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Abstract

It is well established that estrogens affect neuroplasticity in a number of brain regions. In particular, estrogens
modulate and mediate spine and synapse formation as well as neurogenesis in the hippocampal formation. In this
review, we discuss current research exploring the effects of estrogens on dendritic spine plasticity and neurogenesis
with a focus on the modulating factors of sex, age, and pregnancy. Hormone levels, including those of estrogens,
fluctuate widely across the lifespan from early life to puberty, through adulthood and into old age, as well as with
pregnancy and parturition. Dendritic spine formation and modulation are altered both by rapid (likely non-genomic)
and classical (genomic) actions of estrogens and have been suggested to play a role in the effects of estrogens on
learning and memory. Neurogenesis in the hippocampus is influenced by age, the estrous cycle, pregnancy, and parity
in female rodents. Furthermore, sex differences exist in hippocampal cellular and molecular responses to estrogens and
are briefly discussed throughout. Understanding how structural plasticity in the hippocampus is affected by estrogens
and how these effects can influence function and be influenced by other factors, such as experience and sex, is critical

and can inform future treatments in conditions involving the hippocampus.
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Introduction

Numerous investigations in animals and humans have
found sex differences in brain and behaviour [1]. While
the underlying impetus of these differences is complex
and multi-faceted, differences in sex steroid hormones,
particularly estrogens, appear to be of clinical and ex-
perimental importance [2]. The manifestation, occur-
rence, and/or severity of brain disorders such as
Alzheimer’s disease (AD), autism spectrum disorders,
depression, and schizophrenia show differences between
the sexes [3—7]. Furthermore, many of these same disor-
ders show sex differences in severity of hippocampus-
dependent cognitive symptoms, with greater severity in
females with AD [6] and depression [8-11], but greater
severity in males with schizophrenia [7]. Cognitive dis-
turbances are likely influenced by disruption to synaptic
plasticity in the hippocampus and other regions. These
differences are influenced, in part, by estrogens in
women, but less is known on whether estrogens may
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impact these disorders in men [12-14]. In middle-aged
and aged women, treatment with exogenous
17B-estradiol — the most bioactive, abundant, and widely
expressed of the circulating estrogens in most mammals
[15] — may reduce the risk of AD [16], lessen the sever-
ity of symptoms of depression [17] or schizophrenia
[18], and improve cognition in postmenopausal women
[19, 20]. Understanding how estrogens can influence the
brain and behaviour is crucial to the development of
sex-targeted treatments for brain diseases.

The hippocampus is a brain structure with profound
structural and functional plasticity evident across the
lifespan in humans and rodents. The integrity of the
hippocampus is implicated in learning and memory,
anxiety, and stress regulation (e.g. [21, 22]). Further-
more, the hippocampus is implicated in disease states
that result in cognitive dysfunction and synaptic func-
tion that exhibit sex differences (e.g. autism [5, 23]),
schizophrenia [24], depression [25-27], suggesting
studying the influence of hormones on hippocampus
may inform development of targeted and sex-specific
treatments and therapies [5, 28—30].

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13041-019-0442-7&domain=pdf
http://orcid.org/0000-0003-2874-9972
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:liisa.galea@ubc.ca

Sheppard et al. Molecular Brain (2019) 12:22

Within the hippocampus, changes in dendritic spine
number, length, type, and shape may affect neurotrans-
mission and, subsequently, behaviour through modula-
tion of synapses in predominantly glutamatergic
neurons. Neurogenesis — the process of proliferation,
migration, differentiation, and survival to maturity of
novel neurons — allows for new neurons to be integrated
into hippocampal networks and modify hippocampal
function [31] (Fig. 1c). Both dendritic spine changes
[32-34] and neurogenesis [31, 35] exhibit sex differ-
ences, respond to estrogens, and allow the hippocampus
to maintain plasticity throughout adulthood. Under-
standing how sex and/or estrogens can affect structural
plasticity of the hippocampus is crucial to understanding
the functional outcomes of these modifications and to
potential future treatments for disorders with hippocam-
pal dysfunction (such as AD, depression, and schizo-
phrenia). Beyond the differences between the sexes,
circulating levels of estrogens in females vary by age and
reproductive status [36], during pregnancy and partur-
ition [37], and long after reproductive experience [38].
As a result, effects of exogenous estrogens (e.g. from
hormone therapies) may also be modulated by these
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factors but are not always taken into account in the
literature.

Estrogens and estrogen receptors: A short primer
Estrogens can act on estrogen receptors (ERs) within
the region to elicit changes in structure and function.
ERa, ERB, and the G protein-coupled estrogen recep-
tor 1 (GPER1) are found in multiple areas of the
brain, including the hippocampus, and are expressed
in varying densities in both sexes [15, 39-41]. All
three receptors are found in the dorsal and ventral
horns of the hippocampus and within the CA1l, CA2,
CA3, and dentate gyrus, and are located in the nu-
cleus and at extranuclear sites such as the dendrites
[39, 40]. It should be noted that estrogens can be se-
creted from the ovaries in females and from adipose
tissue in both sexes [42], whereas androgens are se-
creted from testes in males and from adipose tissue
and adrenal cortex in both sexes [43]. However, it is
also important to note that estrogens can be synthe-
sized de novo from cholesterol in both sexes in the
brain or be converted from testosterone via aroma-
tase [42].

Fig. 1 Hippocampal regions, strata, and neurogenesis. a Diagram of the major divisions of the hippocampus. Red box shows region depicted in
B. Yellow box shows region depicted in C. b Image of Golgi-Cox stained hippocampal CA1 neurons from OVX female mouse, captured using 10x
objective. Stratum oriens ~40-60% the length of basal dendrite. Stratum radiatum ~30-50% the length of the apical dendrite. Lacunosum-
moleculare ~80-100% the length of the apical dendrite. ¢ Diagram depicting the stages of adult neurogenesis in the dentate gyrus. DG, dentate
gyrus; SO, stratum oriens; SR, stratum radiatum; LM, (stratum) lacunosum-moleculare
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The majority of neuroendocrine research has explored
the effects of 17p-estradiol because it is the most bio-
active of the endogenous estrogens in pre-menopausal
women [44]. To the best of our knowledge, contribu-
tions of estrone and estriol to the formation and modu-
lation of dendritic spines have not been investigated,
though these estrogens may be neuroprotective in cer-
tain disease and neurological states (e.g. [45—49]). While
estrone and estriol are less bioactive than estradiol, their
effects on dendritic spines require future investigation,
especially with regards to pregnancy (when circulating
estriol levels increase greatly as a result of placental pro-
duction [50]) and post-menopause (when 17[-estradiol
levels decline more so than estrone levels leading to es-
trone becoming the most abundant of the estrogens
[51]), periods in which hippocampal dendritic spine
numbers are increased [52, 53] and decreased (typically
investigated via ovariectomy) [32, 54—56], respectively. It
should further be mentioned that this review does not
cover the effects of phytoestrogens (weak estrogens
found in plants) or endocrine disruptors such as
bisphenol-A on dendritic spine density or neurogenesis;
however, there is emerging evidence that phytoestrogens
may affect these types of hippocampal plasticity [57-63].

