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Abstract 

As a widely recognized standard regimen, R-CHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and 
prednisone) is able to cure two-thirds patients with diffuse large B cell lymphoma (DLBCL), and the remaining patients 
suffer from refractory or relapsed disease due to resistance to R-CHOP and fare poorly. Unsatisfied outcomes for those 
relapsed/refractory patients prompted efforts to discover new treatment approaches for DLBCL, including chimeric 
antigen receptor T cells, bispecific T cell engagers, immunomodulatory drugs, immune checkpoint inhibitors, mono‑
clonal antibodies, antibody–drug conjugates, molecular pathway inhibitors, and epigenetic-modifying drugs. Herein, 
up-to-date data about the most promising treatment approaches for DLBCL are recapitulated, and novel genetic clas‑
sification systems are introduced to guide individualized treatment for DLBCL.
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Introduction
Diffuse large B cell lymphoma (DLBCL) is the most com-
mon subtype of lymphoma in adults worldwide, compos-
ing about one-third of non-Hodgkin lymphomas (NHLs) 
diagnosed each year [1], and it represents a consider-
able socioeconomic burden affecting millions of people 
[2]. CHOP (cyclophosphamide, doxorubicin, vincristine, 
and prednisone) regimen has been used for more than 
40  years, and rituximab was approved by the US Food 
and Drug Administration (FDA) in 2006 for use as first-
line treatment of patients with DLBCL in combination 
with CHOP. Thereafter, R-CHOP regimen has become 
the standard of care for patients with newly diagnosed 
DLBCL, even though patients with non-germinal center 
B cell (non-GCB) subtype of DLBCL have significantly 
inferior outcomes than their GCB subtype counterparts 

treated with R-CHOP [3]. In recent years, several ran-
domized clinical trials have been conducted by add-
ing novel targeted agents to R-CHOP (the so-called 
R-CHOP + X mode) in order to improve outcomes for 
patients with non-GCB or activated B-cell-like (ABC) 
subtype of DLBCL, such as bortezomib [4], lenalidomide 
[5], or ibrutinib [6]. However, none of these targeted 
agents have been found to confer benefits in these trials. 
Moreover, dose-adjusted EPOCH (etoposide, prednisone, 
vincristine, cyclophosphamide, and doxorubicin) plus 
rituximab (DA-EPOCH-R) also failed to show improve-
ment in survival outcomes for patients with DLBCL in a 
phase III randomized study (CALGB 50303) [7]. Stand-
ard R-CHOP regimen is able to cure two-thirds patients 
of DLBCL, and the remaining patients suffer from refrac-
tory or relapsed disease due to resistance to R-CHOP 
and fare poorly [8]. The international SCHOLAR-1 study 
reported the median overall survival (OS) to be only 
6.3 months for patients who were refractory to first-line 
treatment [9].

Poor outcomes for patients who failed R-CHOP 
regimen prompted efforts to discover new treatment 
approaches for DLBCL, both up-front and at the time 
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of relapse. With hundreds of clinical trials under-
way, the landscape for DLBCL treatments has become 
increasingly crowded. In recent years, several agents or 
approaches have received the FDA approval for DLBCL, 
including polatuzumab vedotin, selinexor, tafasitamab, 
tisagenlecleucel, and axicabtagene ciloleucel (Table  1). 
Together, the therapeutics targeting immune check-
points, tumor microenvironment, molecular signaling 
pathways, and epigenetic aberrations, as well as cellular 
immunotherapy, constitute the new landscape of treat-
ments for DLBCL. This review focuses on available data 
about the most promising and potent agents now in 
clinical testing and provides expertise on individualized 
treatment for DLBCL according to novel genetic and 
molecular classifications.

Immunotherapy
Chimeric antigen receptor T cells and natural killer (NK) 
cells
Anti‑CD19 CAR T cells
Chimeric antigen receptor (CAR) T cells are rapidly 
emerging as a promising cellular immunotherapy in 
relapsed/refractory (r/r) DLBCL (Figs. 1, 2). The potent 
therapeutic efficacy of axicabtagene ciloleucel (axi-cel, 

marketed as Yescarta) [10], lisocabtagene maraleucel 
(liso-cel) [11], and tisagenlecleucel (marketed as Kym-
riah) [12] has been demonstrated in the context of 
CD19-directed CAR T cell therapy. In ZUMA-1 study, 
101 patients of refractory aggressive B cell NHL with 
a median of three prior lines of treatment received at 
least 1.0 × 106 CAR-positive T cells/kg, and the investi-
gator-assessed ORR was 83%, and CR rate was 54% [10]. 
The 2-year follow-up data from ZUMA-1 indicated that 
axi-cel could obtain durable responses and significantly 
improve the OS with a manageable long-term safety 
profile in patients with r/r DLBCL [13]. Another 93 
patients who were ineligible or had disease progression 
after ASCT received tisagenlecleucel, and the best ORR 
was 52%, with a CR rate of 40%. At 1 year after initial 
response, the estimated relapse-free survival rate was 
65%, indicating a durable response with tisagenlecleu-
cel [12]. Compared with historic data, these CAR T cell 
products have offered unexpected durable responses 
in patients with heavily pretreated DLBCL [14], which 
promoted the approval of Yescarta and Kymriah by 
FDA. With improved access to these CAR T cell prod-
ucts, patients of r/r DLBCL may be treated with CAR T 

Table 1  FDA-approved agents for the treatment of diffuse large B cell lymphoma

CR complete response, ORR objective response rate, EFS event-free survival, 2-y OS overall survival at 2 years, PFS progression-free survival, CHOP cyclophosphamide, 
doxorubicin, vincristine, and prednisone, CAR​ chimeric antigen receptor
a  Refers to the FDA approval data posted on http://www.fda.gov/drugs​

Agent Approved date Study Dose schedulea Number 
of patientsa

Efficacya

Tafasitamab-cxix (Monjuvi) July 31, 2020 NCT02399085 12 mg/kg as an intravenous infu‑
sion according to the following 
dosing schedule

 Cycle 1: Days 1, 4, 8, 15, and 22 of 
the 28-day cycle

 Cycles 2 and 3: Days 1, 8, 15, and 
22 of each 28-day cycle

 Cycle 4 and beyond: Days 1 and 
15 of each 28-day cycle

80 ORR: 55%; CR: 37%

Selinexor (XPOVIO) June 22, 2020 NCT02227251 60 mg orally on days 1 and 3 of 
each week

134 CR: 13%; ORR: 29%

Polatuzumab vedotin-piiq (Polivy) June 10, 2019 NCT02257567 1.8 mg/kg for six 21-day cycle with 
bendamustine and a rituximab 
product

80 CR: 40%; ORR: 63%

Tisagenlecleucel (Kymriah) May 1, 2018 NCT02445248 0.6–6.0 × 108 CAR-positive viable 
T cells

68 CR: 32%; ORR: 50%

Axicabtagene ciloleucel (Yescarta) October 18, 2017 NCT02348216 2.0 × 106 /kg CAR-positive viable T 
cells (maximum 2 × 108)

108 CR: 51%; ORR: 72%

Hyaluronidase human and rituxi‑
mab (RITUXAN HYCELA)

June 22, 2017 NCT01649856 1400 mg subcutaneous rituximab 
and 23,400 units hyaluronidase 
human, with CHOP

381 CR: 51%; ORR: 83%

Rituximab (Rituxan) February 10, 2006 LNH 98–5/GELA rituximab 375 mg/m2 with CHOP 399 CR:75%; 2-y OS: 69%

E4494 rituximab 375 mg/m2 with CHOP 632 2-y OS: 74%; PFS: 3.1 years

MInT rituximab 375 mg/mm2 with 
CHOP/CHOP-like regimens

823 2-y OS: 95%

http://www.fda.gov/drugs


Page 3 of 23Wang et al. J Hematol Oncol          (2020) 13:175 	

Macrophage

CD20

mAb

mAb
ADC

CAR T cell

T cell

Tumor cell

Radiolabeled  
mAb

CD20
CD20 CD79b

CD20

ADC ADC

CD3CD19
CD19

CD20
CD19

T cell

CD3
BiTE

BiTE

CD19

CD22

CAR T cell

CAR T 

CD22
CD30

ADC

CD22

ADC

mAb

CD74

ADC

T cell

CD47

mAb

PD-L1

mAb

PD-1

mAb

CAR NK cell

Fig. 1  Novel agents and strategies targeting DLBCL cell surface antigens. mAb monoclonal antibody, ADC antibody–drug conjugate, BiTE bispecific 
T cell engager, CAR​ chimeric antigen receptor, NK natural killer, PD-1 programmed cell death protein 1

Antitumor activities Immunotherapy resistance

Radioimmunotherapy

Bispecific T cell engager

Immune checkpoint 
inhibitor

Monoclonal antibody

Antibody-drug conjugates

Immune checkpoint

Surface antigens 

CAR

Cytotoxicity/tumor 
killing

Immune cell

DLBCL cell

DLBCL cell

Fig. 2  Illustration of antitumor activities of various immunotherapies and potential resistance in DLBCL



Page 4 of 23Wang et al. J Hematol Oncol          (2020) 13:175 

cell therapy at second-line scenario, or even as first-line 
treatment for patients with double-hit lymphoma.

