL-
mediated upregulation of MYC in both CML and Ph-
positive ALL. Furthermore, BCR-ABL can mediate the 
phosphorylation of Ser62 residue of MYC, though dasat-
inib can induce its dephosphorylation [659]. Progres-
sion of CML into blastic crisis is associated with a higher 
MYC expression level. This correlates with inferior 
response to imatinib and poorer prognosis [605]. In CML 
patients who further progress to the blastic crisis phase, 
endogenous PPA2 inhibitor, CIP2A increases prior blas-
tic phase. CIP2A blocks dephosphorylation of MYC at 
Ser62 residue [660, 661]. In the blastic phase, the MYC 
target genes, including the ATP-binding cassette (ABC) 
transporters, are up-regulated. However, they might play 
a role in resistance to imatinib [662]. It has been sug-
gested that TKIs can be combined with other therapeu-
tic strategies to overcome ABC-related drug resistance 
[663].

Fbxw7-mediated ubiquitination of MYC is considered 
an essential regulatory step in CML [664]. The Fbxw7 
mediate decrease in proliferation, survival and main-
tenance of leukemia-initiating and leukemia stem cells 
(LIC/LSC). Upon phosphorylation of MB-Box I domain 
of MYC at Thr-58 and Ser-62, Fbxw7 targets MB-Box I 
domain and destabilizes the MYC [665]. Phosphorylation 
of Thr-58 relies on the earlier phosphorylation of Ser-62. 
Intriguingly, The sole phosphorylation of Ser-62 stabi-
lizes the MYC, whereas further phosphorylation of Thr-
58 propels MYC toward ubiquitination and degradation 
[59]. The BCR-ABL fusion protein is not solely required 
for LSC survival; thereby, TKIs fail to annihilate LSCs 
responsible for CML maintenance [666]. To address 
this impediment, a study recommended an intriguing 
approach without application of BCR-ABL inhibitors. 
In this dual approach p53 was activated and MYC was 
inhibited. This resulted in synergetic extermination of 
cells, further differentiation, and almost obliteration of 
transplantable human LSCs in mice,whilie healthy HSCs 
were spared [667]. This might be a potential strategy in 
TKI resistance and relapsed patients.

The prevalence of JAK2 V617F mutation in MPNs, 
including PCV, ET, and PMF, is approximately 90%, 50%, 
and 50%, respectively [668]. Generally, the signaling cas-
cade initiated by JAK2/STAT5 can mediate MYC expres-
sion. In MPNs with JAK2 V617F mutation however, the 

signaling is independent of any ligand [669]. Hyperacti-
vation of mutated JAK2 needs an intact FERM domain 
to induce MYC overexpression [670]. Both PIM and 
JAK2 inhibitors have been used to downregulate MYC 
and repress MPN cell proliferation; however, combining 
them can overcome MPN drug resistance and synergisti-
cally enhance their suppressing effect upon MYC [671]. 
The above mentioned strategy implemented by Abraham 
et al. in which p53 is provoked and MYC is inhibited, has 
also been suggested as an effective therapeutic approach 
for JAK2-mediated MPNs [667, 669].

MYC inhibitors
MYC is a well-established oncogene that can be targeted 
by inhibitors. The table below provides a list of MYC 
inhibitors in the pre-clinical stage.

Direct MYC inhibition
Studies have pointed that direct MYC inhibition brings 
about prompt tumor regression, highlighting the impor-
tance of this approach [691]. Inhibiting MYC/MAX 
dimerization and E-box binding by peptides and small 
molecules, as well as using RNA interferences (miRNA, 
siRNA) downregulating MYC translation, can directly 
block MYC activity [691].

Recently, OmoMYC agents as MYC dominant-negative 
proteins have attracted great attention [683]. Since MYC 
is a master transcription factor, blocking it by OmoMYC 
at first seemed to be challenging due to the expected 
side effects. However, after testing on animal models, 
side effects have shown to be mild, well-tolerated, and 
reversible [692]. Intriguingly, OmoMYC could infiltrate 
cells, inhibiting MYC activity by its spontaneous cell-
penetrating ability. Moreover, using OmoMYC through 
direct tissue delivery and systemic administration in 
non–small cell lung cancer models showed significant 
therapeutic potential [692]. OmoMYC can inhibit MYC 
by two mechanisms; interrupting MYC/MAX dimeriza-
tion and E-box binding [693]. There are different types of 
OmoMYC that are in pre-clinical phases. Among them, 
OMO-103 [NCT04808362] and OMO-1 [NCT03138083] 
have made it to the clinical trials (Table 3).