In this review, we will discuss how estrogens can
affect structural plasticity of the hippocampus, den-
dritic spine morphology and neurogenesis, with the me-
diating and modulating factors of sex, age, parity, and
pregnancy in females.

Estrogens and dendritic spines

Dendritic spines are small, membranous protrusions
from the dendrites of neurons. These structures express
many different receptors on their surface and serve as
the primary recipients of excitatory synaptic input in the
mammalian central nervous system as 90% of excitatory
synapses occur on dendritic spines [64, 65]. The plasti-
city of dendritic spines has been suggested to play a role
in motivation, memory, and learning [32, 66]; particu-
larly, the growth of novel spines and morphological
changes of pre-existing spines can mediate long-term
memory formation [67]. Regional differences exist in
dendritic spine density (i.e. the number of spines per
unit length of dendrite), from highly spiny regions such
as the hippocampus and cortex to spine sparse regions
such as the hypothalamus [32]. Within the hippocam-
pus, spine changes in response to effectors (activity,
drugs, surgery, compounds, etc.) can vary dependent on
region of the hippocampus (e.g. dentate gyrus, CA3,
CA1). For instance, orchidectomy in male rats increases
dendritic arborization (the degree of branching of the
dendrites) in CA3 pyramidal neurons with no effect on
the CA1 dendritic arbor [68]. These subregional differ-
ences can also be sex specific. For example, an acute
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stressor in male rats increased apical CAl dendritic
spine density but decreased it in proestrous females [69].
Thus, it is important to keep in mind that there are
likely to be regional and sex differences in response to
factors such as sex hormones.

Dendritic spines fall into subtypes based predomin-
antly on shape, from stubby, mushroom-shaped mature
spines to long, thin, immature spines lacking any sort of
synaptic terminal enlargement [70, 71]. Although per-
haps too simplistic, it has been suggested that thin
spines are the “learning” spines while mushroom spines
are the “memory” spines [72, 73]. In this model, thin,
learning spines are amenable to experience-induced
modifications that lead to the formation of new memor-
ies. These experience-induced modifications drive the
maturation of thin spines into the more stable mushroom
and stubby spines that hold synapses. Unfortunately, many
studies investigate the density of dendritic spines but fail
to report on spine shape (e.g. [74—78]). There is some de-
bate on the functional significance of these two measures,
that is, whether spine number is as important to behav-
iour as the maturation of spines. It is also hotly contested
and debated what the best method of visualization and
categorization of spines should entail [72, 73].

It has been known for decades that changes in circu-
lating estrogens alter dendritic spine density in various
brain regions in female rodents [52, 79-83], including
the hippocampus [54, 55] (Table 1). Across the 4-5 day
estrous cycle of the rat, apical CA1 dendritic spine dens-
ity fluctuates by approximately 30%, with the highest
densities coinciding with phases of high circulating es-
trogens [32, 55]. Ovariectomy (OVX) decreases the
density of apical CA1 dendritic spines [54]. This can be
reversed by treatment with exogenous estradiol benzoate
(EB) [84]. The effect of estradiol, both EB and
17B-estradiol (which metabolizes more rapidly than EB
[85]), to increase dendritic spines in apical dendrites of
CA1 pyramidal neurons was observed within 24 hours,
peaked at 2-3 days, and then gradually declined over the
next 7 days [85]. Progesterone treatment, given subse-
quent to estradiol, served to rapidly increase spine dens-
ity between 2-6 hours following treatment in OVX rats
[85]. Dendritic spine density fell rapidly to baseline levels
thereafter [85]. These findings indicate that ovarian hor-
mones can modulate dendritic spine density. Intri-
guingly, there are reported differences in hippocampal
volume across the menstrual cycle in women, with men-
ses phase associated with lower volume than the preovu-
latory surge [86-88]; but see [89] an effect that is
echoed across the estrous cycle in mice [90]. It is tempt-
ing to speculate that changes in spines may contribute to
these alterations in volume but more studies need to be
conducted. Of interest, functional activation patterns are
also altered across the estrous cycle in rodents [91], and
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Table 1 Summary of the effects of estrogens on hippocampal dendritic spine density

Reference Model Results

Woolley et al, Intact female rats CA1 dendritic spine density fluctuates by approx. 30% across estrous cycle;

1990 highest densities when circulating estrogens are highest [50]

Gould et al., Intact and OVX female rats OVX decreases CA1 dendritic spine density [49]

1990

Woolley & OVX female rats 2 subcutaneous (s.c.) injections of EB (given 24h apart) reverse CA1 dendritic spine density

McEwen, 1992 decreases from OVX within 48h following second injection [51]

Woolley & OVX female rats S.c. EB or 17B-estradiol increases CA1 pyramidal neuron apical dendritic spine density within 24h,

McEwen, 1993 peaked at 2-3d, declines over 7d; s.c. progesterone following 17(3-estradiol further increased spine
density for 2-6h but then levels fell quickly to baseline [52]

Leranth Intact and GDX male rats GDX reduces CA1 spine synapse density; s.c. testosterone proprionate increases CA1 spine

et al, 2003 synapse density in intact males after 2d of treatment; s.c. dihydrotestosterone but not 17(3-
estradiol increased CAT1 spine synapse density in GDX males after 2d of treatment [55]

MacLusky Intact male rats Increases in CA1 dendritic spine density driven by s.c. testosterone are not via aromatization of

et al, 2004 testosterone to estrogens [56]

MacLusky OVX female rats S.c. 17B-estradiol increases CA1 spine synapse density within 30min and 4.5h; s.c. 17a-estradiol

et al, 2005 increases CA1 spine synapse density within 30min [63]

