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mice
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Abstract

Huntington’s disease (HD) is a neurodegenerative disorder caused by a genetic abnormality in the huntingtin gene
that leads to a polyglutamine repeat expansion of the huntingtin protein. The cleaved polyglutamine expansion of
mutant huntingtin (mHTT) protein can form aggregates strongly correlated with HD progression. We have previously
shown that the inhibition of MGIUR5 using CTEP, a selective negative allosteric mGIuR5 modulator, can delay disease
progression and reduce in mHTT aggregates in the zQ175 mouse model of HD. This was paralleled by enhanced catalytic
activity of Unc-51-like kinase 1 (ULK1), a kinase modulated by mammalian target of rapamycin (mTOR) and key regulator of
autophagy initiation. In the present study, we show that CTEP can correct aberrant phosphoinositide 3-kinase (PI3K)/Akt/
mTOR signaling detected in zQ175 mice that may underlie the enhanced ULK1 activity and activation of autophagy. We

of neurodegeneration, autophagy and apoptosis.

also show that CTEP can facilitate CAMP response element-binding protein (CREB)-mediated expression of brain-derived
neurotrophic factor (BDNF) to foster neuronal survival and reduce apoptosis. Taken together, our findings provide the
molecular evidence for how targeting mGIuR5 using a well-tolerated selective NAM can mitigate two critical mechanisms

Keywords: mGIuR5, Huntington’s disease, zQ175, mHTT, CTEP, ULK1, mTOR, BDNF, autophagy

Introduction

Huntington’s disease (HD) is an adult-onset, inherited
autosomal dominant neurodegenerative disorder caused
by a polyglutamine (CAG) repeat expansion in exon 1
that encodes the amino-terminal of the huntingtin pro-
tein [1, 2]. It is characterized by progressive motor, cog-
nitive psychiatric deficits and early mortality [3, 4].
Cleavage of the polyglutamine expanded amino terminus
of huntingtin protein leads to the formation of intranuc-
lear and cytoplasmic aggregates that are strongly corre-
lated with HD onset and severity of symptoms [2, 5, 6].
To date, disease-modifying treatments for HD are lack-
ing, which supports the necessity of identifying novel
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disease-altering mechanisms that can be targeted to slow
the progression of HD.

Metabotropic glutamate receptor 5 (mGIuR5) is a
member of the Gag/; protein-coupled receptor family
and is highly expressed in striatum and cortex, regions
of the brain that are most affected in HD [7, 8]. More-
over, the genetic deletion of mGIuR5 reduced mutant
huntingtin (mHTT) aggregates size and improved dis-
ease pathology in a Q111 knock-in mouse model of HD
[9]. Thus, it is evident that targeting mGIluR5 signaling
can alter the accumulation mHTT aggregates and ameli-
orate HD pathology. Recently, we showed that the
pharmacological blockade of mGIuR5 using the selective
negative allosteric modulator (NAM), CTEP, results in
delayed disease progression and the reduction in mHTT
aggregates found in the brains of a zQ175 knock-in
mouse model of HD [10]. CTEP (2-chloro-4-[2[2,5-di-
methyl-1-[4-(trifluoromethoxy) phenyl] imidazol-4-yl]
ethynyl] pyridine) was chosen for this study because of
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its oral bioavailability, ability to cross the blood brain
barrier, and extended half-life of 18 h [11]. Its analogue
Basimglurant was proven to be well- tolerated in phase
II trials for major depressive disorder [11, 12].

The favorable outcomes of mGIuR5 blockade in the
zQ175 model of HD and both the APPswe/PS1AE9 and
3xTg-AD models of Alzheimer’s disease were associated
with increased autophagy via alterations in Zinc finger
and BTB domain-containing protein 16 (ZBTB16)- and
Unc-51-like kinase 1 (ULK1)-dependent mechanisms
[10, 13]. Specifically, we showed that mGluR5 inhibition
in zQ175 reduced ubiquitin-mediated degradation of the
autophagy adaptor ATG14 via GSK3B-dependent inhib-
ition of ZBTB16-Cullin3-Rocl E3-ubiquitin ligase com-
plex. Interestingly, CTEP also reduced the inhibitory
phosphorylation of ULK1 at S757 that was paralleled by
enhanced phosphorylation of the autophagy factor
ATG13, required for autophagosome formation [10, 14].
Although the activation of ULK1 is key for autophagy
initiation, the molecular cascade that is required to
transduce the mGIuR5 signaling to ULK1 remains
poorly-defined [15]. A reduction in neuronal apoptosis
and rescue of neurons when stained for neuronal nuclei
(NeuN) in CTEP-treated zQ175 mice was also observed
[10]. Since mHTT is known to alter transcriptional regu-
lation and apoptosis [16—18], it remains unclear whether
the autophagic clearance of mHTT following chronic
mGuR5 inhibition can reduce the loss of striatal neurons
and nurture the neurotrophic capacity in HD brains.