In addition to OmoMYC, other compounds can also 
inhibit MYC/MAX dimerization (Table  2). The MYC/
MAX destabilizers, IIA6B17, 10058F4, and 10,074-G5, 
were extracted from a peptidomimetic library [672, 694]. 
It seems that IIA6B17 can act against c-Jun, due to the 
resemblance of its leucine zipper structure [695]. JY-3-
094 was found to be able to hinder proliferation in MYC 
overexpressed cells (HL60 and Daudi cells) via inhibiting 
MYC/MAX dimerization [696]. If a phenyl ring is added 
to JY-3-094 the result would be a MYC inhibitor called 
3jc48-3 with five times more potential in arresting the 
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cell cycle at G1/G0 [696]. Such significant potential in 
inhibiting MYC/MAX is thought to be the effect of phe-
nyl ring on F375, I381 and R378 residues in the MYC/
MAX dimer [696, 697].

KJ-PYR-9, a compound derived from Kröhnke pyridine 
library were found to have anti-DNA-binding and anti-
MYC/MAX dimerization features [698]. The KJ-PYR-9 
effects on inhibiting proliferation in xenografts bear-
ing MYC-amplified human cancer cells seem promising 
[698]. Other small-molecules with properties like KJ-
PYR-9 are MYCro1, MYCro2, and MYCro3 [677, 699]. 
MYCro3, in combination with Palbociclib, a CDK4/6 
inhibitor, has shown great potential in treating HER-2 
negative metastatic breast cancer [700], indicating that 
the direct MYC inhibition can synergically increase the 
effect of other targeted therapies.

Most recently, based on bimolecular fluorescence 
complementation, another direct MYC inhibitor, called 
MYCMI-6 was identified among 2000 agents, which 
could interrupt the MYC/MAX dimerization [701, 702]. 
Recent studies have demonstrated that the effect of 
MYCMI-6 on breast cancer in inducing cell-growth inhi-
bition and apoptosis [678, 703]. EN4 is also a novel cova-
lent small molecule, directly targeting C171 residue of 
MYC, causing thermal destabilization of MYC and MAX, 

as well as disrupting MYC transcriptional activity. Over-
all, the EN4 features enable it to block tumorigenesis 
[680]. Han et  al. discovered two compounds (MYCi361 
and MYCi975) capable of phosphorylating Thr-58 resi-
due of MYC, propelling it toward proteasome-mediated 
MYC degradation [704]. MYCi975 is an enhanced model 
of MYCi361. Results of in  vivo MYCi-induced tumor 
regression capacity are shown to be promising since it 
enhances infiltration of immune cells into tumor micro-
environment, upregulates PD-L1 on tumor cells, and syn-
ergies with anti-PD1 immunotherapy [681, 704].

Stabilization of MAX homodimer by an asymmet-
ric polycyclic lactam termed KI-MS2-008 is another 
approach toward attenuating MYC/MAX dimerization, 
resulting in the reduction of MYC protein and the expres-
sion of its target genes. Also, in  vivo evaluations show 
that KI-MS2-008 abrogates the ability of tumor cells to 
grow properly [682]. MAX homodimer stabilizers like 
KI-MS2-008 could also be utilized alongside monoclonal 
antibodies against PD-1 or PD-L1 immune checkpoints 
to synegies the antitumoral effects [705]. Moreover, there 
is a protein called MXD1 that can couple with MAX, 
afterwards hijacking E-box of MYC target genes, and 
antagonizing MYC transcriptional activity [706]. Mad 
can act similar to MXD1, and it is claimed that Mad is 

Table 2  List of pre-clinical direct MYC inhibitors

Mechanism Type Compound References

Inhibitor of MYC/Max dimerization Small Molecule IIA6B17 [672]

10058-F4 [673]

10074-G5 [674]

JY-3-094 [675]

3jc48–3 [676]

MYCro1, MYCro2, MYCro3 [677]

MYCMI-6 [676]

KJ-Pyr-9 [678]

EN4 [679]

MYCi361 [680]

MYCi975 [681]

KI-MS2-008 [682]

(Poly)peptide OmoMYC [683]

FPPa-OmoMYC [684]

Max bHLHZ (OmoMYC) [685]

Mxd1 [686]

Monoclonal antibody [687]

H1 peptide [688]

Inhibitor of E-box binding Small Molecule JKY-2-169 [689]

(Poly)peptide OmoMYC [683]

Max bHLHZ [685]

Mxd1 [686]