Tsurugizawa Ex vivo hippocampal 2h bath in 17B-estradiol or ERa agonist decreased CA3 dendritic excrescence thorns [95]

et al, 2005 slices from male rats

Kinsley Intact, pregnant, lactating, Pregnant and lactating rats had greater CA1 dendritic spine density than nulliparous intact rats;

et al, 2006 and OVX female rats nulliparous proestrus intact rats had greater CA1 dendritic spine density than nulliparous diestrus
or estrus intact rats; OVX rats given hormonal treatment to mimic pregnancy (173-estradiol and
progesterone via Silastic implant) had greater CA1 dendritic spine density than OVX controls
[135]

Murakami Ex vivo hippocampal Increased CA1 stratum oriens or lacunosum-moleculare dendritic spine density following 2h bath

et al, 2006 slices from male rats in 17B3-estradiol or ERa agonist [64]

Wallace Intact and OVX female 7wks post-surgery, OVX rats had decreased CA1, but not CA3, dendritic spines compared to

et al, 2006 rats intact rats [136]

Mukai et al., 2007

Phan et al, 2011

Gonzélez-Burgos
etal, 2012

Phan et al, 2012

Veldzquez-
Zamora
etal, 2012

Gabor
et al, 2015

Phan
etal, 2015

Jacome
etal, 2016

Tuscher
etal, 2016

Mendell
etal, 2017

Ex vivo hippocampal
slices from male rats

OVX female mice

Intact male rats

OVX female mice

OVX female rats

OVX female mice

Ex vivo hippocampal slices
from female mice

GDX male rats

OVX female mice

Intact and OVX female rats,
intact and GDX male rats

Increased CA1 stratum radiatum dendritic spine density following 2h bath in 17B-estradiol
or ERa agonist [65]

S.c. ERa agonist increased CA1 spine density within 40min; s.c. ERB agonist decreased spine
density and increased spine length within 40min [38]

Injection of tamoxifen or raloxifene (route not specified) increased CA1 dendritic spine density;
tamoxifen increased thin- and stubby-type spines whereas raloxifene increased thin-,
stubby-, and wide-type spines [93]

S.c. 17B-estradiol increased CA1 dendritic spine length within 40min [39]
Twice daily treatment (s.c.) with EB increased CA1 dendritic spine density at 3d, but not 10d [125]

S.c. GPERT agonist increased CA1 dendritic spine density within 40min [41]

17(3-estradiol or ERa agonist increased CA1 dendritic spine density within 30min of bath
application [40]

Acute s.c. injection of 17(3-estradiol or T increased CA1, but not DG, dendritic spine density
30min or 2h following treatment [59]

Intrahippocampal 17B3-estradiol increased CA1 basal and apical dendritic spine density within
30min or 2h of treatment; intracerebroventricular 173-estradiol increased CA1 basal and apical
dendritic spine density within 2h via ERK and mTOR pathways [42]

Proestrus intact females had greater CA1 apical dendritic spine densities than metestrus intact or
OVX females; proestrus intact females had greater CA3 apical dendritic spine densities than OVX
females; GDX males had increased CA3 dendritic branching than intact males; OVX had minimal
effects on dendritic branching [32]

OVX, ovariectomized; GDX, gonadectomized; EB, estradiol benzoate; ER, estrogen receptor; GPER1, G-protein-coupled estrogen receptor 1; s.c., subcutaneous

with menstrual cycle [88, 92, 93] and exogenous estradiol
[94] in women, suggesting that ovarian hormones modu-
late brain activity. Altered activation and volume changes

across the menstrual cycle in women could be caused by
the modulation of spine and synapse dynamics, dendritic
architecture, and/or neurogenesis in the hippocampus.
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In addition to the influence of estrogens in females,
dendritic spines in the CAl region also fluctuate in
males with hormones. Interestingly, long-term changes
in dendritic spine density in this region is driven by tes-
tosterone [95], but not by aromatization of testosterone
to estradiol [96]. Similarly, androgens, but not estrogens,
also upregulate neurogenesis in the dentate gyrus of
adult males [97, 98], as reviewed in a latter section (Es-
trogens and neurogenesis). Gonadectomized male rats
have reduced CA1 dendritic spine density when com-
pared with intact males, which is recovered by testoster-
one propionate or dihydrotestosterone treatment, but
not 17p-estradiol, for 2 days [95, 99]. Testosterone or di-
hydrotestosterone rapidly (within 2h) increased in CA1l
pyramidal neuron dendritic spine density in ex vivo hip-
pocampal slices from adult male rats [100]. Similarly, in
ex vivo hippocampal slices from adult male rats, a 2h
bath in 17B-estradiol (1nM) increased dendritic spine
density in the strata oriens, radiatum, and
lacunosum-moleculare of the CA1 [101, 102]. In male
rats, both testosterone and 17B-estradiol in vivo also
rapidly increased dendritic spine density in the CA1 re-
gion, but not in the dentate gyrus, 30 minutes or 2 hours
following treatment [103]. Collectively, these findings
suggest that estrogens increase dendritic spines in males
only via rapid mechanisms of action, whereas androgens
increase spines both rapidly and long-term. Differences
between long-term and rapid effects of steroid hor-
mones, especially estrogens, have been of increasing
interest in recent years [33, 34, 104—106].

Acute, exogenous 17f3-estradiol or EB substantially
(i.e. as much as 50%) increases dendritic spine and
synapse density in both rapid and longer timeframes
in the CA1 region of the hippocampus of female ro-
dents [74-78, 84, 101-103, 107]. Woolley and McE-
wen [84] initially found that losses in dendritic spine
density following OVX in female rats can be over-
come through two 10pg subcutaneous injections of
estradiol benzoate (EB; given 24h apart) when evalu-
ated 48h following the second injection. More rapid
effects of estrogens have since been observed. Within
4.5h of 17B-estradiol treatment in OVX female rats
(45ug/kg; a dose previously found to enhance visual
and place memory [108]), spine synapse density in
the CA1 was significantly increased [107]. Within 30
minutes, either 17p-estradiol (45 or 60pg/kg) or
17a-estradiol (15 or 45ug/kg) increased spine synapse
density in the same model [107]. In OVX female
mice, a single subcutaneous injection of 17p-estradiol
(1.5, 2, or 3ug/kg) increased dendritic spine density in
CA1 stratum radiatum, but not lacunosum-moleculare
within 40 minutes [75] (see Fig. 1 for hippocampal
subregions). Treatment of 17f3-estradiol directly into
the hippocampus of female mice (30 minutes or 2h
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following 5pg/hemisphere) [78] or to ex vivo hippo-
campal slices from female mice (50nM for 20-30 mi-
nutes, equivalent to the intrahippocampal dose that
facilitated social recognition, object recognition, and
object placement in a separate set of mice in the
same study [6.81pg/hemisphere]) [76] rapidly in-
creased CAl dendritic spine density. It is important
to note here that the contribution of these novel
spines to behaviour is unknown. Experiments utilizing
in vivo estrogen administration almost exclusively
(one exception is [109]) used behaviourally naive ani-
mals. Whether these spines are utilized in behaviour
or are modulated by behaviour remains, as of yet, to
be determined. While estrogens affect a number of
behaviours [105, 110, 111], the next section will focus
on their effects on hippocampus-dependent learning
and memory.