Dual CAR T cells or combination with immune checkpoint 
inhibitors
However, despite notable clinical responses, modest 
durability of responses, treatment-related toxicities, and 
time-consuming production are major obstacles limit-
ing the clinical use of autologous CAR T cell therapy. 
Relapses after CD19 CAR T cell therapies are partially 
due to CD19 loss (Fig.  2) or programmed death ligand 
1 (PD-L1) upregulation [15, 16]. In this regard, CAR T 
cells engineered to secrete human anti-PD-L1 antibodies, 
and dual CAR T cells as well as incorporation of immune 
checkpoint inhibitors are considered. For the treatment 
of B cell lymphomas, dual CAR T cells targeting CD19 
and CD20 or CD22 are appealing. In a phase 1 trial, a 
bispecific CAR T product targeting CD19 and CD22 
(Fig. 1) achieved 60% ORR in 5 patients with r/r DLBCL 
(1 CR and 2 PR) with tolerable toxicities [17]. Moreo-
ver, combination of anti-CD19 and anti-CD20 CAR T 
cells achieved an overall response rate (ORR) of 81.0% 
and CR rate of 52.4% in 21 patients with r/r DLBCL [18]. 
It was reported that armed CAR T cells empowered to 
secrete anti-PD-L1 antibodies could resist T cell exhaus-
tion and improve efficacy against renal cell carcinoma in 
mice model [19]. Programmed cell death protein 1 (PD1) 
blockade with pembrolizumab was safe and efficient 
in some patients with DLBCL progression after CD19 

CAR T cell therapy [20]. The first bicistronic anti-CD19/
CD22 CAR T cells AUTO3 followed by pembrolizumab 
showed acceptable safety profiles in a phase 1/2 trial. In 
patients who received at least 150 × 106 CAR T cells and 
pembrolizumab at day-1 (n = 8), the ORR was 75%, with 
a CR rate of 63% [21]. Moreover, axi-cel in combination 
with PD-L1 blockade by atezolizumab showed manage-
able safety profiles and preliminary efficacy, according to 
the result of ZUMA-6 [22]. Thus, combination of CAR 
T cell therapy and PD-1/PD-L1 blockade seems feasible 
and promising in the treatment of r/r-DLBCL (Table 2).

Universal CAR T cells
Considering the frail condition of some patients and defi-
cient T cell functions due to previous heavy treatments, 
clinical trials exploring CAR T cell therapy in the first-
line (NCT03761056, ZUMA-12) and second-line set-
tings (NCT03391466, NCT04161118, NCT03570892, 
NCT03575351, NCT03483103) are underway. Further-
more, allogeneic anti-CD19 CAR T cells from healthy 
donors are recognized to be an effective alternative to 
patients’ exhausted T cells, as long as the endogenous 
TCR on the allogeneic CAR T cells is edited through 
various gene editing technologies in order to avoid allo-
reactivity of donor-derived T cells. A universal CAR T 
cell product targeting CD19 (UCART19) has been devel-
oped to treat r/r B cell acute lymphoblastic leukemia with 
promising efficacy and manageable toxicities [23]. Some 

Table 2  Summary of CAR T cell results in diffuse large B cell lymphoma

DLBCL diffuse large B cell lymphoma, CAR​ chimeric antigen receptor, ORR overall response rate, CR complete response

Target Agent Study Study phase Number of DLBCL 
patients (treated)

Dose ORR (%) CR (%) References

CD19 Axicabtagene cilo‑
leucel

ZUMA-1 
(NCT02348216)

1/2 101 2.0 × 106 CAR T 
cells/kg

83 58 [13]

CD19 axicabtagene 
ciloleucel (in 
combination with 
atezolizumab)

ZUMA-6 
(NCT02926833)

1 12 2.0 × 106 CAR T 
cells/kg

90 60 [22]

CD19 tisagenlecleucel JULIET 
(NCT02445248)

2 93 0.1–6 × 108 CAR T 
cells

52 40 [12]

CD19 lisocabtagene 
maraleucel

TRANSCEND 
NHL 001 
(NCT02631044)

1 268 50–150 × 106 CAR 
T cells

73 53 [139]

CD19 CTL019 NCT02030834 2a 28 1.79–5.00 × 106 CAR 
T cells

64 43 [11]

CD19 ET019003 NCT04014894 1 6 2–3 × 106 CAR T 
cells/kg

100 – [140]

CD19 FMC63-28Z NCT00924326 1/2 7 1–5 × 106 CAR T 
cells/kg

85 71 [141]

CD19/CD22 AUTO3 (in combina‑
tion with pem‑
brolizumab)

ALEXANDER 
(NCT03287817)

1/2 24 50 × 106 CAR T cells 57 29 [21]



Page 5 of 23Wang et al. J Hematol Oncol          (2020) 13:175 	

other products with similar construct to UCART19 
are under investigation in the treatment of r/r DLBCL 
(NCT03939026) (Table 3).

CAR‑NK cells
Similarly, genetically modified allogeneic NK cells repre-
sent another promising alternative for CAR T cell thera-
pies. According to data from a phase 1/2 trial, NK cells 
expressing anti-CD19 CAR and interleukin-15 (Fig.  1) 
resulted in responses in 73% (8/11) patients, of whom 
4 with lymphoma and 3 with chronic lymphocytic leu-
kemia had a CR. The responses were rapid without 

development of cytokine release syndrome (CRS), neu-
rotoxicity, or graft-versus-host disease, and there was no 
increase in the levels of inflammatory cytokines, includ-
ing interleukin-6, over baseline. Of note, the infused 
CAR-NK cells expanded and persisted at low levels for 
at least 1  year after infusion [24]. Thus, the HLA-mis-
matched NK cells originating from an allogeneic source 
may enable streamlining of the production process and 
universal access [24].

Table 3  Summary of antibody–drug conjugates and bispecific antibodies results in diffuse large B cell lymphoma

MMAE monomethyl auristatin E, AEs adverse events, NEs neurologic events, SLTA Shiga-like toxin-I A1, NHL non-Hodgkin lymphoma, CRS cytokine release syndrome, 
mDoR median duration of response, EFS event-free survival, R-CHOP rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone, ORR objective response 
rate, CR complete response, GHP obinutuzumab, doxorubicin, prednisone

Target Drug Toxin Combined agents Study Study phase No. Efficacy References

CD19/CD3 Blinatumomab – R-chemotherapy NCT
03023878

2 30 ORR 89% [27]

CD19 Coltuximab ravtansine DM4 – NCT
01472887

2 61 ORR 44%
CR 15%

[71]

CD19 Loncastuximab tesirine SG3199 – NCT
02669017

1 63 ORR 55%
CR 37%

[72]

CD20 MT-3724 SLTA – NCT
02361346

1 13 ORR 30%
CR 10%

[57]

CD20 Ibritumomab tiuxetan Yttrium-90 Combined with R 
as maintenance 
therapy

NCT
00070018

2 33 5-y OS 87%
5-y PFS 82%

[59]

CD20 Tositumomab Iodine-131 R-CHOP NCT
00107380

2 86 ORR 86% CR 61%
2-yPFS69%
2-y OS 77%

[61]

CD20/CD3 RG6026 – Obinutuzumab NCT
03075696

1b 28 ORR 48%
CR 43%

[30]

CD20/CD3 Mosunetuzumab – – NCT
02500407

1/1b 55 ORR 33%
CR 21%

[31]

CD20/CD3 REGN1979 – – NCT
02290951

1 53 ORR 33%
CR 18%

[32]

CD22 Pinatuzumab vedotin MMAE Rituximab NCT
01691898

2 42 ORR 60% CR 26% [65]

CD22 Inotuzumab ozo‑
gamicin

Calicheamicin Rituximab NCT
00299494

1/2 42 ORR 74%
2-y EFS 42%

[76]

CD22 Epratuzumab tetraxetan Yttrium-90 R-CHOP NCT
00906841

2 71 2-y EFS
75%

[142]

CD30 Brentuximab vedotin MMAE – NCT
02280785

2 12 CR 17%
DCR 50%

[78]

CD30 Brentuximab vedotin MMAE – NCT
01421667

2 49 ORR 44%
CR 17%
mPFS: 4 m

[80]

CD74 STRO-001 Maytansinoid warhead – NCT
03424603

1 4 ORR 50%
CR 25%

[83]

CD79b Polatuzumab vedotin MMAE Rituximab NCT
01691898

2 39 ORR 54%
CR 21%
mDoR 13.4 m

[65]

CD79b Polatuzumab vedotin MMAE R-CHP/GHP NCT
01992653

1b/2 66 ORR 89%
CR 77%

[64]
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CAR T cells with safety switches
Management of toxicity while maintaining efficacy is a 
pivotal focus for CAR T cell therapies in development. 
Nearly half of the patients treated with axi-cel suffered 
from grade 3 or worse serious adverse events, including 
CRS and neurotoxicity [13]. The fourth-generation CAR 
T cells usually contain additional safety measures, such as 
suicide genes (herpes simplex virus thymidine kinase, or 
caspase-9) or expression of cell surface antigens that can 
be targeted by monoclonal antibodies [25]. Moreover, a 
recombinant antibody-based bifunctional switch could 
be engineered to consist of a tumor antigen-specific 
Fab molecule at the one end and a peptide neo-epitope 
(PNE) at the other end, which can be bound exclusively 
by a PNE-specific switchable CAR T cell [26]. These 
types of CAR T cells are active to kill tumors only when 
they are given concurrently with the specific bifunctional 
switches, which make both the efficacy and toxicities of 
CAR T cells controllable.

Overall, diverse CAR T or NK cell products with dif-
ferent targets, different combinations, or different origins 
are enriching our arsenal in treating r/r-DLBCL, which 
may be put forward to second-line, or even first-line 
treatment for high-risk patients in the near future.