ME47 [690]
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Table 3  Clinical trials targeting MYC

Type Mechanism Condition(s) Compound Phase NCT number

Direct MYC inhibition siRNA against the MYC Hepatocellular Carcinoma DCR-MYC Phase 1
Phase 2

NCT02314052

Inhibits MYC/MAX dimeriza-
tion

Inhibition of E-box binding

Advanced Solid Tumors
Non-small-cell lung carci-

noma (NSCLC)
Triple-negative Breast Cancer

OMO-103 Phase 1
Phase 2

NCT04808362

Inhibits MYC/MAX dimeriza-
tion

Neoplasms OMO-1 Phase 1
Phase 2

NCT03138083

Downregulation of MYC Ischemic Stroke miR-494 - NCT03577093

Interrupts the translation of 
MYC gene

Neoplasms AVI-4126 (RESTEN-NG) Phase 1 NCT00343148

Indirect MYC inhibition Alteration of MYC transla-
tion (BET Bromodomain 
inhibitors)

Castration-Resistant Prostate 
Carcinoma

Metastatic Prostate Adeno-
carcinoma

Metastatic Prostate Small Cell 
Carcinoma

Stage IV Prostate Cancer 
AJCC v8

Stage IVA Prostate Cancer 
AJCC v8

Stage IVB Prostate Cancer 
AJCC v8

ZEN-3694 Phase 2 NCT04471974

Solid Tumor
Lymphoma
Brain Tumor

BMS-986158 Phase 1 NCT03936465

Lymphoma, Non- Hodgkin CC-95775 (FT-1101) Phase 1 NCT04089527

Diffuse Large B-cell Lym-
phoma (DLBCL)

High-Grade B-cell Lym-
phoma

RO6870810 Phase 1 NCT03255096

Neoplasms GSK525762 Phase 2 NCT01943851

Myelofibrosis
Primary Myelofibrosis
Post-polycythemia Vera 

Myelofibrosis
Post-essential Thrombo-

cythemia Myelofibrosis

CPI-0610 Phase 3 NCT04603495

Metastatic Malignant Solid 
Neoplasm

Recurrent Malignant Solid 
Neoplasm

Recurrent Platinum-Resistant 
Ovarian Carcinoma

Refractory Ovarian Carci-
noma

ZEN-3694 Phase 1 NCT04840589

Malignant Solid Tumors
Lymphoma
Ovarian Cancer
Breast Cancer
Pancreatic Cancer
Prostate Cancer

AZD5153 Phase 1 NCT03205176

Neoplasms
NUT Carcinoma

BI 894999 Phase 1 NCT02516553

AML Including AML de Novo 
and AML Secondary to 
MDS

DLBCL

Birabresib (MK-8628, 
OTX015)

Phase 1 NCT02698189

MCL-1 inhibitor Relapsed or Refractory AML AZD5991 Phase 1 Phase 2 NCT03218683

AML S64315 (MIK665) Phase 1 Phase 2 NCT04629443
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Table 3  (continued)

Type Mechanism Condition(s) Compound Phase NCT number

Relapsed or Refractory Multi-
ple Myeloma

Relapsed or Refractory AML

AMG 176 Phase 1 NCT02675452

Multiple Myeloma
Non-Hodgkins Lymphoma
Myelodysplastic Syndrome

AMG 397 Phase 1 NCT03465540

Inhibiting BCR-signalling Prolymphocytic Leukemia
Recurrent Adult Diffuse Large 

Cell Lymphoma
Recurrent Mantle Cell Lym-

phoma
Recurrent Small Lymphocytic 

Lymphoma
Refractory Chronic Lympho-

cytic Leukemia

Ibrutinib Phase 1 NCT02303392

Lymphoma, B-Cell
Small Lymphocytic Lym-

phoma
CLL
Waldenstrom Macroglobu-

linemia
Mantle Cell Lymphoma
Diffuse Large B Cell Lym-

phoma
Richter’s Transformation
Follicular Lymphoma
Marginal Zone Lymphoma

ARQ 531 Phase 1
Phase 2

NCT03162536

Epigenetic silencing
(HDAC inhibitors)

Diffuse Large B-cell
Lymphoma

Tucidinostat Phase 3 NCT04231448

Relapsed and refractory 
lymphoma

Entinostat Phase 2 NCT03179930

PI3K inhibitor B Cells-Tumors
B Cell Chronic Lymphocytic 

Leukemia
Follicular Lymphoma
Mantle Cell Lymphoma
Large B-Cell Diffuse Lym-

phoma of Bone (Diagnosis)