Estrogens in the hippocampus: Learning and memory

While a causal link between the physiological (e.g. in-
crease in dendritic spine density) and behavioural (e.g.
facilitation of short-term social recognition memory) has
yet to be proven, many of these effects occur within
similar timeframes. Estrogens rapidly increase synapse
density both in vivo [107] and in vitro [112, 113], suggest-
ing that pre-synaptic input (i.e. synaptic transmission to
estrogen-treated neurons) may also be involved in the
17p-estradiol mediated changes (impairments or enhance-
ments) in learning and memory that have been
observed within the same rapid timeframe (e.g. [75,
76, 108, 114-122]). Learning and memory (see [123]
for disambiguation of these terms) are not a singular
process but are comprised of several steps including
encoding, storage, and retrieval of information [72].
In brief, typically, learning is considered to be the ac-
quisition or encoding of information to memory,
whereas memory could be considered the storage and
retrieval of information [123]. Memory can be divided
into many different subtypes (e.g. episodic and se-
mantic memory, declarative and non-declarative
memory) and there are many reviews written on the
subject (e.g. [124, 125]). One way we find it useful to
categorize memory is working versus reference mem-
ory. Reference memory is considered long-term mem-
ory for events or stimuli that stay stable over time
[126], whereas working memory can be defined as
trial-unique information to guide prospective action
[127, 128]. Reference memory relies more on the dor-
sal hippocampus [129, 130] while working memory
relies more on the ventral hippocampus (and pre-
frontal cortex) [129-132]. Different tasks that rely on
the integrity of the hippocampus can influence refer-
ence and working memory to different degrees and,
not surprisingly, estrogens can have different
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influences on these different types of learning and
memory. We illustrate a number of tasks mentioned
in this review that are used to assess different forms
of learning and memory in Fig. 2. It is important to
note that there are different versions of the tasks
shown in Fig. 2 and, thus, the descriptions are not
exhaustive. A thorough discussion of different forms
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of memory and how the hippocampus may be in-
volved is beyond the scope of this review, but we dir-
ect the readers to excellent reviews on this subject
[133-136].

Crucially, 17p-estradiol given during consolidation/
storage can improve memory of a reference memory
task of object recognition or object placement memory

~

Training

Test/Probe

A) Object Recognition

2D

B) Social Recognition

2D

C) Object Placement

I

D) Conditioned Place

Rewarded ‘

Preference

I

E) Social Transmission
of Food Preferences
(Social Learning)

ol

F) Win-Shift Radial
Arm Maze

G)Working/Reference
Memory Radial Arm
Maze

H) Morris Water Maze

Fig. 2 Overview of behavioural tasks affected by estrogens and mentioned in this review. a Object recognition, b) social recognition, and c)
object placement tasks take advantage of rodents’ innate preference for novelty. In each of task, a test rodent is presented with stimuli (typically
two) to explore during training. Upon test, one stimulus is replaced with a novel stimulus (object/social recognition) or moved to a novel
location. d In conditioned place preference, an animal is rewarded in one of two distinguishable contexts. A probe trial then explores the amount
of time spent in the two contexts. e In the social transmission of food preferences, a “demonstrator” animal consumes a novel flavoured diet.
They are then paired with an “observer” for an interaction period in which the observer will smell the novel flavoured diet on the demonstrator’s
breath. When given a choice between the flavoured diet smelled on the demonstrator’s breath and another novel diet (both diets are novel to
the observer), an animal with intact social learning will prefer the demonstrator's diet. f In the win-shift version of the radial arm maze, rodents
are placed in the maze and allowed to enter only a subset of the arms in order to receive rewards. Upon test phases, all arms are open, but
rodents are only rewarded at the termini of formerly un-baited arms. Entries into previously baited arms are reference memory errors, whereas re-
entry into arms entered during the test phase are working memory errors. Similarly, g) in the working/reference memory radial arm maze task,
rodents are repeatedly rewarded in the same arms. Entries into never-baited arms are reference memory errors, whereas re-entries are working
memory errors. h In the Morris water maze, an animal learns to swim to a hidden platform to escape. Probe trials then evaluate the amount of
time the animal spends swimming in the quadrant previously containing the platform
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(tasks that can involve the dorsal hippocampus) 24-48 h
after 17fB-estradiol exposure [115-117, 119, 122]. Other
studies examining performance in the spatial working
reference/memory version or working memory win-shift
version of the radial arm maze (hippocampus-dependent
tasks) show facilitated acquisition at lower doses of EB
or impaired acquisition at higher doses of EB [118, 137].
Performance in other spatial memory tasks show a similar
dose response in performance with 17B-estradiol in both
humans [138] and rodents [139-141]. In addition, sys-
temic or intrahippocampal administration of 17p-estradiol
15 minutes prior to training in an object, social, or place
recognition task facilitated performance when tested 40
minutes later in OVX female mice [74—76]. It is clear that
17B-estradiol can facilitate or impair various aspects of
working and reference memory dependent on dose,
course of treatment, when during encoding, consolidation,
and/or retrieval 17B-estradiol is given, and the type of task
(e.g. what brain areas are recruited during the task). Task
performance may be influenced by 17f-estradiol’s effects
on synaptic plasticity, including influence on dendritic
spines, the putative structural and integral compartments
of learning/memory within the synapse.