Bispecific T cell engagers
Bispecific T cell engagers (BiTEs, Figs.  1, 2) are a new 
class of immunotherapy, which enhances the patients’ 
immune cells to attack tumors by retargeting T cells to 
tumor cells. Blinatumomab, a CD19/CD3 BiTE, has 
demonstrated impressive efficacy against B cell acute 
lymphoblastic leukemia (ALL), which led to its approval 
by FDA to treat r/r B-ALL. A phase 2 study evaluated the 
use of blinatumomab following rituximab-based immu-
nochemotherapy in patients with newly diagnosed high-
risk DLBCL (n = 28), and ORR was reported to be 89% 
[27]. Blinatumomab enabled 4 patients with no metabolic 
response after rituximab-based therapy to get objec-
tive responses after blinatumomab treatment, and mini-
mal residual disease (MRD, assessed by plasma cell-free 
circulating tumor DNA) was converted from positive 
to negative in 9 patients following blinatumomab treat-
ment, indicating blinatumomab consolidation as a poten-
tial option for newly diagnosed high-risk DLBCL [27]. 
In a phase 2 study, blinatumomab was used as second 
salvage in 41 patients with aggressive B cell lymphoma 
who failed platinum-based first salvage regimens, and 
got an ORR of 37% and CR rate of 22% after 12 weeks, 
indicating blinatumomab monotherapy to be an effective 
therapy that could bridge autologous stem cell transplan-
tation (ASCT) in r/r aggressive B cell lymphomas [28]. To 
further improve the efficacy of blinatumomab, combina-
tion with immunotherapy agents or immunomodulatory 

drugs to enhance the anticancer activity of host T cells 
is under investigation. Phase 1 studies with blinatu-
momab and pembrolizumab (NCT03340766) or lenalid-
omide (NCT02568553) are ongoing for patients with r/r 
DLBCL. However, due to the short half-life of 2–4  h of 
blinatumomab, continuous intravenous infusion should 
be administrated for up to 28–70  days, which makes 
it extremely inconvenient in routine clinical practice. 
To extend the half-life and allow for a more convenient 
administration, a next-generation BiTE antibody con-
struct-designated CD19 HLE BiTE (such as AMG 562) 
has been generated, with a half-life of about 210 h, which 
enables once-weekly dosing [29]. The preclinical results 
of AMG 562 have demonstrated similar activity to blina-
tumomab, and it is now tested in clinical trials enrolling 
patients of DLBCL, mantle cell lymphoma, and follicu-
lar lymphoma (NCT03571828). Glofitamab, mosunetu-
zumab, and REGN1979 are all CD20/CD3 BiTEs with 
different construction that proved to be effective in r/r 
DLBCL. Glofitamab (RG6026), a novel 2-to-1 format 
BiTE with 2 CD20-binding molecules and 1 CD3-binding 
molecule, demonstrated higher potency in vitro compar-
ing to other CD20/CD3-BiTEs. In a phase 1 dose-escalat-
ing study (NCT03075696), a CR rate of 34.1% and ORR of 
49.4% were achieved in 85 patients with aggressive B cell 
lymphoma who received the dosage of at least 10 mg of 
glofitamab. Of note, more than half of the patients devel-
oped CRS and 16.7% of patients received tocilizumab to 
control CRS. Concurrent CD20 targeting by glofitamab 
and obinutuzumab led to an ORR of 48% and CR rate 
of 43% in r/r aggressive NHL (including DLBCL) in a 
phase 1b study [30]. A trial investigating the efficacy and 
safety of combined glofitamab and R-CHOP or G-CHOP 
is underway in untreated DLBCL (NCT03467373). 
According to results from a phase 1/1b trial, patients 
with r/r DLBCL treated with mosunetuzumab had an 
ORR of 33% and CR rate of 21%. All patients with CR 
remained in remission at a median follow-up of 372 days 
[31]. REGN1979 monotherapy at dose 80 mg to 320 mg 
achieved CR in 5 of 8 patients with DLBCL, including 2 
with CAR T cells failure [32]. Thus, BiTEs targeting CD3 
and B cell surface antigens, such as CD19 and CD20, 
provide promising efficacy and tolerable safety profiles. 
Though not as potent as anti-CD19 CAR T cells, those 
BiTEs have the advantage of off-the-shelf availability, and 
serious adverse events could be easily controlled by dis-
continuing the drug. Future studies should be done con-
cerning the optimal combination therapies and role of 
BiTEs in various settings of the disease, such as first-line 
induction, consolidation for high risk.
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Immunomodulatory drugs
Lenalidomide, as an immunomodulatory agent, is 
proved to have a variety of effects on the immune sys-
tem and also alter tumor microenvironment by affect-
ing the production and activity of cytokines involved 
in the maintenance of tumor growth and survival. 
Meanwhile, lenalidomide could exert direct tumor tox-
icities via binding to cereblon to inhibit downstream 
NF-κB signaling [33]. Combination of lenalidomide and 
R-CHOP21 (R2-CHOP) seemed to provide benefits in 
several phase 2 studies, especially for the non-GCB and 
high-risk subgroups [34]. In REMARC study, for elderly 
patients responding to first-line R-CHOP, lenalidomide 
maintenance for 24  months prolonged PFS over pla-
cebo, although no OS benefit was found [35]. However, 
the phase 3 ROBUST study in untreated ABC-DLBCL 
did not meet the primary endpoint of PFS, though posi-
tive PFS trends favoring R2-CHOP21 were observed 
in those with high international prognostic index (IPI) 
scores and advanced disease stages [36]. Similarly, data 
from a phase 3 study of lenalidomide and R-miniCHOP 
showed no outcome improvement for patients aged over 
80  years [37]. Meanwhile, the ECOG-ACRINI412 study 
achieved its primary endpoint, demonstrating signifi-
cantly better PFS when using R-CHOP21 combined with 
lenalidomide [38]. Possible explanations for the differ-
ent trial outcomes may include the different dose (lena-
lidomide 15  mg d1–14 in ROBUST and 25  mg d1–10 
in ECOG-ACRIN 1412), eligibility criteria (exclusively 
ABC subtype in ROBUST, and both ABC and GCB in 
ECOG-ACRIN 1412), and time to treatment (within 
31  days of diagnosis in ROBUST and within 21  days in 

ECOG-ACRIN 1412), which indicates that the use of 
lenalidomide should not be restrained to ABC-DLBCL 
and timely treatment may benefit patients further for this 
aggressive lymphoma [38]. Notwithstanding, lenalido-
mide has been demonstrated to be effective in r/r DLBCL 
as monotherapy [39] or combining salvage chemothera-
pies, such as R-ICE [40] and R-ESHAP [41]. The chemo-
free regimen R2 (rituximab plus lenalidomide) has also 
been shown to be active in elderly r/r DLBCL patients, 
and durable CR was achieved in 35% patients [42], which 
made R2 an appealing choice for those ASCT-ineligible 
patients. Moreover, due to the ability of penetrating 
blood–brain barrier, lenalidomide has been proved to be 
highly active in treating primary central nervous system 
(CNS) lymphoma (PCNSL) [43, 44]. Thus, addition of 
lenalidomide to immunochemotherapy may reduce the 
risk of CNS relapses, which needs to be validated in the 
future.

Immune checkpoint inhibitors (ICIs)
Immune evasion is a hallmark of DLBCL, where the 
B7-CD28 gene family plays a pivotal role. According to 
the data based on a total of 184 DLBCL biopsies, PD-1 
(CD279) and PD-L1 (CD273, B7-DC) expressions (i.e., 
expressed on more than 5% of cells) on lymphoma cells 
were detected in 1.63% and 43.48% of patients, respec-
tively, while their expressions on microenvironment cells 
were found in 11.41% and 26.09% of patients, respec-
tively [45]. Several early phase trials are reported, testing 
multiple inhibitors targeting the most studied immune 
checkpoints both in the r/r and in the frontline settings, 
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Fig. 3  Established and emerging immune checkpoint targets in DLBCL and corresponding blocking monoclonal antibodies as immune checkpoint 
inhibitors
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including pembrolizumab and nivolumab for PD-1, dur-
valumab, avelumab, and atezolizumab for PD-L1 (Fig. 1) 
[46]. However, only avelumab underwent phase 3 trial for 
combination therapies in r/r DLBCL (NCT02951156), 
and no data from phase 3 trials are currently available. 
Apart from PD-1 and PD-L1, other molecular targets 
for novel immune checkpoint inhibitors (LAG-3, TIGIT, 
TIM-3, and VISTA) have been discovered continuously, 
but remained to be tested in DLBCL (Fig. 3) [47].

PD-1 blockade has been tested in r/r, post-ASCT con-
solidation, and first-line settings, either monotherapy 
or in combination mode. Nivolumab as monotherapy at 
dose 3  mg/kg showed an ORR rate of 36% and accept-
able safety profiles in heavily pretreated patients with r/r 
DLCBL (n = 11) [48]. An interesting use of checkpoint 
inhibition has evolved with the introduction of CAR T 
cell therapy. As aforementioned, atezolizumab or pem-
brolizumab following CD19 CAR T cell therapies was 
expected to tackle resistance, though further research is 
needed. Also, PD-1 blockade after ASCT was believed to 
leverage immune landscapes to decrease minimal resid-
ual disease. However, data from a phase 2 study showed 
that pembrolizumab consolidation given after ASCT did 
not improve the 18-month PFS rate (59%) [49]. Just as 
rituximab does not provide clinical benefits when used 
as post-ASCT maintenance, checkpoint inhibitors face 
the same challenge. Post hoc analysis needs to be done 
to explore the specific subpopulation who benefited from 
ICIs therapy, such as PD-L1 amplification or mutation, 
etc. Thus, immunotherapy targeting PD-1/PD-L1 seems 
unsatisfactory (Fig.  2) when using as monotherapy, and 
indicative biomarkers should be explored further to 
launch precision medicine in a subset of DLBCL patients. 
Combination of pembrolizumab and R-CHOP (PR-
CHOP) has been tested in 30 newly diagnosed DLBCL 
patients, resulting in the overall and complete response 
rate being 90% and 77%, respectively. The 2-year PFS was 
83% at a median follow-up of 25.5 months, and this regi-
men was well tolerated [50]. Meanwhile, higher expres-
sion of PD-L1 correlated with improved PFS, suggesting 
assessment of PD-L1 expression as a useful biomarker to 
identify patients who actually benefit from this first-line 
strategy.