Idelalisib Phase 1 NCT03151057

Dual inhibitor of PI3Kδ and 
CK1ε

CLL
B-cell Non-Hodgkin Lym-

phoma

TGR-1202 Phase 1 NCT03283137

Dual inhibitor of PI3Kδ and 
DNA-PK

Diffuse Large B Cell Lym-
phoma

Follicular Lymphoma
CLL
Small Lymphocytic Leukemia
B Cell Lymphoma
Marginal Zone Lymphoma
Waldenstrom Macroglobu-

linemia
Peripheral T Cell Lymphoma

BR101801 Phase 1 NCT04018248

Dual inhibitor of PI3Kδ and 
HDACs

Relapsed and/or Refractory 
DLBCL With MYC Altera-
tions

Fimepinostat (CUDC-907) Phase 2 NCT02674750

Inhibitor of CDK1, CDK2, 
CDK5 and CDK9

Advanced or Metastatic 
Breast Cancer

Triple Negative Breast Cancer

Dinaciclib Phase 1 NCT01676753

CDK9 inhibitor Relapsed Solid Tumors
Refractory Solid Tumors
Non-Hodgkin Lymphoma

KB-0742 Phase 1 NCT04718675



Page 28 of 49Ahmadi et al. J Hematol Oncol          (2021) 14:121 

tenfold more potent compared to OmoMYC [686]. A 
small hybrid protein named ME47 can also inhibit MYC 
transcriptional activity by seizing the E-box binding site 
of MYC target genes, resulting in a significant reduction 
in cell proliferation of tumor xenografts [690]. On the 
contrary, JKY-2-169 binds to MYC-MAX heterodimer, 
not allowing it to bind with DNA E-box, without affect-
ing MYC-MAX formation. This JKY-2-169-mediated 
perturbation of DNA binding has been shown to reduce 
MYC-induced cell proliferation, cell cycle arrest, and 
apoptosis [707, 708].

Monoclonal antibodies against MYC can also inhibit its 
activity. Park et al. showed that these antibodies are capa-
ble of targeting MYC and MYC-MAX heterodimer [687]. 
For antibodies intracellular infiltration remains a chal-
lenge. There is a small alpha-helix MYC inhibitor peptide 
called H1 that can be carried to the nucleus via particular 
non-toxic carriers and decrease the MYC-MAX dimeri-
zation, reducing the expression of MYC target genes 
[688].

Using siRNAs for in  vivo inhibition of MYC 
translation is another approach, although trans-
porting siRNAs into cells requires reliable car-
riers. DCR-MYC, an EnCore lipid nanoparticle 
containing siRNA against MYC, was used in clinical trials 
to treat solid tumors [NCT02314052] and hematological 
malignancies[NCT02110563] [691, 709]. Further studies 
however showed side effects like thrombotic microan-
giopathy, which terminated the clinical trials [691, 710]. 
Studies on MYC-targeted siRNAs are still going on.

There are miRNAs such as miR-494, which targets 
MYC translation. It has been shown that miR-494 is 
downregulated in ovarian cancer, whereas overexpres-
sion of miR-494 hampered the growth of the cancer cells 
and limited their migration [711]. Additionally, ectopic 
miR-494 overexpression inhibits the proliferation of 
pancreatic cancer cells via inducing apoptosis, cell-cycle 
arrest, and senescence, which remarkably prohibited the 
invasiveness of the cancer cells [712]. This particular miR 
has recently undergone clinical trials. A MYC-targeted 

phosphorodiamidate morpholino oligomer (PMO) called 
AVI-4126 can prohibit ribosomal assembly, therefore 
inhibiting MYC translation [677, 713]. AVI-4126 has 
been extensively applied to various cancers, and results 
were shown promising, which led this particular PMO to 
clinical trials.

Indirect MYC inhibition
MYC inhibition indirectly by targeting its regulating 
factors provides a more flexible approach toward MYC 
inhibition. MYC regulating factorsinclude BET family, 
MCL-1, BCR-signaling mediators, HDACs, PI3Kδ, DNA-
PK, CDKs, kinases and G-quadraplex (Refer to “The role 
of MYC in hematopoiesis and hematological malignan-
cies" section). There are various inhibitors for the afore-
mentioned MYC regulators; among them, some have 
made it to clinical trials (Table 3).