Estrogens and “two-step wiring plasticity”

The combination of 17B-estradiol increasing spines and
enhancing memory suggested the idea of “two-step wir-
ing plasticity” (also known as “sample and hold” theory
[142]; see [66] for a thorough explanation). Briefly, in
Step 1, acute application of 17B-estradiol to cultured
cortical neurons from embryonic day 18 rats (mixed sex
[personal communications]) led to a rapid, transient in-
crease in the density of dendritic spines in an extracellu-
lar signal-regulated protein kinase (ERK)-dependent
manner, along with the presence of silent synapses (i.e.
synapses where the postsynaptic membrane contains few
alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic
acid (AMPA)-type glutamate receptors) [112]. Following
this, in Step 2, when N-methyl-D-aspartate (NMDA) re-
ceptors were activated, the increases in dendritic spine
density and silent synapse number persisted up to 24
hours [112]. NMDA receptor activation was necessary
for dendritic spine increases to persist. While this effect
was investigated in cultured embryonic cortical neurons,
rapid “two-step wiring plasticity” may be a mechanism
by which estrogens can exert their enhancing effects on
learning in other brain regions in adults (e.g. [114]).
That is, estrogens may affect learning by priming neu-
rons to form lasting connections by first creating silent
synapses and increasing dendritic spine density (Step 1)
— likely through actin cytoskeleton dynamics [66] and de
novo protein synthesis [106, 143-145] — followed by
stimulation (Step 2), leading these neurons to undergo
long-term potentiation (LTP) [146, 147]. In this way,
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novel synapses are formed selectivel by exposure to es-
trogens. Only when silent synapses are present and
when the neuron is activated (receives stimulation) do
those synapses that get utilized in the neuron’s activity
develop into their fully functioning forms (Fig. 3). How-
ever, other potential explanations exist for the mecha-
nisms behind the effects of estrogens on learning,
including those that may or may not involve changes to
dendritic spine density (e.g. glutamate receptor shuttling
and/or stabilization [148]). Through what mechanisms
estrogens affect learning and memory, and whether
novel dendritic spines and/or LTP are involved, requires
further investigation.

Estrogens do not always improve memory or LTP
As noted above, estrogens do not always enhance learn-
ing and memory. OVX female mice given 17f-estradiol
via drinking water for 5 weeks improved object recogni-
tion memory but impaired spatial reference memory at
the middle physiological dose [149]. Similarly, chronic
treatment with high doses of EB impaired (whereas low
doses facilitated) spatial working memory in radial arm
maze [118] and conditioned place-preference [150] in
OVX female rats. Further, acute administration of high
doses of 17B-estradiol and progesterone can also impair
performance in the standard reference memory version
of Morris water maze [151]. There is agreement in the
human literature as well, with high endogenous levels of
17pB-estradiol associated with poorer performance on
spatial tasks [138] and cognitive function (assessed using
the Montreal Cognitive Assessment scale [152]) and high
exogenous 17(3-estradiol impairing recognition memory
[94]. 1t is important to acknowledge that estradiol leads to
curvilinear influence on hippocampal-dependent perform-
ance, with low and high levels impairing but a medium
dose improving performance on a variety of tasks.
Estradiol also can have dramatically different effects on
LTP as well, dependent on dose and region. For example,
proestrus was associated with increased hippocampal LTP
in the Schaffer collateral-stratum radiatum (CA1) pathway
in adult female rats [153]. A recent study shows that in ex
vivo hippocampal slices from adult female mice,
17B-estradiol (15 minutes) reduced CA1 miniature excita-
tory postsynaptic current frequency and firing in response
to AMPA [76]. However, when EB is given in longer time-
lines (2 in vivo injections, 24 hours apart), in ex vivo hip-
pocampal slices from OVX female rats, excitatory synaptic
transmission in the CAl was potentiated through in-
creases in presynaptic vesicular glutamate release [154].
These findings collectively suggest that 17p-estradiol can
transiently decrease excitation in the CA1 but increase ex-
citation over longer timeframes. Differences in timing
(rapid [15 min] vs longer-term [48 h]), route of adminis-
tration (subcutaneous injection, implant, intercranial
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limited to the ERK, PI3K, JNK, and/or mTOR pathways. Cross-talk between these pathways is common. These have downstream effects on a
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novel spines or “silent” synapses are created, which can become mature synapses following neuronal activity. If unused, the novel spines do not
mature and are instead re-internalized. Other intracellular mechanisms, such as epigenetic or post-translational protein modifications and
mediation of neurotransmitters and/or receptors, are likely also involved. The contributions of cell signalling pathways and other intracellular
mechanisms in the effects of estrogens on neurogenesis remain to be explored
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infusion, in vitro bath application, etc.), and experimental
model (species, sex, in vivo, ex vivo, in vitro, etc.) between
studies may underlie these, and other, between-study dif-
ferences. For instance, in the above electrophysiology ex-
periments, decreased firing resulted from application of
estradiol to ex vivo hippocampal slices concurrent to
measurement [76, 102], whereas in vivo treatment with
EB 2 days prior to sacrifice and measurement resulted in
an increase in synaptic transmission [154]. Here, differ-
ences in timing and/or model may underlie the opposing
effects. Similarly, the rapid effects of estrogens involve
intracellular signalling which may or may not lead to gen-
omic products [33], whereas longer-term actions of estro-
gens, such as those in studies using chronic hormone
treatments, may involve both genomic actions of estrogens
(classical and non-classical) and ongoing, non-genomic,
rapid effects. It is important to consider these factors as
they may make comparing the results of different studies
difficult.

There are important considerations when observing the
effects of estrogens on LTP and LTD. Finding an appropri-
ate tetanus can be difficult, as hippocampal excitability
and seizure threshold increase with high 17f3-estradiol.
For example, the hippocampus is more prone to seizure
during proestrus (high circulating estrogens [153, 155]) or