Though PD1/PD-L1 blockade seems to have unim-
pressive efficacy in r/r DLBCL, another immune check-
point CD47, considered as macrophage checkpoint, has 
emerged to be a promising target (Fig. 1). CD47 upregu-
lation on malignant cells reveals immune evasion and 
drug resistance, which was detected in 53.7% patients of 
DLBCL [51]. Hu5F9-G4 is a first-in-class CD47-directed 
monoclonal antibody (mAb) and macrophage check-
point inhibitor that preferentially enables phagocytosis 
of DLBCL cells by CD47 blockade. This action could be 

augmented by rituximab through its Fc region [51]. The 
safety and efficacy profiles of the combination of Hu5F9-
G4 and rituximab were evaluated in a phase 1b/2 study 
involving 63 patients with r/r DLBCL. ORR was obtained 
by 39% (n = 18) patients, and 20% (n = 9) experienced 
CR. Duration of response was not reached at more than 
20  months of follow-up. Adverse events were mostly 
grade 1 to 2 infusion reactions (38%) and headache (34%), 
whereas first-dose grade 3 anemia in 15% of patients was 
observed [52]. Moreover, dual blockade of CD47 and 
PD-L1 may be a potential synergistic therapy that can 
elicit both innate and adaptive immune response against 
tumors [53], which is worthy investigating in clinical tri-
als (NCT04328831).

Monoclonal antibodies and antibody–drug 
conjugates
Since the approval of rituximab in the treatment of 
DLBCL in 2006, many novel agents targeting cell sur-
face antigens have been developed and tested in DLBCL. 
Many mAbs are developed both in the unconjugated 
form and in the conjugated forms (Figs. 1, 2), where they 
are designed to conjugate to a cytotoxic payload (anti-
body–drug conjugate, ADC), a radioactive molecule 
(radiolabeled mAb), or another antibody (i.e., bispecific 
antibody) by a covalent linker. In the following, these 
novel antibodies are categorized according to different 
cell surface antigens (Fig. 1).

CD20‑directed agents
In addition to first-generation rituximab, other CD20 
mAbs currently used in the treatment of DLBCL include 
second-generation ofatumumab as well as third-gen-
eration obinutuzumab (GA-101). The alteration within 
molecular structures (e.g., Fc region) of CD20 mAbs 
enhanced binding affinity to CD20 antigen and anti-
body-dependent cell cytotoxicity (ADCC) [54]. How-
ever, G-CHOP (obinutuzumab plus CHOP) did not 
significantly improve PFS but resulted in more severe 
adverse events, compared with R-CHOP in previously 
untreated DLBCL [54]. Ofatumumab was well toler-
ated in the elderly, and combination of ofatumumab and 
miniCHOP was reported to achieve a 2-year OS rate of 
64.7% for DLBCL in patients aged 80 years or older [55]. 
Meanwhile, for those frail elderly patients who are poor 
candidates for R-CHOP chemotherapy, combination of 
ofatumumab and bendamustine demonstrated an ORR 
of 90.5% and CR of 33.3% with tolerable toxicities [56]. 
Overall, comparing with historic data of rituximab-based 
therapy, all these second-generation CD20 mAbs did not 
provide further benefits for DLBCL patients, and future 
patient resources should be put in clinical trials of CD20-
ADCs instead of CD20-mAbs.
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MT-3724 is a novel ADC directed against CD20, 
which is comprised of a single-chain variable fragment 
lined to Shiga-like toxin-1A, a ribosome-inactivating 
protein. Phase I trial of MT-3724 monotherapy in heav-
ily pretreated DLBCL patients reported an ORR of 30% 
[57], with the phase II trial already being underway 
[58]. Radiolabeled CD20 mAbs currently used in clini-
cal testing include ibritumomab tiuxetan (Zevalin) and 
tositumomab (Bexxar), chelated with yttrium-90 and 
iodine-131, respectively. Consolidation with Zevalin 
after CHOP plus radiotherapy achieved 5-year OS of 87% 
and 5-year PFS of 82% in high-risk patients with early-
stage NHL including DLBCL [59]. For patients with 
limited-stage DLBCL who were interim-PET positive 
after 3 cycles of R-CHOP, involved-field radiation ther-
apy (IFRT) followed by Zevalin consolidation resulted 
in 5-year PFS rate of 86% and OS rate of 93% in the 
S1001 study [60]. In the SWOG S0433 trial involving 84 
patients with advanced-stage DLBCL, R-CHOP followed 
by Bexxar consolidation showed a 2-year PFS of 69% 
and 2-year OS of 77% [61], indicating that consolidation 
therapy with those radiolabeled CD20 mAbs may provide 
benefits to patients of high-risk or advanced disease.

CD79b‑directed agents
CD79b, a core component of the B cell receptor, plays a 
pivotal role in chronic-active B cell receptor (BCR) sign-
aling and canonical NF-κB signaling pathway of DLBCL 
survival, especially for the activated B cell-like (ABC) 
subtype [62]. Polatuzumab vedotin (DCDS4501A) is a 
novel CD79b-directed ADC with site-specific conjuga-
tion to MMAE. In 2019, combined polatuzumab vedotin 
with bendamustine and rituximab was approved by the 
FDA for patients with r/r DLBCL after at least 2 prior 
therapies [63]. Beyond combination with rituximab, the 
replacement of vincristine with polatuzumab vedotin was 
tested in a multicenter phase Ib/II study with R-CHP or 
G (obinutuzumab)-CHP. Polatuzumab vedotin dosed 
1.8 mg/kg showed overall acceptable safety profiles with 
25/66 (38%) patients experiencing grades 1 and 2 periph-
eral neuropathy and good efficacy (ORR 89%; CR, 77%) 
in previously untreated DLBCL [64]. Though ITAM 
(immunoreceptor tyrosine-based activation motif ) muta-
tion of CD79b was frequently recognized in 23% of ABC 
r/r DLBCL [62], the reported activities of polatuzumab 
vedotin showed no preference for any DLBCL cell-of-
origin subtypes or CD79b expression [64, 65]. Giving 
the significant clinical activities and manageable safety 
profiles of polatuzumab vedotin, additional evaluation of 
polatuzumab vedotin with other agents (including lena-
lidomide, venetoclax, and obinutuzumab) in the r/r set-
ting is ongoing. Specifically, two phase III studies are now 
recruiting: POLARIX to compare polatuzumab vedotin 

plus R-CHP with R-CHOP alone in untreated DLBCL 
[66], and POLARGO evaluating polatuzumab vedotin 
in combination with R-GemOx (rituximab, gemcitabine, 
and oxaliplatin) in patients with r/r DLBCL after at least 
1 prior therapies [67].

CD19‑directed agents
Recent results of the CD19 mAbs suggest that this thera-
peutic paradigm is finally showing promise for DLBCL. 
On July 31, 2020, the FDA approved the use of an Fc-
engineered CD19 mAb tafasitamab (MOR208, Monjuvi®) 
combined with lenalidomide in r/r DLBCL. In a phase IIa 
study investigating tafasitamab monotherapy for patients 
with r/r DLBCL, 35 patients showed a 12-month PFS rate 
of 34.3%, with a median duration of response (DoR) of 
20.1 months [68]. In a single-arm phase II trial (L-MIND) 
for the combination of tafasitamab and lenalidomide, 
80 non-transplant eligible patients with r/r DLBCL 
showed a CR rate of 43%, ORR rate of 60%, and DoR of 
21.7 months [69]. Given the significant clinical benefits, a 
phase III trial (NCT02763319) is now recruiting to com-
pare tafasitamab versus rituximab in combination with 
bendamustine in adult patients with r/r DLBCL. Inebi-
lizumab, a humanized anti-CD19 monoclonal antibody, 
was tested as monotherapy in a phase 1 study, among 
which 6 patients with r/r DLBCL were enrolled. The 
maximum tolerated dose was defined as 8  mg/kg, and 
ORR was 50% (1 CR and 2 PR) in patients with DLBCL 
[70].

Coltuximab ravtansine (SAR3419, huB4-DM4) rep-
resents a novel CD19-targeted ADC conjugated to a 
maytansinoid-derivate antimitotic payload DM4 through 
a disulfide linker. The clinical efficacy and safety of 
SAR3419 monotherapy were evaluated in a phase II mul-
ticenter study. Eighteen of 41 patients with r/r DLBCL 
at dose 55 mg/m2 obtained ORR (43.9%), with a median 
DoR of 4.7  months [71]. Another CD19-targeted ADC 
ADCT-402 (loncastuximab tesirine) comprising pyr-
rolobenzodiazepine dimer toxin showed early promise 
for patients DLBCL. Of the 51 patients with r/r DLBCL 
who were treated at 120  mg/kg or above this dosage 
threshold, 28 (54.9%) responded to ADCT-402, with a 
median DoR of 3.1 months for patients achieving PR. The 
DoR for CR patients was not reached with a median fol-
low-up of 7.5 months [72]. Those CD19-targeted ADCs-
based combination therapies are under study, which may 
provide new options for r/r DLBCL.