BET family inhibitors
BET family includes BRD2, BRD3, and BRD4 proteins. 
BET proteins recognize the acetyl-lysine residues of his-
tones, recruiting transcription factors, especially the 
MYC oncoprotein, to promote gene expression. BET 
inhibitors (iBETs) were found to be effective in block-
ing oncoproteins and decreasing tumorigenesis. The first 
iBET entering clinical trials was Birabresib (MK- 8628, 
OTX015) [492]. Due to the safety, efficacy, and phar-
macokinetics of Birabresib in hematological and solid 
tumors, phase II clinical trial has been recommended 
[714].

Among different iBETs, ZEN-3694 is an orally admin-
istered pan-BET inhibitor. Currently, ZEN-3694 is under 
clinical trial in phase I and II. Drug-resistance to some 
targeted therapies seem to be inevitable, due to the over-
expression of master oncogenes like MYC. Using ZEN-
3694, alongside Enzalutamide as an inhibitor of androgen 
receptor for treatment of prostate cancer, synergically 
enhances the effect of Enzalutamide [715, 716]. FT-1101 
(CC-95775) can also act as pan-iBET. A study on the 
effect of FT-1101 on various human leukemia cell lines 

Table 3  (continued)

Type Mechanism Condition(s) Compound Phase NCT number

Multi kinase inhibitor: inhibits 
CDKs 1, 2, 7 and 9 together 
with JAK2 and FLT3

AML
ALL
Blast Crisis
MDS
Multiple Myeloma

TG02 Phase 1 NCT01204164

G-quadraplex stabilizer at 
MYC promoter

AML
High Risk Myelodysplasia

APTO-253 Phase 1 NCT02267863

Advanced Solid Tumors
Lymphoma

CX-3543 Phase 1 NCT00955786
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exhibited higher inhibition of proliferation in tumor cells 
compared to JQ1. Monotherapy with FT-1101 displayed 
tolerance and proper safety [717, 718].

BMS-986158 is another orally bioavailable BET inhibi-
tor, shown to be well-tolerated in treatment of advanced 
cancers. The sole reported side effect was revers-
ible thrombocytopenia [719, 720]. Among iBETs, BMS-
986158 has notable pharmacodynamics profile with a 
longer half-life.[721]. RO6870810 (also termed RG6146 
and TEN-0) is a novel iBET, resembling the JQ1 class. 
However, it outperforms JQ1 in solubility, metabolic sta-
bility, and binding to serotonin receptors. Additionally, 
alpha assay technology shows the remarkable affinity of 
RO6870810 toward the acetyl-lysine recognition pocket 
of the BET family [722, 723].

In (nuclear protein of the testis) NUT carcinoma, the 
BET family would join the NUT if NUTM1 rearrange-
ments occur. The fused oncoproteins alter MYC regula-
tion. A novel iBET RO6870810 (also known as RG6146 
and TEN-0) can dissociate the BRD-NUT oncoproteins 
from DNA, inhibiting the proliferation of cancer cells. 
RO6870810 has also been tested on DLBCL where MYC 
is associated with the aggressiveness of DLBCL [722]. 
The clinical potential of RO6870810 is now being evalu-
ated in clinical trials.

Recently, Molibresib (GSK525762), an orally admin-
istered iBET, has also been tested on NUT carcinoma. 
Phase I clinical trials assessed safety, tolerance, phar-
macokinetics, and pharmacodynamics. The preliminary 
results recommended moving to phase II [724]. In addi-
tion to NUT carcinoma, GSK525762 has also been tested 
on a vast spectrum of hematological neoplasms in order 
to indirectly inhibit the master oncoprotein MYC. Minor 
dose-limiting toxicity related to GSK525762 has been 
seen in AML patients, including diarrhea and reduced 
ejection fraction, although both were reversible. Overall, 
despite seeing a complete response to GSK525762, due to 
some adverse effects, the phase one clinical trials recom-
mended further investigations [615].

Inhibition of BET family members in hematological 
neoplasms has shown to be a quite effective treatment 
approach. Among other iBETs, CPI-0610 has been evalu-
ated in clinical trials for primary myelofibrosis, post-poly-
cythemia vera myelofibrosis and lymphomas [498, 725, 
726]. Using CPI-0610 solely or combined with a Janus 
kinase 1/2 inhibitor (Ruxolitinib) on refractory or intoler-
ant advanced myelofibrosis demonstrated promising effi-
cacy in patients with inadequate responses to Ruxolitinib. 
This seems to be the effect of MYC inhibition, enhanc-
ing Ruxolitinib effects. Following treatment, the patients 
exhibited improvement of bone marrow function [725]. 
CPI-0610-mediated MYC inhibition induces G1 arrest 
and apoptosis in multiple myeloma resulting in tumor 

regression. Moreover, CPI-0610 alongside immunomod-
ulatory drugs for multiple myeloma such as thalidomide, 
lenalidomide and pomalidomide can be synergically uti-
lized in multiple myeloma treatment [497].