Here, we show that pharmacological antagonism of
mGIuR5 abolishes the enhanced phosphoinositide 3-kinase
(PI3K)/Akt/mammalian target of rapamycin (mTOR) signal-
ing observed in zQ175 mice. Specifically, CTEP reverses the
elevated phosphorylation of phosphoinositide-dependent
kinase-1 (PDK1), Akt and mTOR in zQ175 mice that may
underlie the previously-reported reduction in inhibitory
phosphorylation of ULK1 at S757 resulting in autoph-
agy activation. The inhibition of mGluR5 in zQ175 mice
is also associated with enhanced cAMP response
element-binding protein (CREB) activity as well as cFos
expression and Brain-derived neurotrophic factor
(BDNF) synthesis. These findings provide a mechanistic
link between mGIuR5 signaling and ULK1 activity via
PIBK/Akt/mTOR. It also indicates that the clearance of
mHTT may influence CREB/cFos-mediated expression
of BDNF to reduce apoptotic neuronal loss.

Results

Chronic mGIuR5 antagonism normalizes mTOR activity in
zQ175 mice

A critical step in autophagy is the formation of the
autophagosome and this step is primarily regulated by
ULK1 [15]. Phosphorylation of ULK1 at S757 site by the
mTOR complex results in suppression of its catalytic

Page 2 of 9

activity and inhibition of autophagy [15, 19]. We have
previously reported that chronic inhibition of mGIluR5
reduces the inhibitory phosphorylation of ULK1 at S757
site to induce autophagy [10]. Here, we tested whether
mTOR activity was elevated in homozygous zQ175 mice
that might explain reduced ULKI1 activity and autophagy
inhibition and whether mTOR activity can be modulated
by CTEP. The phosphorylation of mTOR at S2448 has
been demonstrated to represent the activation state of
the PI3K pathway, in addition to serving as a biomarker
for the activation status of mTOR [19-22]. Thus, we first
examined changes in mTOR-pS2448 phosphorylation sta-
tus in homozygous zQ175 huntingtin knock-in wildtype
(WT) mice following a 12-week treatment with either ve-
hicle or CTEP (2 mg/kg) at 12-months of old age. Brain ly-
sates derived from vehicle-treated homozygous zQ175
mice showed a significant increase in mTOR-pS2448
phosphorylation compared with WT mice (Fig. 1a). Inter-
estingly, the increase in mTOR-pS2448 phosphorylation
was reversed in CTEP-treated homozygous zQ175 mice to
values indistinguishable from WT. To further confirm
that the changes in mTOR-S2448 phosphorylation
reflected changes in mTOR signaling, we measured phos-
phorylation of the mTOR downstream ribosomal protein
S6 kinase (p70S6K1). mTOR has been shown to regulate
the protein translational machinery at synapses by modu-
lating p70S6K1 activity through the direct phosphoryl-
ation at T389 and this phosphorylation has been
considered to be a hallmark of mTOR activity [20, 23, 24].
Similar to mTOR-pS2448 phosphorylation, we detected
higher levels of p70S6K1-pT389 phosphorylation in
vehicle-treated homozygous zQ175 mice when compared
to WT mice and we found that CTEP normalized the level
of p70S6K1 phosphorylation in homozygous zQ175 when
compared to WT mice (Fig. 1b). Taken together, these re-
sults indicated that chronic antagonism of mGIuR5 with a
selective NAM can correct the aberrant activation of
mTOR pathway to trigger ULK1 activation and initiate
autophagy.