CD22‑directed agents
Epratuzumab is a CD22-directed monoclonal antibody 
with efficacy in both relapsed and untreated DLBCL [73]. 
When combined with rituximab, epratuzumab treatment 
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led to an ORR of 67% and CR of 50% in 6 patients with r/r 
DLBCL [74]. The 3-year event-free survival (EFS) and OS 
were 70% and 80%, respectively, in patients with newly 
diagnosed DLBCL treated with epratuzumab plus stand-
ard R-CHOP [75]. After adjusting for IPI, the patients 
treated with epratuzumab plus R-CHOP achieved sig-
nificantly improved EFS, compared with those treated 
with R-CHOP [75]. However, no subsequent follow-up 
data or phase 3 RCT result was reported, suggesting that 
no potential extra benefit was provided by addition of 
epratuzumab to R-CHOP.

Pinatuzumab vedotin (DCDT2980S) is a CD22-
directed ADC conjugated to the antimitotic payload 
MMAE. Pinatuzumab vedotin alone at dose 2.4  mg/
kg yielded moderate efficacy, with an ORR of 36% and 
median DoR of 3.0  months observed in patients with 
r/r DLBCL [65]. Combination of rituximab and pinatu-
zumab vedotin resulted in higher ORR and CR in patients 
with r/r DLBCL, compared with single-agent pinatu-
zumab vedotin (ORR, 60% vs. 36%; CR, 26% vs. 16%, for 
combination vs. single agent, respectively) [65]. Inotu-
zumab ozogamicin (CMC-544) is another CD22-directed 
ADC conjugated to the DNA-damaging calicheamicin. 
A phase 1/2 study of combining inotuzumab and rituxi-
mab reported an ORR of 74% in r/r DLBCL patients [76], 
but the phase 3 trial (NCT01232556) of inotuzumab 
ozogamicin plus rituximab in r/r DLBCL was discontin-
ued for futility in 2013 when comparing with investiga-
tor’s choice (IC). However, the favorable safety profiles 
of inotuzumab plus rituximab suggest this regimen may 
be appropriate for a specific patient populations [77]. 
A study of inotuzumab plus rituximab, cyclophospha-
mide, vincristine, and prednisolone in chemotherapy-
naïve patients with DLBCL who are not candidates for 
anthracycline-based treatment is currently recruiting 
(NCT01679119).

CD30‑directed agents
Brentuximab vedotin (BV, SGN-35) is a potent CD30-
directed ADC, which has been approved by the FDA 
for classical Hodgkin lymphoma, primary cutaneous 
anaplastic large cell lymphoma, and systemic anaplastic 
large-cell lymphoma. The efficacy of BV is under broad 
investigation in various subtypes of NHL, including 
DLBCL. CD30 was expressed on 20% or more tumor cells 
of about 14% of de novo DLBCL cases, though significant 
association between the response rate and CD30 expres-
sion in DLBCL was undefined [78, 79]. Single agent BV 
was active in r/r DLBCL with variable levels of CD30 
expression, and ORR occurred in 44% of DLBCL cases 
[80]. However, computer-assisted digital image analysis 
showed that a minimum CD30 expression threshold of 
1% was required for antitumor properties in DLBCL [81]. 

Thus, it is recommended that CD30 immunostaining 
should be done routinely in DLBCL, and BV may provide 
a potential option for r/r DLBCL with CD30 positivity.

CD74‑directed agents
CD74 is a MHC class II chaperone broadly expressed on 
human immune cells and B cell lymphomas, which rep-
resents a promising target for treatment of DLBCL [82]. 
The novel CD74-directed ADC STRO-001 contains a 
humanized glycosylated antibody SP7219 and potent 
maytansinoid linker-warhead. STRO-001 is already being 
investigated in the first-in-human phase 1, multicenter 
study (NCT03424603) for adults with advanced B cell 
malignancies, including r/r DLBCL. Preliminary anti-
tumor activity of STRO-001 observed in 4 patients with 
DLBCL was encouraging. One patient achieved a CR 
after 2 cycles but progressed after 6 cycles. An additional 
patient with DLBCL obtained a partial response after 3 
cycles [83]. Though modest activity was demonstrated 
as monotherapy, further trials evaluating the efficacy of 
combination strategies should be done.

Molecular pathway inhibitors
Gene expression profiling analysis has defined ABC and 
GCB as 2 major subtypes of DLBCL (about 50% and 30%, 
respectively), according to cell of origin [84]. Aberrant 
expression and genetic disorders of CD79b, CARD11, 
MYD88, TNFAIP3, BCL-10, TRAF3, TRAF2, NFKBIA, 
and NFKBIE (IkBε), in concordance with the preva-
lence of chronic-active B cell receptor (BCR) signaling, 
JAK-STAT3 signaling, and canonical NF-κB signaling, 
were believed to underlie the inferior outcomes of ABC 
DLBCL (Fig.  4) [85]. Notably, great heterogeneity exists 
in the entity of GCB or ABC. In 2018, Schmitz and col-
leagues identified 4 unique genetic subtypes in DLBCL 
(MCD, BN2, N1, and EZB) with distinct prognosis [85]. 
At the meantime, Chapuy et  al. [86] identified 5 robust 
DLBCL clusters of discrete outcomes with coordinate 
genetic signatures. Moreover, George et al. [87] recently 
developed an algorithm that can classify a patient’s lym-
phoma into one of seven genetic subtypes, which high-
light the potential use of specific targeted agents and 
contribute to precision medicine. For example, the per-
turbation of proximal BCR signaling is suggested for 
MCD subtype, BCL-2 inhibitors for BN2, NF-κB signal-
ing blockade for both BN2 and A53, along with the inhi-
bition of JAK-STAT3 signaling for ST2 subtype [85–87]. 
In this section, we summarize the cross-linked signaling 
pathway intricacies at the intersection of DLBCL biol-
ogy and the clinic. Rational molecular therapies target-
ing aberrant pathways in the clinical setting are carefully 
enumerated (Table  4) and discussed on the molecular 
basis.
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BCR signaling pathway inhibition
Chronic-active BCR signaling is pivotal in the survival of 
almost all ABC DLBCLs, driven by frequent activating 
mutations of the immunoreceptor tyrosine-based activa-
tion motifs in CD79B and CD79A, or of the coiled-coil 
domain in CARD11 [62]. On the contrary, GCB DLBCLs 
were prone to present with a BCR-negative immunophe-
notype [88]. Molecular inhibitors targeting BCR-depend-
ent ABC DLBCLs include: entospletinib and fostamatinib 
for spleen tyrosine kinase (SYK); ibrutinib, zanubrutinib, 
ARQ-531, LOXO-305, DTRMWXHS-12, and acala-
brutinib for BTK; enzastaurin for protein kinase Cβ 

(PKCβ) (Fig. 4). Of note, SYK inhibitors showed limited 
single-agent activities in r/r ABC DLBCL [89, 90]. A bet-
ter understanding of which patients would benefit from 
BCR blockade via SYK inhibition or other molecular 
therapeutics is important for their further development 
in DLBCL. For example, BTK inhibition killed upstream 
CD79-mutant DLBCL cells, but was dispensable for 
downstream CARD11-mutant DLBCL cells, which were 
susceptible to NF-κB pathway inhibitors [91]. Immu-
nohistochemistry and genetic assessments are thereby 
recommended, in order to confirm the exact lesion in 
molecular pathways.
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Fig. 4  Novel agents targeting molecular signaling pathways and epigenetic regulations. Distinct molecular aberrations classify DLBCL into different 
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pathways, NF‐κB signaling pathways, as well as epigenetic regulators, such as HDAC, EZH2, and BET
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Table 4  New molecular therapeutics and ongoing clinical trials in diffuse large B cell lymphoma

Agent Agent type Combined 
agent

Study Study phase Recruitment 
status

Enrollment 
(estimated/
actual)

Indication Results 
for DLBCLa

Idelalisib PI3K inhibitor – NCT03576443 
(ILIAD)

2 Recruiting 72 Relapsed GCB 
DLBCL

–

Copanlisib PI3Kα/δ inhibi‑
tor

Nivolumab NCT03484819 2 Recruiting 106 DLBCL failing or 
ineligible for 
ASCT

–

Parsaclisib PI3Kδ inhibitor – NCT02998476 
(CITA‑
DEL-202)

2 Active, not 
recruiting

60 r/r DLBCL [109]

Parsaclisib PI3Kδ inhibitor R-CHOP NCT04323956 1/1b Not yet recruit‑
ing

44 Newly diagnosed, 
high-risk DLBCL

–

Parsaclisib PI3Kδ inhibitor Rituximab, 
bendamus‑
tine/ibrutinib

NCT03424122 1 Recruiting 81 r/r NHL –

BR101801 PI3Kδ and 
DNA-PK dual 
inhibitor

– NCT04018248 1 Not yet recruit‑
ing

90 Advanced lym‑
phomas

–

Umbralisib 
(TGR-1202)

PI3Kδ and CK1 
dual inhibitor

Ublituximab, 
bendamus‑
tine

NCT02793583 
(UNITY-NHL)

2/3 Recruiting 900 Previously treated 
NHL

–

Everolimus mTORC1 inhibi‑
tor

Lenalidomide NCT01075321 1/2 Active, not 
recruiting

58 r/r NHL or HL –

Temsirolimus mTORC1 inhibi‑
tor

Rituximab, 
DHAP

NCT01653067 2 Recruiting 88 r/r DLBCL –

Venetoclax BCL2 inhibitor – NCT01328626 1 Recruiting 222 r/r CLL and NHL [101]