BRD4 could be targeted by AZD5153, an orally bio-
available iBET. Unlike other monovalent iBETs, the 
AZD5153 is a bivalent inhibitor that results in further 
antitumor activity. The effect of AZD5153 on AML, mul-
tiple myeloma, and DLBCL xenografts has been reported 
to be significant. The AZD5153 modulates MYC, E2F, 
HEXIM1 and mTOR pathway, indicating the remark-
able potential of this iBET. Of note, AZD5153-mediated 
alteration of mTOR positively enhances the effects of 
AZD5153 on tumor cells [727, 728]. Overexpressed MYC 
and BCL2 in double-hit lymphoma and double express-
ing lymphoma has poor prognosis. Utilizing AZD5153 
could downregulate several oncogenic factors, including 
MYC and B-cell development-related factors. Notwor-
thy, AZD5153 neither could downregulate BCL2 family 
members (anti-apoptotic factors), or induce activation of 
BH3-only proteins (pro-apoptotic factors). AZD5153 and 
BCL2 inhibitor (AZD4320) synergistically induced anti-
tumor effects [729]. This potent iBET is now under clini-
cal trials for the treatment of various diseases, including 
malignant solid tumors [NCT03205176]. Similar to 
AZD5153, another iBET called BI894999 can also inhibit 
BRD4 leading to modulation of MYC and HEXIM1 in 
AML cells. This particular iBET, in combination with 
CDK9 inhibitor, shows an expedited apoptotic response 
due to the reduction in global p-Ser2 RNA polymerase II 
levels [730].

MCL‑1 inhibitors
All members of the anti-apoptotic BCL family, especially 
MCL1, have been reported to advance the MYC-induced 
myeloid leukemogenesis [636]. Results from MYC-
induced AML in a mouse model have shown presence 
of highly expressed anti-apoptotic protein MCL-1 [637]. 
High levels of MCL-1 provoke tumorigenesis and drug 
resistance, indicating the potential of MCL-1 inhibitors 
as a therapeutic option.

Accordingly, AZD5991, a selective small-molecule 
targeting MCL-1 could be a potential choice in AML 
treatment. Due to the significant potential in induc-
ing prompted Bak-dependent apoptosis and high anti-
tumor activity in pre-clinical studies on myeloma and 
AML, AZD5991 has been chosen to enter clinical trials 
as a treatment for relapsed or refractory AML. It has 
been used both as a monotherapy and combined with 
Bortezomib (inhibitor of the 26S proteasome) or Vene-
toclax (BCL-2 inhibitor) [731]. S64315 (MIK665), a 
highly selective MCL-1 inhibitor can act partly similar to 
AZD5991 by inhibiting MYC activity and inducing Bax/
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Bak-mediated apoptosis. S64315 is a well-tolerated com-
pound capable of inducing dose-dependent apoptosis, 
demonstrating potent antitumor activity in hematologi-
cal malignancies such as AML, multiple myeloma, and 
lymphoma [732]. Since BCL-2 family members and MYC 
act cooperatively in cancers [733], inhibiting MCL-1 
could be a potential approach for MYC-involved cancers.

AMG class of MCL-1 inhibitors has recently entered 
phase I clinical trials as a treatment for various hema-
tological malignancies, including relapsed or refractory 
multiple myeloma. [NCT02675452, NCT03465540]. 
AMG176 was introduced to be administered intrave-
nously, and AMG397 was developed as the first orally 
bioavailable MCL1 inhibitor. AMG397 compared to 
AMG176 has improved potency and pharmacokinetic 
features [734]. It selectively competes with other BCL 
family members over the BH3-binding site of MCL1 and 
elevates the caspase 3/7 activity. It is reported that hema-
tological neoplasms are highly sensitive to this particular 
compound [734].

BCR‑signaling inhibitors
BCR signaling can activate several transcription fac-
tors, especially MYC. BCR-signaling mediators, such as 
BTK are involved in inducing MYC during B-cell devel-
opment [442, 443]. Ibrutinib, a BCR-signaling inhibi-
tor which is under clinical trials for several hematologic 
malignancies could be a potential compound for inhibi-
tion of MYC induced proliferation in B-cell malignan-
cies [NCT02303392]. It is worth mentioning that in 
malignancies like MCL, where one-third of cases do not 
respond to Ibrutinib, MYC is overexpressed, suggesting 
that MYC can block Ibrutinib activity [735]. The underly-
ing mechanism responsible is MYC-induced BTK over-
expression [736].