PI3K/Akt pathway plays a role in altered mTOR signaling
of zQ175 mice

mTOR has been considered to be a key regulator of
growth and autophagy and is activated downstream of
PI3K. Specifically, phosphorylation phosphatidylinositol-
3,4,5-trisphosphate by PI3K recruits and activates both
PDK1 and Akt via direct phosphorylation that has been
shown to mediate the activation of mTOR signaling
[22, 25, 26]. Interestingly, activation of group I
mGluRs has also been found to activate PI3K/Akt/mTOR
signaling pathway in mouse hippocampus [27, 28]. There-
fore, we assessed whether mGIuR5 regulate mTOR and
ULKI1 signaling via the PIBK/PDK1/Akt signaling cascade.
We detected a significant increase in the levels of
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Fig. 1 CTEP normalizes enhanced mTOR activity in zQ175 mice. a Representative western blots and mean + SEM of mTOR-pS2448 and (b)
p70S6K-pT389 in brain lysates from homozygous zQ175 and wildtype (WT) mice after chronic treatment with either vehicle or CTEP (2 mg/kg).
Values are expressed as a fraction of the vehicle-treated WT. mTOR-pS2448 was normalized to total mTOR expression and p70S6K-pT389 was
normalized to vinculin expression (n = 5-6 for each group). * P < 0.05 significantly different from vehicle-treated WT mice

PDK1-pS241 and Akt-pS473 in vehicle-treated homozygous
zQ175 mice when compared to WT mice (Fig. 2a and b).
Chronic inhibition of mGIuR5 using CTEP abrogated
the extent of PDK1-pS241 and Akt-pS473 activation in
homozygous zQ175 mice such that the phosphorylation
of these enzymes was indistinguishable from that of
WT mice (Fig. 2a and b). Taken together, these results
indicate that alterations in mGluR5-medaited PI3K/

PDK1/Akt signaling can influence mTOR activity to
modulate autophagy in zQ175 mice.