following chronic high-dose 17p-estradiol replacement
(dorsal, but not ventral hippocampal seizures [156]). Fur-
thermore, the hippocampus can be hyperexcitable follow-
ing systemic administration of EB [157] and there are
dose-dependent seizure risk associations found in women
with epilepsy [158]. Additionally, there has been much
discussion about the lack of statistical power in many
neuroscience studies [159]. Contradictory findings in
similar experiments could be driven by inadequate
sample sizes. Researchers are urged to consider statis-
tical power when planning future experiments, espe-
cially when sex or hormonal differences are involved,
for example, often estrous cycle analyses are under-
powered due to subdividing an already small sample
size [1, 2]. However, it is equally important is to con-
sider all the variables in the experiment (see [160]),
given that tetanus, region of the hippocampus, age,
and experience matter for LTP outcomes. As such, all
aspects must be considered and the LTP and estro-
gens story must not be generalized when multiple
areas or stimulation paradigms are used. Careful con-
trol of experimental parameters (e.g. consistency and
control of experimental conditions, such as cue
choice in spatial tasks) is adequate to maintain statis-
tical power in neuroscience research [160].
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As suggested earlier, the effects of estrogens on behav-
iour are often dose dependent and follow an inverted
U-shape dose response curve with intermediate doses
showing the greatest effects [161] (e.g. [76, 77, 94, 114,
149, 162]). Similar dose response curves have been ob-
served in the rapid effects of estrogens on dendritic
spines [74, 76]. As such, investigations into the effects of
estrogens on either behaviour or cellular morphology
should take dose response into consideration. Further-
more, longer term exposure to estrogens can similarly
have dose dependent responses on learning and mem-
ory, with low levels of 17B-estradiol enhancing spatial
working memory and high levels of estradiol impairing
spatial working and reference memory [150, 163, 164].
Studies have also shown that, whereas there is dose
dependent facilitation in contextual fear conditioning by
17B- and 17a-estradiol, estrone results in dose
dependent impairments in contextual fear conditioning
[165]. Thus, it is important to keep in mind that the
number of injections, dose, and type of estrogen(s) uti-
lized along with the type of memory task investigated
and when during acquisition or retrieval estrogens are
given, are critical to the learning outcomes.

Molecular mechanisms of spine changes
The contributions of the different subtypes of ERs to the
modulation of dendritic spines are not yet fully under-
stood. Increases in apical and basal pyramidal neuron
spine density were found within 2 hours of administra-
tion of ERa agonist PPT in the CA1l hippocampus of
male rats, while ERP agonist DPN did not produce such
effects [101]. Twenty-four hours following treatment
with mixed agonist-antagonist selective estrogen recep-
tor modulators, raloxifene and tamoxifen, male rats had
higher CA1 dendritic spine densities than vehicle treated
controls [166]. Tamoxifen increased thin- and
stubby-type spines over controls and mushroom-type
spines over both vehicle and raloxifene treated males,
whereas raloxifene treated males showed increases in
thin-, stubby-, and wide-type spines over control males
[166]. Within 40 minutes of systemic administration,
17B-estradiol [75], PPT [74], or GPER1 agonist G-1 [77]
in young adult OVX female mice increased dendritic spine
density in the stratum radiatum of the CA1 hippocampus,
with PPT also increasing dendritic spine density in the
lacunosum-moleculare [74]. In all, ERa and the GPER1
seem to drive the effects of estrogens in this region,
whereas other regions show more involvement from ERP
(e.g. the cortex [112] and the medial amygdala [114]).
While the link between changes in dendritic spines
and behaviour has not been causally demonstrated in
these studies, many of the same doses of these estrogens
and ER agonists that increased dendritic spine density
also facilitated short-term social recognition, social
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learning, object recognition, and/or object placement
memory in a separate group of OVX female mice in the
same timeline (40-45 minutes) as spine changes [33, 34,
74-77, 114, 167]. Conversely, systemic administration of
DPN impaired social recognition, facilitated object place-
ment, did not affect object recognition performance in
OVX female mice, and decreased dendritic spine density
and length in the lacunosum-moleculare [74]. In ex vivo
hippocampal slices, 17p-estradiol and PPT, but not DPN,
rapidly increased spine density in the stratum radiatum
and stratum oriens subregions of the CA1 [76]. Female
OVX mice administered a memory-improving dose of
17B-estradiol into the dorsal hippocampus had increased
basal and apical dendritic spine density in CA1 pyramidal
neurons 30 minutes and 2 hours following hormone treat-
ment [78]. Furthermore, a memory-improving dose of in-
tracerebroventricular 17fB-estradiol similarly increased
basal and apical dendritic spine density in CA1 pyramidal
neurons within 2 hours in an ERK- and mammalian target
of rapamycin (mTOR)-dependent fashion [78]. Further
study is required to conclusively determine the involve-
ment of estrogen-facilitated dendritic spine changes in
learning and memory.

The majority of studies have utilized behaviourally-naive
animals when examining spinogenesis. Interestingly, be-
havioural training (Morris Water Maze) interfered with
EB-facilitated increases in CA1 spine density [109]. Simi-
larly, more recent investigations have found a lack of CA1
dendritic spine density increases in animals treated with
17B-estradiol prior to acquisition in a rapid short-term so-
cial recognition memory testing (Sheppard & Choleris,
unpublished results). One potential explanation is that es-
tradiol treatment is increasing overall spine number, but,
upon activation or experience, only a subset of spines, per-
haps those involved in the learning, persists. Further in-
vestigation into whether novel spines produced following
17p-estradiol treatment remain, mature, or are utilized in
behaviour is required.

Intriguingly, in the CA3 region of the hippocampus,
there are distinct spines called thorny excrescences that
are the postsynaptic synapses from the mossy fiber inputs
from granule cells in the dentate gyrus [168]. In hippo-
campal slices from adult male rats, 1nM 17f-estradiol for
2h decreased CA3 excrescence thorns [169]. This decrease
was blocked by AMPAR, but not NMDAR, antagonism
and MAPK signalling inhibition [169]. ERa is believed to
drive this decrease as PPT, but not DPN produced a simi-
lar effect and ERa was present at CA3 mossy fibre termi-
nals [169]. Notably, CA3 dendritic spine density does not
vary across the estrous cycle [54, 55]. Ovariectomized fe-
male rats had decreased dendritic spine density in prox-
imal, medial, and distal regions of the apical dendrites of
pyramidal neurons in the CA1, whereas the CA3 had de-
creases in proximal and distal regions only, when
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compared with gonadally intact females in proestrus, a
high 17B-estradiol phase of the estrous cycle [68]. Females
in metestrus also had reduced spine density in the medial
region of the CA1 when compared to those in proestrus
[68]. Interestingly, orchidectomy in males significantly in-
creased dendritic branching in the CA3 whereas OVX in
females had minimal effects on the dendritic arbor [68].
Although the CAL1 is more often studied, there are clearly
sex differences in the effects of sex hormones on CA3
dendritic spines and arborization that require further
investigation.