ARQ531 is a novel BTK inhibitor that can also act 
against other BCR signaling factors like SRC kinases and 
ERK-signaling pathway. Targeting a multitude of BCR-
signaling related factors in CLL models with ARQ531 
showed robust inhibitory potential in treatment of Ibru-
tinib resistance cells [737]. Due to the great potential of 
ARQ531 in overcoming resistance to Ibrutinib, it has 
entered phase I clinical trials for various MYC-involved 
hematological neoplasms [NCT03162536].

HDAC inhibitors (epigenetic modulators)
Histone deacetylase family members play an essential 
role in regulating the MYC level [738]. For instance, 
SIRT1 is a class III histone deacetylase responsible for the 
acetylation of critical genes, including TP53, MYC, and 
NF-kβ [28, 499–503]. On the other hand, HDAC7 that is 
mostly decreased in various types of leukemia can down-
regulate MYC[505]. Taken together, it seems that HADCs 

are vastly involved in MYC regulation; thus, inhibition of 
HDACs provoking MYC activity can be greatly beneficial 
for the treatment of MYC-involved cancers.

HDAC inhibitor Entinostat (class I iHDAC) is capable 
of inhibiting HDAC2, a partner of MYC in medulloblas-
toma. Entinostat-mediated inhibition of HDAC2 reduces 
MYC transcriptional activity, and hinders MYC-DNA 
binding, indicating the efficiency of iHDACs [739]. Enti-
nostat has thoroughly been studied on hematological 
malignancies [740], and now is in phase II clinical trial 
for relapsed and refractory lymphoma [NCT03179930]. 
Tucidinostat, an orally bioavailable iHDAC is now in 
phase III clinical trials [NCT04231448] in combined with 
R-CHOP regimen,. Administrating this combined treat-
ment, compared to using the R-CHOP regimen alone, 
displayed a prolonged event‐free survival [741].

PI3K inhibitors
MYC half-life is less than 30 min and its translation sig-
nificantly depends on the eukaryotic translation initiation 
factor 4 (eIF4) complex. The eIF4E-binding protein 1 (4E-
BP1) sequestrates eIF4E, and following hyperphosphoryl-
ation of 4E-BP1, mRNA translation would be initiated as 
a result of multiple upstream signals. PI3K can indepen-
dently phosphorylate of 4E-BP1, leading to translation 
of MYC mRNA [742]. Inhibition of PI3K by compounds 
such as Idelalisib [743], TGR-1202 [742], Fimepinostat 
(CUDC-907) [744], and BR101801 [745] can significantly 
reduce the MYC mRNA translation.

In contrast to Idelalisib, TGR-1202 not only inhib-
its PI3K but also targets casein kinase-1 ε (CK1ε). The 
mechanism of action of CK1ε in phosphorylating 4E-BP1 
is similar to PI3K. Therefore, the dual inhibitory effect of 
TGR-1202 makes it clinically more potential than Idelal-
isib in the treatment of aggressive lymphoma [742]. Both 
compounds have now entered clinical trials.

The effectiveness of PI3K inhibitors is limited by the 
parallel activation of other survival-supporting path-
ways leading to drug resistance [746]. CUDC-907, a 
dual inhibitor of PI3Kδ and HDACs seems to be able to 
surpass the limitation of the inhibitors that only targets 
PI3K [747]. CUDC-907 has been tested in clinical trials 
on various hematological cancers, including relapsed or 
refractory lymphoma, multiple myeloma, MYC-altered 
DLBCL, and CLL. The results showed tolerability, safety, 
and efficiency [744, 748, 749].

DNA-activated protein kinase (DNA-PK) is a PI3K-
related kinase capable of phosphorylating MYC at mul-
tiple serine residues, promoting its oncogenic activity in 
MYC-driven B-cell lymphomas [750, 751]. BR101801 is a 
first-in-class, orally bioavailable small-molecule capable 
of targeting both DNA-PK and PI3Kδ. The dual inhibi-
tory mechanism of BR101801 in double-hit lymphoma 
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cells, downregulates the MYC stability regardless of its 
translocation, amplification, and overexpression. This 
has led to significant growth inhibition in double-hit and 
double expressing DLBCL cells. Moreover, the combina-
tion of BR101801 with Venetoclax synergically enhances 
its antitumor effects, highlighting the great potential of 
this treatment approach [745, 752].