Venetoclax BCL2 inhibitor Lenalidomide, 
obinutu‑
zumab

NCT02992522 1 Suspended 60 r/r NHL –

Venetoclax BCL2 inhibitor Atezolizumab, 
obinutu‑
zumab

NCT03276468 2 Recruiting 138 r/r DLBCL and 
indolent NHL

–

Venetoclax BCL2 inhibitor RICE NCT03064867 1/2 Recruiting 64 r/r DLBCL –

Venetoclax BCL2 inhibitor DA-EPOCH-R NCT03036904 1 Active, not 
recruiting

34 DLBCL and 
HGBCL

–

Venetoclax BCL2 inhibitor Obinutuzumab, 
rituximab, 
polatuzumab 
vedotin

NCT02611323 1 Recruiting 134 r/r DLBCL and 
follicular lym‑
phoma

–

Venetoclax BCL2 inhibitor Obinutuzumab NCT02987400 2 Recruiting 21 r/r DLBCL –

Entospletinib Spleen tyrosine 
kinase inhibi‑
tor

R-CHOP NCT03225924 1/2 Active, not 
recruiting

25 Newly diagnosed 
DLBCL aaIPI ≥ 1

–

Ibrutinib BTK inhibitor ABT-199, rituxi‑
mab

NCT03136497 1 Recruiting 30 r/r DLBCL –

Ibrutinib BTK inhibitor ABT-199, pred‑
nisone, obi‑
nutuzumab, 
lenalidomide

NCT03223610 1b/2 Recruiting 130 CD20 positive B 
cell lymphoma

–

Ibrutinib BTK inhibitor Loncastuximab 
tesirine

NCT03684694 1/2 Recruiting 161 Advanced DLBCL, 
mantle cell 
lymphoma

–

Ibrutinib BTK inhibitor Lenalidomide, 
rituximab

NCT02077166 1/2 Active, not 
recruiting

129 r/r non-GCB 
DLBCL

[119]

Ibrutinib BTK inhibitor R-ICE NCT02955628 2 Recruiting 34 Pre-transplant r/r 
DLBCL

–

Ibrutinib BTK inhibitor Buparlisib NCT02756247 1 Active, not 
recruiting

37 r/r DLBCL, FL, 
mantle cell 
lymphoma

[95]
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Table 4  (continued)

Agent Agent type Combined 
agent

Study Study phase Recruitment 
status

Enrollment 
(estimated/
actual)

Indication Results 
for DLBCLa

ARQ-531 BTK inhibitor – NCT03162536 1/2 Recruiting 146 Selected 
hematologic 
malignancies

–

LOXO-305 BTK inhibitor Venetoclax, 
R-CHOP

NCT03740529 1/2 Recruiting 403 CLL/SLL, NHL –

DTRMWXHS-12 BTK inhibitor Everolimus, 
pomalido‑
mide

NCT04305444 2 Recruiting 120 r/r CLL, NHL –

Acalabrutinib BTK inhibitor – NCT02112526 1 Recruiting 21 r/r ABC DLBCL [96]

Acalabrutinib BTK inhibitor RICE NCT03736616 2 Recruiting 47 DLBCL after first-
line failure

–

Acalabrutinib BTK inhibitor DA-EPOCH NCT04002947 2 Recruiting 112 untreated DLBCL –

Acalabrutinib BTK inhibitor R-CHOP NCT03571308 1/2 Recruiting 39 untreated DLBCL –

Acalabrutinib BTK inhibitor pembroli‑
zumab

NCT02362035 1b/2 Active, not 
recruiting

161 r/r hematologic 
malignancies

[97]

Enzastaurin PKCβ inhibitor R-CHOP NCT03263026 3 Recruiting 235 untreated DGM1-
positive DLBCL, 
IPI ≥ 3

–

Lenalidomide Immunomodu‑
latory agent

– NCT04150328 
(RE-MIND)

2 Recruiting 500 r/r DLBCL [69]

Lenalidomide Immunomodu‑
latory agent

MOR208 NCT02399085 
(L-MIND)

2 Active, not 
recruiting

81 r/r DLBCL, non-
transplant 
eligible

[69]

Lenalidomide Immunomodu‑
latory agent

R-CHOP NCT00670358 1/2 Recruiting 47 Untreated DLBCL [34]

Lenalidomide Immunomodu‑
latory agent

R-CHOP NCT00907348 2 Unknown 49 Elderly untreated 
DLBCL, IPI ≥ 2

[34]

Lenalidomide Immunomodu‑
latory agent

R-CHOP NCT01856192 2 Active, not 
recruiting

345 Untreated stage 
II–IV DLBCL

–

Lenalidomide Immunomodu‑
latory agent

R-CHOP NCT02285062 3 Active, not 
recruiting

570 Untreated ABC 
DLBCL

[36]

Lenalidomide Immunomodu‑
latory agent

miniCHOP, sub‑
cutaneous 
rituximab

NCT02128061 
(SENIOR)

3 active, not 
recruiting

250 Untreated 
CD20 + DLBCL, 
aged over 
80 years

[37]

Lenalidomide Immunomodu‑
latory agent

Rituximab, 
ibrutinib

NCT02636322 2 Active, not 
recruiting

60 Newly diagnosed 
non-GCB 
DLBCL

[120]

Itacitinib JAK1 inhibitor Parsaclisib NCT02018861 
(CITA‑
DEL-101)

1/2 Active, not 
recruiting

88 r/r B cell malig‑
nancies

[122]

Itacitinib JAK1 inhibitor Ibrutinib NCT02760485 1/2 Active, not 
recruiting

33 r/r DLBCL –

Ruxolitinib JAK1/2 inhibi‑
tor

– NCT01431209 2 Active, not 
recruiting

71 r/r NHL failing or 
ineligible for 
SCT

[123]

Valemetostat EZH1/2 dual 
inhibitor

– NCT02732275 1 Recruiting 70 Adults with 
advanced NHL

–

Tazemetostat EZH2 inhibitor – NCT01897571 1/2 Active, not 
recruiting

420 NHL and 
advanced solid 
tumors

[130]

Tazemetostat EZH2 inhibitor R-CHOP NCT02889523 1/2 Suspended 133 Untreated high-
risk DLBCL

[132]

Tazemetostat EZH2 inhibitor – NCT03456726 2 Active, not 
recruiting

21 r/r NHL, EZH2 
mutation

–



Page 14 of 23Wang et al. J Hematol Oncol          (2020) 13:175 

Ibrutinib, the first approved BTK inhibitor, has shown 
activity in the r/r setting of ABC-DLBCLs, especially 
those with concurrent CD79b and MYD88 mutation [92]. 
Combined ibrutinib with R-ICE (rituximab, ifosfamide, 
carboplatin, and etoposide) resulted in an ORR of 90% in 
r/r DLBCL and a CR rate of 100% in patients with non-
GCB subtype [93]. Nevertheless, ibrutinib with R-CHOP 
did not benefit the overall patients with untreated non-
GCB DLBCL in a randomized, placebo-controlled, 
phase III PHEONIX study [6], but addition of ibrutinib 
to R-CHOP benefited younger patients of DLBCL, espe-
cially those with both c-MYC and BCL-2 overexpression. 
Since primary resistance to BTK inhibition in DLBCL 
was associated with BCR signaling activation, ibrutinib 
combination therapies with venetoclax are now under 
active clinical investigation [94]. Also, the combination 
of BTK and PI3K inhibition with ibrutinib and buparlisib 
was tested, reporting a CR rate of 23% in 13 patients with 
r/r DLBCL [95]. Besides, acalabrutinib monotherapy 
showed promising activities among 21 patients with r/r 
DLBCL, inducing CRs in 5 patients (including 1 GCB 
DLBCL) [96]. Furthermore, BTK inhibition may syner-
gize with immunotherapy, since acalabrutinib in combi-
nation with pembrolizumab resulted in ORRs of 27% in 
GCB (n = 30) and 26% in non-GCB r/r DLBCL (n = 31), 
with a median DoR of 6.9 months [97].

In a randomized phase II trial, frontline PKCβ inhibi-
tor enzastaurin plus R-CHOP showed improved median 
PFS compared with R-CHOP alone (36 vs. 23  months, 
respectively), especially for high-risk patients [98]. A 
new phase III ENGINE study is ongoing to test enzastau-
rin with R-CHOP in high-risk DLBCL patients positive 
for DGM1, a genetic biomarker signifying responses to 
enzastaurin treatment [99].

BCL‑2 inhibition
In DLBCL, B cell lymphoma-2 (BCL-2) overexpression 
maintained tumor viability through apoptosis inhibi-
tion and mediated molecular mechanisms underlying 
R-CHOP resistance [100]. Constitutive overexpres-
sion of BCL-2 was detected in both subtypes of DLBCL 
through distinct mechanisms: chromosomal transloca-
tions in GCB DLBCL and NF-κB signaling activation in 
ABC DLBCL. BCL2 translocation was detected in 28.0% 
of GCB and 0.7% of ABC DLBCL [85]. Therefore, BCL-2 
inhibition is most likely to be effective in the cluster 5 
with extranodal ABC and cluster 3 with GCB, which 
exhibited BCL-2 overexpression plus frequent mutations 
of CD79B and MYD88L265P (Fig.  4), or frequent muta-
tions in epigenetic enzymes (e.g., KMT2D, CREBBP, and 
EZH2), BCL-2 and PTEN, respectively, as defined by 
Chapuy et al. [86].