Of particular interest in dendritic spine modulation is
the actin cytoskeleton [67] — a dynamic network of actin
protein filaments and associated actin binding proteins
— which is highly plastic and serves structural roles in
many cell types [67]. A number of studies have found
the actin cytoskeleton to be pivotal in the formation,
elimination, motility, stability, size, and shape of den-
dritic spines (e.g. [170-173]). Estrogens have been found
to affect the remodeling of the actin cytoskeleton (Fig. 3)
by rapidly stimulating the RhoA/ROCK (RhoA kinase)
pathway and activating Rac/p21-activated kinase (PAK)
signalling in neurons [174-177]. Furthermore, intrahip-
pocampal administration of latrunculin A, an inhibitor
of actin polymerization (the process by which globular
actin [G-actin] units combine to form filamentous actin
[F-actin]), blocked the rapid GPER1-mediated enhance-
ments of long-term object and spatial memory consolida-
tion in OVX mice [178]. As such, effects on the pathways
affecting the actin cytoskeleton dynamics within dendrites
are a potential mechanism by which estrogens facilitate
learning and memory on a rapid timescale.

In addition to remodeling of the actin cytoskeleton, pro-
tein synthesis has been implicated as a critical factor in
changes to dendritic spine morphology [143, 179], as well
as in learning and memory (e.g. [180—189]). The enlarge-
ment and stabilization of dendritic spines requires synthe-
sis of new proteins, and specific subsets of mRNAs are
actively transported to and stored in neuronal dendrites in
order for local protein synthesis to be synapse- or
spine-specific [143]. It has been known since the 1960s
that estrogens increase protein synthesis [190, 191].
Through their classical, genomic actions, estrogens, via
dimerized ERs binding to estrogen response elements on
target genes, regulate gene transcription and subsequent
protein synthesis [192]. Additionally, recent evidence
suggests that local protein synthesis (i.e. the synthesis
of novel proteins from mRNA stored in the dendrites,
independent of gene transcription) may underlie many
of the effects of estrogens on dendritic spines, both
long-term and rapidly [34, 193, 194].

In the hippocampus and in cultured hippocampal pyr-
amidal neurons, estradiol (either EB [195-197] or
17p-estradiol [174, 194, 198]) alters synaptic protein

Page 10 of 17

expression in vivo [195-197] and in vitro [174, 194,
197]. In the CA1 dorsal hippocampus of male rats, EB,
PPT, and DPN increased post-synaptic density protein
95 (PSD-95) — a post-synaptic scaffolding protein — and
AMPA-type glutamate receptor subunit GIuR1, with
DPN also increasing GluR2 and decreasing GluR3 [195].
Following 2 days of EB treatment in OVX female rats,
pre-synaptic markers synaptophysin (vesicular protein)
and syntaxin (pre-synaptic membrane-bound protein)
and post-synaptic marker spinophilin (spine homeostasis
protein) were significantly increased in the CA1l [196].
Interestingly, OVX female rats show an increase in spi-
nophilin 2 days following EB treatment, whereas levels
are decreased in gonadectomized males [198]. OVX fe-
male rats injected twice daily with 10ug of EB had in-
creased CA1 dendritic spine density at 3 days, but not
10 days, with increases of synaptophysin expression at
both timepoints [199]. Similarly, spinophilin was in-
creased in primary hippocampal cultures from embry-
onic day 18 rat embryos (sex not discussed) 24 hours
following EB treatment in a CaMKII-dependent manner
[197]. In the CA3 of OVX female rats, synaptophysin
was increased in response to high and middle doses of
estrone (10 and 1pg, respectively) and low dose
17B-estradiol (0.3pg) in conjunction with contextual fear
conditioning, without these increases in synaptophysin
correlating with cognition [165].

In a well-established in vitro model system of differen-
tiated NG108-15 neurons, Akama & McEwen [200]
found that PSD-95 protein, but not mRNA, levels were
increased rapidly following 17B-estradiol treatment in an
Akt-dependent manner suggesting that, in these cells,
17pB-estradiol was eliciting an increase in translation,
which was independent of DNA transcription. Enhanced
consolidation of longer-term object recognition memory
(tested 48h post-training) by intrahippocampal adminis-
tration of 17fB-estradiol may require local synthesis of
proteins as mTOR is rapidly activated by ERK and Akt
signalling cascades leading to phosphorylation of transla-
tion initiation proteins eukaryotic initiation factor
4E-binding protein (4E-BP1) and p70 ribosomal S6 kin-
ase (S6K) and is required for 17p-estradiol-facilitated
memory enhancements [117]. Similarly, mTOR is rapidly
activated (phosphorylated) in a calpain-dependent man-
ner 15 minutes following acute 17B-estradiol treatment
to ex vivo hippocampal slices [174]. Expression of
activity-regulated cytoskeleton-associated protein (Arc),
a protein known to be rapidly translated in response to
activity, was also up-regulated in these slices and these
effects may depend upon GPERI signalling and not ERa
or  [174]. Collectively, this evidence suggests that in-
creases in spine density and synapse formation in the
hippocampus may involve a 17B-estradiol-triggered pro-
tein synthesis, often in a dendrite-localized fashion (Fig.
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3). However, novel protein synthesis is not required for
the rapid 17p-estradiol-facilitated formation of new den-
dritic spines in cultured cortical neurons (from embry-
onic day 18 rats; mixed sex [personal communications])
[112]. It is unclear whether protein synthesis, mediated by
a mTOR pathway, is required for the maturation and
stabilization of novel spines in this region or whether ex-
periment model (in vitro vs. in vivo) accounts for differ-
ences in results [106, 113, 194]. Thus, further investigation
into whether protein synthesis is necessary for increases in
hippocampal dendritic spine number, either rapidly or
over longer timeframes, is warranted (Fig. 3).

Estrogens and neurogenesis

Estrogens not only modulate dendritic spines but also the
birth and survival of new neurons in the dentate gyrus
(for review, see [35]). There have been a few reviews spe-
cifically on this topic and the reader is directed to these
reviews for a more in-depth discussion [31, 35, 201].
Briefly, the process of neurogenesis involves a number of
steps leading to mature neurons (Fig. 1c). First, neural
progenitor cells that reside in the subgranular zone in the
dentate gyrus undergo asymmetrical proliferation. The
daughter cells then can differentiate into neurons, glia, or
progenitor cell types. If the cell fate is that of a neuronal
phenotype, the cell migrates a small distance into the
granule cell layer. Eventually, the new neuron will ex-
press mature neuronal proteins (~2-3 weeks in rats
and ~4 weeks in mice), establish synaptic connections
with CA3 neurons (and within the DG), and become
electrophysiologically active [202, 203]. Estrogens can
influence neurogenesis by acting on any of these pro-
cesses, resulting in either a net increase or decrease
in levels of new mature neurons.