CDK inhibitors
CDK9, part of the positive transcription elongation factor 
b (p-TEFb) complex is essential for phosphorylation of a 
serine residue at CTD of RNA polymerase II recruited by 
MYC [753, 754]. MYC binding to p-TEFb activates RNA 
polymerase II and initiates transcription. This process 
has been shown to be critical for maintenance of MYC-
driven model of hepatocellular carcinoma [145, 753, 755].

Dinaciclib inhibits kinase ability of CDK1, CDK2, 
CDK5 and CDK9 in a dose dependent manner. It is now 
in phase I/II clinical trials for different cancers, includ-
ing both solid tumors and hematological cancers [756]. 
Investigation of Dinaciclib-mediated inhibition of CDK9 
in aggressive MYC-induced lymphomas demonstrated 
the remarkable effectiveness of CDK9 inhibitors [757]. 
Of note, that Dinaciclib reduced the anti-apoptotic factor 
MCL-1 [757].

TG02 is a CDK inhibitor capable of inhibiting CDK1, 
CDK2, CDK7, CDK9, JAK2 and FLT3. This multi kinase 
inhibitor not only inhibits MYC by targeting CDKs but 
also inhibits BCR-signaling mediators, which could lead 
to further MYC inhibition and higher antitumor activity 
[758, 759]. Due to promising results from studies inves-
tigating the effects of TG02 on hematological malig-
nancies [758, 759], this agent has entered clinical trials. 
[NCT01204164].

The most novel ultra-selective CDK9 inhibitor 
KB-0742, an orally bioavailable inhibitor, has displayed 
great antitumor potential in pre-clinical investigation 
[760]. The remarkable results from KB-0742 have led to 
clinical trials investigating relapsed and refractory solid 
tumors, and non-Hodgkin lymphoma [NCT04718675].

G‑quadraplex stabilizers
The nuclease hypersensitivity element III1 (NHE III1) 
located at the MYC promoter controls 80–90% of the 
transcriptional activity of MYC gene. A particular site 
of NHE III1 creates G-quadruplex acting as a silencer 
region [761]. It makes this specific region a great target 
for drugs, stabilizing G-quadruplex.

In general, G-quadruplex stabilization can cause DNA 
double-strand breaks and promote apoptosis [762]. How-
ever, compounds such as CX-3543 can stabilize G-quad-
ruplex of MYC promoter, selectively [763]. This small 
molecule also interrupts nucleolin/rDNA G-quadruplex 

formation, subsequently causing apoptosis. CX-3543 was 
the first G-quadruplex stabilizer to enter clinical trials 
[764].

APTO-253, a small molecule that regulates CDKN1A 
(p21), is capable of propelling cell-cycle arrest and trig-
gering apoptosis in AML. Further investigations revealed 
that APTO-253 decreases the MYC mRNA translation 
and reduced the MYC levels. The underlying mechanism 
was found to be the APTO-253-induced G-quadruplex 
stabilization [765]. AML cells can convert the mono-
meric APTO-253 into Fe(253)3. Both APTO-253 and its 
ferrous form are capable of inducing G-quadruplex sta-
bilization at promoters of MYC, and KIT [765]. Due to 
its promising potential, APTO-253 is now being clinically 
evaluated in AML and high-risk myelodysplasia patients 
[NCT02267863].

Conclusion and future perspectives
MYC’s twisted biology, particularly in hematopoiesis, 
has been comprehensively elucidated in recent years. We 
now realize that MYC facilitates the cancer cells’ machin-
ery. Blood malignancies are not an exception. Studies 
have shown that even temporary inactivation of MYC 
abrogates tumor progression, implying that MYC regula-
tion could be a potential strategy to treat MYC-involved 
cancers [766, 767]. However, direct aiming for MYC is 
challenging. MYC does not possess a specific active site 
to be targeted by small molecules. This makes it hard to 
inhibit. Moreover, MYC is mainly found in the nucleus; 
therefore targeting MYC with antibodies is not feasible 
[1]. The broad MYC-mediated biological functions, vital 
to cells, also make it hard to completely eliminate. Future 
clinical studies will have to evaluate whether MYC should 
be targeted directly or indirectly in order to achieve a 
proper therapeutic outcome.

In the era of personalized medicine, the development 
of gene editing tools such as CRISPR/CAS9, and viral 
and non-viral based gene therapies have shown to be 
very promising [768]. As such MYC could be a promising 
choice for gene manipulation approaches.
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