Activation of CREB/cFos pathway following mGIuR5
inhibition in zQ175 mice

CREB is a constitutive transcription factor that modu-
lates the expression of various inducible transcription
factors including c-Fos [29, 30]. BDNF is a neurotrophic
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Fig. 2 CTEP reverses abnormal PI3K/Akt signaling in zQ175 mice. a Representative western blots and mean + SEM of phosphoinositide-dependent
kinase-1 (PDK) PDK1-pS241 and (b) Akt-pS473 in brain lysates from homozygous zQ175 and wildtype (WT) mice after chronic treatment with
either vehicle or CTEP (2 mg/kg). Values are expressed as a fraction of the vehicle-treated WT. PDK1-pS241 was normalized to total PDK1
expression and Akt-pS473 was normalized to total Akt expression (n=5-6 for each group). * P<0.05 significantly different from vehicle-
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factor that can support neuronal survival and differentiation
and its expression is tightly regulated by cFos [31, 32]. Not-
ably, mutant Htt aggregates sequesters CREB-binding
protein (CBP), an important activator of CREB, to de-
crease the expression of CREB target genes [33, 34].
We previously reported that chronic mGluR5 inhibition
in zQ175 partially reversed neuronal apoptosis and in-
creased the number of surviving NeuN-positive striatal
neurons in zQ175 mice [10]. Therefore, we tested
whether CTEP-mediated activation of autophagy and
reduction in mHTT aggregates was associated with en-
hanced CREB-dependent transcription of BDNF that
could be associated with the rescue of neuronal loss in
zQ175 mice in a CREB- and cFos-dependent manner.
We found that CTEP treatment of zQ175 mice resulted
in a significant increase in CREB-pS133 and cFos pro-
tein expression when compared to vehicle treated WT
and homozygous zQ175 mice as well as CTEP-treated
WT mice (Fig. 3a and b). We observed that BDNF ex-
pression was significantly reduced in vehicle-treated
zQ175 mice when compared to either vehicle or CTEP
treated WT mice and that CTEP treatment increased
BDNEF expression levels in homozygous zQ175 mice to
WT levels (Fig. 3c). Thus, CTEP treatment was able to
enhance BDNF synthesis in zQ175 mice and suggests
that mGuR5 antagonism-mediated increase in mHTT
autophagy might facilitate CREB/cFos/BDNF signaling
to promote neuronal survival in HD mice.
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Discussion
We have demonstrated in a series of studies that the
genetic and pharmacological silencing of mGIuR5 repre-
sents a successful approach to slow HD progression and
reverse HD pathology [9, 10]. Specifically, the mGluR5
NAM CTEP displays an intrinsic capacity of slowing dis-
ease pathology via autophagic clearance of mHTT aggre-
gates and promoting survival of striatal neurons without
the need to introduce potentially antigenic gene silen-
cing agents [10, 35, 36]. Given the key role of mTOR in
regulating autophagy, our findings from this study dem-
onstrate an obligatory role of PI3K/Akt/mTOR pathway
in modulating ULK1-dependent autophagy in zQ175
mice [37, 38]. Specifically, we show that PDK1/Akt/
mTOR signaling is enhanced in zQ175 mice and this
likely contributes to inhibition of ULKI activity resulting
in the reduced autophagic clearance of mHTT that we
previously reported in zQ175 mice [10]. Chronic inhib-
ition with CTEP rectified this altered PDK1/Akt/mTOR
signaling and can now be associated with ULK1 activa-
tion and autophagy initiation. Moreover, we provide evi-
dence that the reduction in the mHTT load following
mGluR5 blockade is associated with an enhanced CREB/
cFos-mediated expression of BDNF. This increase in
BDNF expression is likely to contribute to the reduction
in apoptotic loss of striatal neurons in zQ175 mice [10].
Autophagy plays a key role of in neuronal health by
clearing cellular cargos and protein aggregates and
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Fig. 3 CTEP facilitates CREB-mediated expression of BDNF in zQ175 mice. a Representative western blots and mean + SEM of CREB-pS133 (b) cFos
and (c) BDNF in brain lysates from homozygous zQ175 and wildtype (WT) mice after chronic treatment with either vehicle or CTEP (2 mg/kg).
Values are expressed as a fraction of the vehicle-treated WT. CREB-pS133 was normalized to total CREB, cFos was normalized to vinculin
expression and BDNF was normalized to actin expression (n = 5-6 for each group). Representatives for each panel were obtained from the same
blot. P < 0.05 * significantly different from vehicle-treated zQ175 mice and * P < 0.05 significantly different from vehicle-treated WT mice
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defects in autophagy have been increasingly implicated
in proteinopathies such as HD, Alzheimer’s and Parkin-
son’s disease [39-42]. This study extends our previous
work using the mGIluR5 NAM by identifying novel
mGluR5-regulated signaling cascades that are required
for ULK1 activation and autophagy initiation in zQ175
HD mice. We have previously reported that pharmaco-
logical inhibition of mGluR5 improved motor and cogni-
tive deficits in the zQ175 mouse model of HD due
activation of both ZBTB16- and ULK1-dependent mech-
anisms of autophagy [10]. The activation of the catalytic
activity of ULK1 is due to a reduction in the inhibitory
phosphorylation at S757 [15]. Interestingly mTOR, a key
regulator of autophagy, is known to phosphorylate
ULK1 at S757 [37, 43, 44]. Here we provide direct ex-
perimental evidence that mGluR5 inhibition modulates
PI3K/Akt/mTOR signaling resulting in ULK1 activation
and the initiation of autophagy. Canonical mTOR signal-
ing is initiated following receptor-dependent activation of
PI3K to phosphorylate PDK1 at S241 [26]. Active PDK1
directly activates Akt via phosphorylation that leads to the
phosphorylation of mTOR at S2448 site [20, 26]. Thus,
mTOR-pS2448 is considered a reliable indicator of the ac-
tivation state of the PI3K pathway and mTOR complex
[19-22]. Here, we show that CTEP can normalize the
levels of PDK1-pS241, Akt-pS473 and mTOR-pS2448 in
zQ175 mice. We also detected a reduction of phosphoryl-
ation of P70S6K1 at pT389, a kinase responsible for many
of the consequences of mTOR downstream signaling and
is considered a hallmark of mTOR activity [20, 23, 24]. It
is worth noting that the activation of the PI3K/Akt/mTOR
signaling cascade has been previously reported following
agonist-dependent stimulation of mGIuR5 and was re-
quired for mGluR5-dependent long term depression in
mouse hippocampus [28]. Also, mHTT protein can bind
and regulate different aspects of mGIuR5 signaling
[45, 46]. Thus, it is possible that in advanced HD
stages mHTT enhances mGIuR5 signaling via PI3K/
Akt/mTOR pathway leading to autophagy inhibition
and accumulation of mHTT aggregates that exacer-
bates HD pathology.