Table 4  (continued)

Agent Agent type Combined 
agent

Study Study phase Recruitment 
status

Enrollment 
(estimated/
actual)

Indication Results 
for DLBCLa

Tazemetostat EZH2 inhibitor – NCT02875548 2 Recruiting 300 Patients with 
antecedent 
tazemetostat 
study

–

Panobinostat HDACi – NCT01261247 2 Active, not 
recruiting

41 r/r NHL –

Vorinostat HDACi R-CHOP NCT00972478 1/2 Active, not 
recruiting

83 Untreated stage 
2–4 DLBCL

–

Chidamide HDACi – NCT03201471 2 Recruiting 39 High-risk DLBCL –

Romidepsin HDACi 5-Azacitidine NCT01998035 1/2 Active, not 
recruiting

52 r/r NHL –

Selinexor XPO1 inhibitor Venetoclax NCT03955783 1 Suspended 78 r/r high-risk 
DLBCL, leuke‑
mia

[143]

Selinexor XPO1 inhibitor R-CHOP NCT03147885 1b/2 Recruiting 44 NHL –

Selinexor XPO1 inhibitor RICE NCT02471911 1 Active, not 
recruiting

23 r/r aggressive B 
cell lymphoma

–

NHL non-Hodgkin lymphoma, R-CHOP rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone, DLBCL diffuse large B cell lymphoma, r/r relapsed/
refractory, EZH enhancer of zeste homolog, CLL chronic lymphocytic leukemia, G-CHOP obinutuzumab, cyclophosphamide, doxorubicin, vincristine, and prednisone, 
RICE rituximab, ifosfamide, carboplatin, and etoposide, DA-EPOCH-R dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab, 
HGBCL high-grade B cell lymphoma, HL Hodgkin lymphoma, GCB germinal center B cell like, PI3K phosphatidylinositol-3-kinase, aaIPI age-adjusted international 
prognosis index, BTK Bruton’s tyrosine kinase inhibitor, SLL small lymphocytic lymphoma, PKCβ protein kinase Cβ, PMBCL primary mediastinal B cell lymphoma, JAK 
janus kinase, ASCT autologous stem cell transplantation, HDACi histone deacetylase inhibitors
a  If the study results are published, the reference number will be given
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The selective, orally bioavailable BCL-2 inhibitor vene-
toclax (ABT-199) was tested in a multitude of phase I and 
II studies. The first-in-human phase I trial of venetoclax 
reported an ORR of 18% in 34 patients with r/r DLBCL, 
with an estimated median PFS of 1  month [101]. The 
most common grade 3 and 4 hematologic adverse events 
at target doses from 200 to 1200  mg for all NHLs were 
anemia (15%), neutropenia (11%), and thrombocytopenia 
(9%) [101]. First-line venetoclax was tested in 56 patients 
with NHL in combination with R-/G-CHOP, including 18 
patients with DLBCL. ORR was reported to be 87.5% for 
all NHLs, and CR rate was 79.2% and 78.1% in venetoclax 
with R-CHOP and G-CHOP, respectively [102]. A retro-
spective cohort study evaluated the off-label use of sal-
vage venetoclax with concomitant therapy in 34 patients 
with NHL, including 13 DLBCL. With median venetoclax 
dosed at 400 mg, the ORR was achieved at 26% and CR at 
3% in the entire cohort. The observed median PFS for the 
DLBCL cohort was 2 months [103]. Moreover, preclini-
cal study showed synergistic activity between the BCL-2 
inhibitor navitoclax (ABT-263) and bendamustine [104], 
but the phase II clinical study on navitoclax plus ben-
damustine and rituximab in r/r DLBCL was withdrawn 
due to non-safety-related reasons (NCT01423539). Thus, 
reliable biomarkers need to be extensively investigated 
to guide the use of BCR inhibition in DLBCL due to the 
currently modest efficacy.

VEGFR inhibition
Similar to the fate of bortezomib or ibrutinib in first-line 
treatment setting of DLBCL, bevacizumab (Avastin), a 
humanized monoclonal antibody targeting VEGF-A, did 
not show benefits when added to R-CHOP in patients 
with newly diagnosed DLBCL [105]. However, this study 
did not prevent VEGFR from being an effective target 
in r/r DLBCL. Apatinib is an orally administered novel 
tyrosine kinase inhibitor targeting vascular endothelial 
growth factor receptor-2 (VEGFR-2), which involves 
in lymphomagenesis. Home administration of apatinib 
with regular outpatient follow-up produced encouraging 
antitumor effects in r/r DLBCL in an open-label, single-
arm, prospective study [106]. ORR of 43.8% and a disease 
control rate of 71.9% were reported, with a median DoR 
of 5.0 (95% CI 3.5–6.5) months (n = 32). The most com-
mon toxicities of any grade were hypertension (62.5%), 
leukopenia (40.6%), and hand-foot syndrome (40.6%) 
[106]. The relatively high response rate attained by apat-
inib deserves future investigation of drug combination 
strategies.

PI3K/Akt/mTOR inhibition
PI3K/Akt/mTOR (mammalian target of rapamycin) sign-
aling pathway is involved in the constitutive activation 

of BCR signaling and cell adhesion-mediated drug 
resistance within tumor microenvironment [107]. Cur-
rent clinical results of PI3K/Akt/mTOR signaling inhi-
bition (Fig.  4) showed modest responses in r/r DLBCL. 
The efficacy and safety of PI3Kα/δ inhibitor copanlisib 
(Aliqopa; BAY80-6946) were tested in a phase 2 trial, 
in which patients with ABC r/r DLBCL had an ORR of 
13.3%, whereas an ORR of 31.6% was achieved in patients 
with GCB subtype. The PFS was 1.8 and 4.3  months in 
ABC and GCB subgroups, respectively. Treatment-emer-
gent adverse events mostly reported were hypertension 
(40.3%), diarrhea (37.3%), and hyperglycemia (32.8%) 
[108]. Parsaclisib (INCB050465), a selective next-genera-
tion oral PI3Kδ inhibitor, showed single-agent efficacy for 
r/r DLBCL in a phase 2 trial. ORR was 20% and 25.5%, 
respectively, for patients who previously received BTK 
inhibitors or not [109].

Everolimus (RAD001) and temsirolimus (CCI-779) 
are rapamycin analogues directing against mTORC1. 
Single-agent everolimus got an ORR of 30% and DoR 
of 5.7  months in a phase 2 study, which enrolled 77 r/r 
DLBCL patients after a median of 3 prior therapies. 
The regimen was well tolerated, and the most common 
grade 3 and 4 adverse events included thrombocytopenia 
(38%), neutropenia (18%), and anemia (14%) [110]. Simi-
lar outcomes were reported with single-agent temsiroli-
mus in the r/r DLBCL cohort of a phase 2 trial, in which 
the ORR was 28% with a DoR of 2.4 months [111]. When 
combined with rituximab, everolimus produced an 
ORR rate of 38% (9/24) and median DoR of 8.1 months 
in heavily pretreated DLBCL [112]. Though the phase 3 
PILLAR-2 trial reported no significantly improved dis-
ease-free survival (DFS) with 1-year everolimus mainte-
nance therapy in poor-risk patients with newly diagnosed 
DLBCL (hazard ratio, 0.92; 2-year DFS, 77.8% vs. 77.0%, 
for everolimus vs. placebo, respectively) [113], combined 
everolimus with R-CHOP-21 produced high EFS12 and 
EFS24 rates of 100% in the phase 1 Alliance study, in 
which 96% of newly diagnosed DLBCL patients achieved 
response [114].

NF‐κB pathway inhibition
As downstream effector of chronic-active BCR signal-
ing, sustained activity of NF-κB signaling exerts a promi-
nent survival feature for ABC DLBCL. Downstream 
expressions of cyclinD2, CCR7, IRF4, FLIP, NFKBIA, 
and BCL-2 were highly expressed in many of the ABC 
DLBCLs rather than GCB DLBCLs [115]. The protea-
some inhibitor bortezomib (Velcade) proves to inhibit 
NF-κB pathway (Fig. 4) and showed activity in r/r ABC-
DLBCL [116]. However, addition of bortezomib to 
R-CHOP or replacement of vincristine by bortezomib 
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(VR-CAP) did not improve both response rates and 
long-term survival outcomes in patients with non-GCB 
DLBCL [4]. It has been demonstrated that functional 
PRDM1 is required for mantle cell lymphoma response 
to bortezomib [117], while loss of PRDM1 was found in 
more than half of the patients with ABC-DLBCL, which 
may hinder the apoptosis induced by bortezomib [118]. 
Thus, the expression status of PRDM1 should be assessed 
before implement of bortezomib in treatment of DLBCL.

Lenalidomide can also exert direct tumor toxicities via 
binding to cereblon to inhibit downstream NF-κB sign-
aling [33]. As aforementioned, lenalidomide has been 
shown to provide benefits for r/r ABC-DLBCL [39, 40], 
as well as elderly patients when used as maintenance 
therapy [35]. Moreover, promising and durable activ-
ity was observed for triplet ibrutinib, rituximab, and 
10–25  mg lenalidomide (IR2 regimen) in r/r DLBCL, 
particularly in non-GCB DLBCL (ORR: 65% vs. 29%; 
median DoR: 15.9 vs. 8.8 months, for non-GCB vs. GCB, 
respectively) [119]. In SMART START trial, the same tri-
plet combination with 25 mg lenalidomide as a leading-
in regimen in the first-line setting for non-GCB DLBCL 
gave impressive results, with an ORR and CR rate of 86% 
and 36%, respectively, after two cycles of IR2 treatment 
[120]. Prolongation of IR2 use and reduction in chemo-
therapy cycles are needed in future exploration, espe-
cially for those relatively unfit patients.