It bears mentioning that there are some studies that
question the extent of adult neurogenesis in the hippo-
campus of humans. A recent paper by Sorrells and col-
leagues [204] cast doubt on the presence of adult
hippocampal neurogenesis in humans, although claims
of near-absent neurogenesis in humans [205, 206] and
non-human primates [207, 208] have been made before.
This was followed shortly thereafter by a paper by
Boldrini and colleagues [209] which reached the oppos-
ite conclusions. Using multiple methods — bromodeox-
yuridine [210], doublecortin [211], and **C dating [212]
— numerous studies show evidence for hippocampal
neurogenesis in humans, but, as in rodents, there are
precipitous declines in levels of neurogenesis with age
[213]. Flaws in the design of the Sorrells et al study have
been discussed [214], but, briefly, the actual numbers of
DCX+PSA-NCAM cells are not given and PSA-NCAM
is not exclusive to the dentate gyrus or to new neurons
[214]. The majority of studies observe low, but detect-
able, levels of neurogenesis in adult humans [214]. Other
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studies have suggested immunohistological methods
underestimate the numbers of new neurons in human
hippocampus [209, 214] and the data using "*C dating
suggests much greater levels of neurogenesis exist in the
human brain than was previously believed. As our review
focuses on experimental animal studies, we direct readers
to these papers for discussion on the existence and extent
of adult hippocampal neurogenesis [204, 209, 214-217]).
Research indicates that estrogens rapidly upregulate cell
proliferation within 30 minutes [218] a time-frame similar
to that observed for the rapid increase in dendritic spines.
However, with prolonged exposure to EB (48 h), a decrease
in cell proliferation is observed [219, 220]. This biphasic ef-
fect is most likely due to the homeostatic nature of neuro-
genesis [221, 222] but also to the ability of 17p-estradiol to
upregulate adrenal steroids, as adrenalectomy eliminates
the downregulation of cell proliferation in the dentate
gyrus 48 h later [223]. ERa and ERf agonists upregulate
cell proliferation in adult female rats [224]; however, the
ability of 17B-estradiol to increase cell proliferation is not
dependent on GPER1 or NMDAR activation [224-226].
The upregulation of neurogenesis with ovarian hormones
is also seen across the estrous cycle, with female rats show-
ing the highest levels of cell proliferation during proestrus
[227, 228] (but see [229]). Estrogens do not appear to alter
cell fate/differentiation but do influence survival of new
neurons, although this latter effect depends upon the type
of estrogen, whether estrogens are administered through-
out the survival period, and/or whether animals perform a
cognitive task [230-232]. In short, 15 days of EB can de-
crease survival of new neurons independent of the influ-
ence on cell proliferation [232]. However, if 17f3-estradiol
is given right before administration of bromodeoxyuridine
— a thymidine analog used to identify proliferating cells —
an increase in survival of new neurons is seen in rats that
have also undergone water maze training [231]. In con-
trast, rats given estrone showed a decrease in survival of
new neurons [231]. These findings indicate that not all es-
trogens increase neurogenesis in the hippocampus. Intri-
guingly, spatial training and age influence how Premarin, a
hormone therapy comprised of 50% estrone sulphate and
0.1% estradiol sulphate, increases neurogenesis [230, 233].
Premarin increases survival of new neurons in radial-maze
trained rats but not in cage controls [230]. In middle-aged
nulliparous or primiparous rats (i.e. rats who have never
given birth to a litter and rats who have had one litter, re-
spectively), lower doses of Premarin decreased survival of
new neurons in rats that were also trained in the Morris
Water Maze [233]. Recent work also suggests that
long-term exposure to estradiol, but not DPN or PPT, in-
creases survival of new neurons in the hippocampus of fe-
male mice [234], suggesting either the involvement of
other ERs (e.g. GPER1) or ER-independent effects of estro-
gens to influence neurogenesis under chronic conditions.
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Much of the work in this area has been conducted in
young adult female rodents [218-220, 223-234], but
there are a few studies examining middle-age and older
females. Curiously, in middle-aged nulliparous females,
estrogens lose their ability to increase cell proliferation,
but estrone, 17a- and 17f-estradiol all increase cell pro-
liferation in multiparous middle-aged female rats [235].
More work is needed to determine how age and parity
affect estrogens’ abilities to modulate neurogenesis.

A few studies conducted in males so far suggest that es-
tradiol does not influence the survival of new neurons, but
that both testosterone and dihydrotestosterone increase
survival of new neurons [97, 100] via interactions with the
androgen receptor [236]. The ability of dihydrotestoster-
one to enhance hippocampal neurogenesis in males de-
pends on age, as the effect is seen in young, but not
middle-aged, males [98]. However, Ormerod and col-
leagues [220] showed that 5 days of exposure to estradiol
increased survival of new neurons in male meadow voles,
at a time when new neurons are extending their axons in
both cage control and voles trained in the Morris Water
Maze. This suggests that estradiol can have survival pro-
moting effects in males at specific time points during mat-
uration of new neurons, but more work needs to be done
in this area and/or explore species differences. One field
that has been neglected is the trajectory of spine forma-
tion on new neurons in the dentate gyrus and/or in the
CA3 region, the synaptic target of the new neurons. This
is a field ripe for investigation.

Conclusion

The plasticity of the hippocampus that allows for changes
and adaptability also makes the hippocampus susceptible
to disease and disorder [28]. The literature we review here
demonstrates that estrogens can modulate structural plas-
ticity within the hippocampus. A variety of factors, includ-
ing sex, age, dose, hormonal state, and reproductive
history, can influence the effects of estrogens on hippo-
campal plasticity. Understanding the complex interplay of
these factors and estrogens in healthy brains is essential to
determining how dysregulation occurs, progresses, and
manifests in disease states. A preponderance of research
has examined how estrogens affect structural plasticity in
female rodents. It is crucial that future studies investigate
both sexes, and do so appropriately [1, 2, 237], as many
brain disorders show marked sex differences [2]. Addition-
ally, more studies are needed that study estrogens’ effects
across age and experience, with the understanding that ex-
periences in one sex may be very different than the other
(i.e. motherhood, lactation). Only by understanding the
complex, multi-faceted nature of estrogens on hippocam-
pal plasticity can we hope to develop targeted therapies to
combat disorders affecting the hippocampus and improve
quality of life for those afflicted.
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