mGluR5 initiates a variety of signaling pathways via the
canonical Goagq-coupled mechanism and concomitantly
regulates gene expression at both the translational and
transcriptional level to support neuronal survival, differen-
tiation and synaptic plasticity [7, 47]. Our focus in this re-
port is CREB, since its activity was found to be modulated
by both mGIuR5 and huntingtin protein [34, 47]. Upon
activation by phosphorylation, p-CREB binds to the cAMP
response element (CRE) site within the gene and triggers
target gene transcription including cFos [29, 30, 48-50].
cFos has been found to regulate BDNF expression in vivo
that promotes the survival of and differentiation of neu-
rons [51]. Moreover, BDNF itself can induce cFos
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transcription in a feedforward cascade [52—55]. Interest-
ingly, mHTT aggregates can sequester CBP and suppress
CREB-mediated genes expression [33, 34]. In fact, sup-
pression of CREB targeted genes is associated with early
memory impairment memory in (Q7/Q111) HD mouse
model [56]. Here, we show that the previously-reported
attenuation in apoptosis and rescue of NeuN-positive stri-
atal neurons in CTEP-treated zQ175 mice [10] is accom-
panied by enhanced CREB phosphorylation and,
expression of cFos and BDNF. It is worth noting that we
did not detect a significant change in CREB phosphoryl-
ation of cFos expression in CTEP-treated control mice in-
dicating a pivotal role of mHTT in regulating CREB/cFos
pathway in HD mice. Thus, it is likely that the autophagic
clearance of mHTT facilitates CREB-dependent gene ex-
pression and amplify BDNF synthesis that can support
neuronal survival and reduce apoptosis. Further experi-
ments are required to detect whether the origin of synthe-
sized BDNF is neuronal or glial and to confirm that the
autophagic clearance of mHTT is key in regulating BDNF
expression by pharmacologically blocking autophagy and
measuring BDNF levels in our HD mice.

As summarized in Fig. 4, we show that mGIuR5 antag-
onism represents an effective approach to potentially
halt HD progression by reversing mTOR-mediated in-
hibition of autophagy to reduce mHTT aggregates, and
facilitate CREB-mediated expression of BDNF. Our data
support the hypothesis that the mGluR5-dependent acti-
vation of mTOR pathway in advanced stages of HD is
not favorable due to its inhibitory influence on ULK1
and autophagy leading to toxic accumulation of mHTT.
We also provide evidence that the reduction of mHTT
burden enhances CREB-mediated gene expression to
support neuronal survival. We suggest that pharmaco-
logically targeting mGIuR5 via a well-tolerated selective
NAM will be effective in slowing two mechanisms of
neurodegeneration in HD, accumulation of neurotoxic
aggregates and apoptotic neuronal loss. This report pro-
vides a better understanding of the pathophysiological
signals in neurodegeneration and mechanism(s) that can
be targeted by mGIluR5 NAM and further supports their
repurposing for treating neurodegenerative diseases.