JAK/STAT3 inhibition
STAT3 expression was detected in 37% of DLBCL and 
54% of ABC DLBCL and signified poor survival espe-
cially for the ABC subtype when treated with R-CHOP 
[121]. Conceivably, activation of the JAK/STAT3 signal-
ing pathway in ABC DLBCL indicates promising thera-
peutic targets, including JAK, STAT3, and IL-10 receptor 
(Fig. 4). JAK inhibitors, such as the JAK1 inhibitor itaci-
tinib (INCB039110) and JAK1/2 inhibitor ruxolitinib, 
have been investigated for the treatment of r/r DLBCL, 
with phase I/II results already reported. Itacitinib 300 mg 
once daily was tested in the CITADEL-101 study com-
bined with parsaclisib, but all 6 patients with r/r DLBCL 
had best overall response of progressive (metabolic) 
disease [122]. Ruxolitinib produced a median PFS of 
1.8 months and OS of 5 months in r/r DLBCL who were 
ineligible for, or failed SCT (n = 32) [123]. According to 
results from a phase Ib trial, AZD9150, a next-generation 
antisense oligonucleotide inhibitor of STAT3 mRNA 
showed efficacy in patients with r/r DLBCL [124]. Two 
in 27 patients achieved CRs (1 each at 2  mg/kg and 
3 mg/kg dose levels), and 2 achieved PRs, announcing a 
median DoR of 10.7 months [124]. From the data shown 
above, JAK/STAT3 inhibition seems unworthy of further 

investigation in DLBCL, unless predictive biomarkers are 
available to guide treatment with this strategy.

Selective inhibitors of nuclear export
The selective inhibitors of nuclear transport (SINE) have 
been developed as a novel class of anti-DLBCL agents 
[125]. The most well-known SINE inhibitor is selinexor 
(KPT-330, XPOVIO), which is a first-in-class, investiga-
tional oral therapeutic that selectively blocks exportin 1 
(XPO1) and leads to reductions in MYC and BCL2 onco-
genes (Fig. 4) [126]. Selinexor has demonstrated notable 
efficacy in the open-label SADAL phase IIb study [126] 
and received final approval from FDA for the treatment 
of patients with r/r DLBCL after at least 2 lines of sys-
temic therapy in June 2020. Among this SADAL popu-
lation of 127 patients, selinexor produced an ORR of 
28% and CR of 12%, with a median DoR of 9.3 months. 
In the cohort with prior SCT, the greatest benefits were 
observed (ORR: 44%; median PFS: 5.9  months). Most 
common grade 3–4 adverse events were thrombocytope-
nia, neutropenia, and anemia [126]. It is worth exploring 
XPO1 inhibitor-based combinational therapy in r/r set-
ting after R-CHOP failure according to the above impres-
sive findings, but special attention should be paid to the 
severe adverse events when using selinexor.

Epigenetic‑modifying drugs
Epigenetic modulation, such as DNA methylation and 
histone deacetylation, involves in tumorigenesis among 
lots of solid tumors and hematologic malignancies. 
Increasing data have demonstrated both direct antitu-
mor activity and enhancement of the function of immune 
cells, making it an appealing strategy in the treatment of 
DLBCL (Fig. 4).

Histone deacetylase inhibitors
Histone deacetylase inhibitors (HDACis), including pan-
obinostat, vorinostat (Zolinza, SAHA), chidamide (HBI-
8000), and romidepsin (FR901228), are used as novel, 
off-label anticancer epigenetic therapies for DLBCL. At 
30  mg three times weekly, panobinostat resulted in an 
ORR of 28% in patients with r/r DLBCL in a phase II 
trial, with a median DoR of 14.5 months [127]. Although 
the response rate was not impressive when using as mon-
otherapy, those who got remission enjoyed a relatively 
long duration of remission. Thus, useful biomarkers to 
predict patients who are deemed to benefit from pan-
obinostat are urgently needed. Rituximab combination 
did not increase responses, while MEF2B mutations and 
circulation tumor DNA (ctDNA) reduction were pre-
dictors of early responses [127]. Mondello et al. demon-
strated in  vitro that panobinostat induced mutations in 
the STAT3 binding site to downregulate mutant-MYD88 
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transcription, inhibited NF-κB activation, and promoted 
ibrutinib efficacy in ABC DLBCL cells [128]. This pro-
vides foundation for the combination therapy with ibru-
tinib and panobinostat in ABC DLBCL, especially for the 
cluster 5 defined by Chapuy et al. [86]. Because HDACi 
exhibited immunomodulatory effects and could syn-
ergize with immune checkpoint inhibitors to produce 
enhanced antitumor activity, vorinostat and pembroli-
zumab demonstrated an ORR of 56% and a CR of 33% in 
r/r DLBCL (n = 9) [129].

EZH2 inhibition
Enhancer of zeste homolog 2 (EZH2) is a histone methyl-
transferase, repressing nuclear transcription by trimeth-
ylating histone H3 lysine 27. 22.0% of GCB and 1.7% of 
ABC DLBCL exhibited gain-of-function mutations in 
EZH2 that mediated epigenetic modification and led to 
tumor survival [85]. Tazemetostat (EPZ-6438) is an oral, 
first-in-class, selective small-molecule EZH2 inhibitor, 
which has been approved by FDA to treat adult patients 
with relapsed or refractory follicular lymphoma (FL) 
whose tumors are positive for an EZH2 mutation and who 
have received at least 2 prior systemic therapies, or those 
who have no optimal alternative treatment options. Sin-
gle-agent efficacy of tazemetostat in NHL and advanced 
solid tumors was studied in a first-in-human phase I/
II trial [130, 131]. Interim results from the phase II trial 
showed an ORR rate of 40% in DLBCL with EZH2 muta-
tions and 18% in DLBCL without mutations [131]. Other 
trials of tazemetostat in DLBCL indications include a 
phase I/II study evaluating tazemetostat in combination 
with R-CHOP for high-risk newly diagnosed DLBCL 
patients. Phase Ib of this study determined 800 mg as the 
recommended phase 2 dose [132]. Preliminary efficacy 
data were encouraging with a metabolic CR rate of 76.5% 
(13/17), and the duration of CR was 2–14 months [132]. 
Long-term safety and overall survival of patients treated 
with tazemetostat will be evaluated in the rollover study 
TRuST (NCT02875548). Other EZH2 inhibitors, such as 
CPI-1205 [133] and GSK2816126 [134], have also shown 
promising anti-DLBCL activity and tolerable safety pro-
files in preliminary phase 1 studies. MAK683, the embry-
onic ectoderm development protein (EED) inhibitor, can 
induce reduced tumor cell proliferation in EZH2 mutated 
cells through binding to EED to block the interaction 
between EED and EZH2. A phase 1/2 study is undergoing 
to evaluate the efficacy of MAK683 in a variety of malig-
nancies, including DLBCL (NCT02900651). Further, the 
EZH1 and EZH2 dual inhibitor valemetostat (DS-3201b) 
had antitumor activities in both ABC and GCB DLBCL 
cells in vitro, which is now under investigation in a phase 
I trial for advanced NHL including DLBCL [135].

Bromodomain inhibitors
Bromodomain inhibitors are a novel generation of small 
-molecule inhibitors targeting BET (bromodomain and 
extra terminal) proteins, which normally trigger gene 
transcription via complicated mechanisms. Some onco-
genes are under epigenetic modulations by BET, such as 
c-MYC [136]. Thus, bromodomain inhibitors may present 
with antitumor efficacy by suppressing the expression of 
those oncogenes. OTX015 (MK8628), a selective inhibi-
tor of BET, showed prominent anti-lymphoma activity 
in  vitro [137]. Preclinical investigations demonstrated 
that OTX015 had various targets, including NF-KB/TLR/
JAK/STAT signaling pathways, MYC-related genes, and 
genes that regulate cell cycle [137]. In a phase I trial, 37 
patients (including 18 DLBCL patients) were treated with 
OTX015 monotherapy, and unsatisfactory efficacy was 
observed with one CR and one PR in patients with heav-
ily pretreated DLBCL. The prognosis for patients with 
r/r double-hit lymphoma (concurrent BCL2 and MYC 
translocations) is extremely poor without active salvage 
agents. Based on the results of in vitro study, BET inhibi-
tors alone or in combination with BCL-2 inhibitors may 
provide therapeutic potential for patients with MYC-
dependent lymphomas in the future [138].

Conclusion
Due to the great heterogeneity of DLBCL, one-third 
of patients will eventually failed R-CHOP treatment, 
and great challenges exist regarding how to accurately 
predict outcomes and provide individualized salvage 
therapies (Fig. 5) [144]. Although several novel molecu-
lar subtyping systems have been developed those years, 
about half of the patients could not be classified into 
a specific subtype, and there is still a long way to go 
before implementation of those molecular subtypes in 
routine clinical practice. From the data shown above, 
CAR-based cell therapies exhibit the most promising 
results. Multi-target CAR T cells, combination of dif-
ferent mono-target CAR T cells, CAR T cells combined 
with ICIs or novel molecular inhibitors, or fourth-
generation CAR T cells with safety switches can fur-
ther improve both the efficacy and safety profiles in r/r 
DLBCL. Similarly, different target-based BiTEs are also 
promising due to convenient accessibility. Regarding 
the small molecular inhibitors or epigenetic modifying 
drugs, it is impossible to cure DLBCL with monother-
apy because no driver gene aberrations have been iden-
tified for DLBCL. However, with so many new drugs 
in the development pipeline, there will be enormous 
number of drug combination mode, which is extremely 
difficult to investigate in clinical trials due to limited 
patient resources. Exploring reliable biomarkers to 
guide individualized treatment is worth many efforts, 
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and screening drugs with potential synergistic effect is 
helpful to design combinational trials. Moreover, the 
potential superimposed toxicity profiles should be con-
sidered when novel drugs with distinct mechanisms of 
action are used together, especially for DLBCL where 
many targets are not specific and off-target effects are 
inevitable. Meanwhile, unlike cytotoxic drugs, many 
novel targeted agents or immunotherapies work slowly 
in patients, and pseudo-progress occurs at some point, 
which warrants up-to-date response criteria. Finally, 
though a long way toward the cure of DLBCL, with the 
guidance of detailed genetic information, the optimal 
combination of both novel and traditional drugs will 
emerge to promote precision medicine in patients with 
DLBCL.
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