Materials and methods

Reagents

CTEP was purchased from Axon Medchem. Horseradish
peroxidase (HRP)-conjugated anti-rabbit IgG secondary
antibody was from Bio-Rad (1662408EDU). Rabbit
anti-actin (CL2810AP) was from Cedarlane (Burlington,
Ontario). Mouse anti-BDNF (205067), rabbit anti-cFos
(190289), anti-vinculin (129002) and anti-CREB
(32515) antibodies were from Abcam (Cambridge,
Massachusetts). Rabbit anti-phospho CREB-S133(06—
519) and mouse anti-phospho P70 S6K-T389 (07—
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Fig. 4 Schematic representation for how mGIuR5 antagonism modulates mTOR and CREB signaling in zQ175 mice. The pharmacological
inhibition of MGIuR5 with CTEP in zQ175 mice abolishes the enhanced signaling of mammalian target of rapamycin (mTOR) by reducing the
phosphorylation of phosphoinositide-dependent kinase-1 (PDK1), Akt and mTOR. Reduced mTOR signaling was confirmed by a reduction in the
phosphorylation of downstream p705S6K and was associated with decreased inhibitory phosphorylation of ULK1 at S757 leading to activation of
autophagy. Activation of autophagy and reduction in mHTT load can facilitate the binding of phosphorylated cAMP response element-binding
protein (CREB) activity to cAMP response element (CRE) in the nucleus. Activation of CREB-mediated gene expression of cFos and brain-derived
neurotrophic factor (BDNF) synthesis can contribute to neuronal survival and reduced apoptosis in zQ175 mice
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018-I) antibodies were from Sigma-Aldrich (St. Louis,
Missouri). Rabbit Anti-phospho PDK1-5241(3438),
anti-phospho  Akt-S437(4060), anti-phospho mTOR-
$2448 (109268), anti-PDK1 (3062), anti-mTOR (2972)
and mouse anti-Akt (9272) from Cell Signaling Tech-
nology (Danvers, Massachusetts). Reagents used for
western blotting were purchased from (Bio-Rad La-
boratories, Hercules, California) and all other bio-
chemical reagents were from Sigma-Aldrich (St
Louis, Missouri).

Animals

All animal experimental protocols were approved by the
University of Ottawa Institutional Animal Care Commit-
tee and were in accordance with the Canadian Council
of Animal Care guidelines. Animals were individually
housed under a constant 12 h light/dark cycle and given
food and water ad libitum. Heterozygous zQ175 HD
mice were obtained courtesy of CHDI from Jackson la-
boratories, stock # 370476, and bred to establish litter-
mate controlled male wild-type (WT), and homozygous
zQ175 (zQ175) knock-in mice. zQ175 knock-in mice
carry ~ 188 CAG repeat expansion. Groups of 12 male
wild-type and zQ175 mice were aged to 12 months of
age and 5-6 mice from each group were treated every

48 h with either vehicle (DMSO in chocolate pudding)
or CTEP (2 mg/kg, dissolved in 10% DMSO mixed with
chocolate pudding) for 12 weeks. This drug dose was
calculated weekly based on weight and was shown to re-
verse motor and cognitive impairments in Huntington’s
and Alzheimer’s mice [10, 57]. At the end of the
12-week treatment, mice were sacrificed by exsanguin-
ation and brains were collected and randomized for bio-
chemical determinations.

Immunoblotting

Brain hemispheres was lysed in 1.5 ml ice-cold lysis buf-
fer (50 mM Tris, pH 8.0, 150 mM NaCl, and 1% Triton
X-100) containing protease inhibitors (1 mM AEBSF,
10 pug/ml leupeptin, and 2.5 pg/ml aprotinin) and phos-
phatase inhibitors (10 mM NaF and 500 uM NazVO,)
and centrifuged at 15000 rpm at 4°C for 15 min. The
supernatant was collected and total protein levels were
quantified using Bradford Protein Assay (Bio-Rad). Ho-
mogenates were diluted in a mix of lysis buffer and
B-mercaptoethanol containing 3x loading buffer and
boiled for 10 min at 95°C. Aliquots containing 35 pug
total proteins were resolved by electrophoresis on either
7.5% or 12% SDS-PAGE and transferred onto nitrocellu-
lose membranes. Blots were blocked in Tris-buffered
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saline containing 0.05% of Tween 20 (TBST) and 5%
non-fat dry milk for 2h at room temperature and then
incubated overnight at 4°C with primary antibodies di-
luted 1:1000 in TBST containing 1% non-fat dry milk.
Immunodetection was performed by incubating with
secondary antibodies (anti-rabbit/mouse) diluted 1:5000
in TBST containing 1% of non-fat dry milk for 1h.
Membranes were washed in TBST and then bands were
detected and quantified using BioRad chemilumines-
cence system.

Statistical analysis

Means + SEM are shown for each of independent exper-
iments are shown in the various figure legends. Graph-
Pad Prism software was used to analyze data for
statistical significance. Statistical significance was deter-
mined by a series of 2 (strain) x2 (drug treatment)
ANOVAs followed by Fisher’s LSD comparisons for the
significant main effects or interactions.
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