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Abstract

Hypomyelination in the central nerves system (CNS) is one of the most obviously pathological features in Niemann-
Pick Type C disease (NPC), which is a rare neurodegenerative disorder caused by mutations in the NPC intracellular
cholesterol transporter 1 or 2 (Npc1 or Npc2). Npc1 plays key roles in both neurons and oligodendrocytes during
myelination, however, the linkage between the disturbed cholesterol transport and inhibited myelination is
unrevealed. In this study, mass spectrometry (MS)-based differential quantitative proteomics was applied to
compare protein composition in the corpus callosum between wild type (WT) and NPC mice. In total, 3009 proteins
from both samples were identified, including myelin structural proteins, neuronal proteins, and astrocyte-specific
proteins. In line to hypomyelination, our data revealed downregulation of myelin structural and indispensable
proteins in Npc1 mutant mice. Notably, the reduced ceramide synthase 2 (Cers2), UDP glycosyltransferase 8 (Ugt8), and
glycolipid transfer protein (Gltp) indicate the altered sphingolipid metabolism in the disease and the involvement of
Gltp in myelination. The identification of most reported myelin structural proteins and proteins from other cell types
advocates the use of the corpus callosum to investigate proteins in different cell types that regulate myelination.
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Introduction

Mutations of either NPC intracellular cholesterol trans-
porter 1 or 2 (Npcl or Npc2) cause the Niemann-Pick
Type C disease (NPC), which is a rare recessive neuro-
logical disorder [1, 2]. The disease exhibits a massive
accumulation of cholesterol and other lipids in the late
endosome and lysosome (LE/LY) [3]. Neuron loss and
hypomyelination in the central nervous system (CNS)
are the most obvious pathological features in patients
and the mouse model of the disease [4-7]. The NPC
mouse (BALB/cNctr-Npclm1N/]), carrying a spontan-
eous mutation of npcl without functional Npcl protein,
is frequently used as the mouse model for NPC disease.
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Myelin disturbance has been reported in NPC mice in
the 1980s [8]. Takikita et al. have described hypomyeli-
nation in the brain of NPC mice and proposed that
disturbed myelination contributes to the axonal injury
[6]. The arrested oligodendrocyte maturation and de-
layed myelination in conditional npcI-knockout neurons
or oligodendrocytes conclude the essential role of npcl
in both neurons and oligodendrocytes during myelin-
ation [9]. Our previous study also confirms a delayed
and reduced myelination in the corpus callosum of NPC
mice with an unaltered number of oligodendrocytes, but
their maturation is inhibited [10].

A high level of cholesterol is essential for myelination,
as indicated by delayed myelination in oligodendrocytes
with a conditional mutation of squalene synthase (SQS)
[11]. Impaired cholesterol transport from the LE/LY pre-
sumably causes a cholesterol shortage in other cellular
compartments, such as distal axons in NPC disease [12],
however, lovastatin—a cholesterol synthesis inhibitor
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restores myelination in the cultivated NPC oligodendro-
cytes, proving that cholesterol accumulation in the LE/
LY rather than the shortage in distal axons causes hypo-
myelination in NPC disease [10]. Similarly, lipid accu-
mulation induces myelin disturbance has been reported
in many lysosomal storage diseases [13].

Besides lipids, myelin sheaths contain variously spe-
cific proteins. By proteomic analyses of the myelin-
enriched fraction from mice, 92 proteins have been
identified by Roth et al. and 344 proteins by Jahn et al.
[14, 15]. In the proteomes of the mouse and human, 259
commonly identified proteins from myelin fractions have
been confirmed [16]. Furthermore, a few myelination-re-
lated transcription factors are identified, such as
oligodendrocyte transcription factor 1 (Oligl), Olig2,
homeobox protein Nkx-2.2 (Nkx2.2), SRY-related HMG-
box 10 (Sox10), and myelin gene regulatory factor
(Myrf), which regulate the expression of major myelin
proteins [17-20]. Our previous study reported the
reduced expression of myelin basic protein (Mbp), pro-
teolipid protein (Plp) and myelin-oligodendrocyte glyco-
protein (Mog), and downregulation of Oligl and Olig2
in the corpus callosum, suggesting a hypomyelination in
NPC mice [10].

To further investigate hypomyelination in NPC dis-
ease, in this study the mass spectrometry (MS)-based
differential quantitative proteomics was used to compare
the protein composition in corpora callosa between WT
and NPC mice. The results showed that not only most
of the reported myelin proteins but also 21 significantly
differential expression proteins between NPC and WT
have been identified. Most of the downregulated proteins
are myelin proteins, including breast carcinoma-amplified
sequence 1 (Bcasl), ectonucleotide pyrophosphatase
(Enpp6), Mbp, and UDP glycosyltransferase 8 (Ugt8),
which are the indispensable myelin proteins. Notably, our
data revealed downregulation of 3 sphingolipid-related
proteins: Cers2, Ugt8, and Gltp, indicating an altered
sphingolipid metabolism in the disease and the involve-
ment of Gltp during myelination. Besides the reported
myelin proteins, we identified proteins from other cell
types that participant in myelination, e.g. from neurons,
astrocytes, and microglia. Therefore, our data suggest that
the corpus callosum can be used to investigate molecular
dynamics and signal cascades among different cell types
during myelination.

Materials and methods

Separation of the corpus callosum

Heterozygous Npcl mice (BALB/cNctr-Npclm1N/J)
were purchased from the Jackson Laboratories and used
to produce NPC and WT mice. All experiments were
approved by the local ethical committee and conducted
according to the guidelines for the Care and Use of
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Laboratory Animals. Mice were genotyped and sacrificed
at postnatal day (P) 12 for tissue preparation. At least
three animals from each genotype were used for prote-
omic analysis (Fig. 1a) and another 3 pairs for Western
blots. The isolated forebrains were transected and
corpora callosa were dissected from adjacent tissues
(Fig. 1b and c). Tissues were frozen immediately in
liquid nitrogen and stored at — 80 °C.

Sample preparation for mass spectrometric analysis
Tissues were frozen by liquid nitrogen and ground rigor-
ously by pre-chilled flame-polished glass rods. The
ground samples were homogenized in 150 pul of 8 M urea
and 50 ul of SDC buffer (1% SDC in 0.1M TEAB) and
sonicated on ice. Protein concentration was measured by
the BCA Protein Assay (Thermo Fisher, #23225). Sam-
ples (100 pg protein from each sample) were digested by
filter-aided sample preparation (FASP) [21]. Basically,
samples were placed in 10 k centrifugal filter units (Ami-
con Ultra-0.5 Centrifugal Filter Unit) and the buffer was
exchanged by 6 M urea, reduced by 20 mM dithiothreitol
(DTT) and alkylated by 40 mM iodoacetamide (IAA),
then digested by trypsin (Promega, the enzyme to pro-
tein ratio is 1:50) in 400 pl of 100 mM ammonium bicar-
bonate buffer at 37°C for 20h. The digested peptides
were collected in water, lyophilized and stored at — 20 °C
for mass spectrometric analysis.

NanoLC-MS/MS analysis and data analysis

The tryptic peptides were dissolved in 0.1% formic acid
(FA) and loaded into the nanoAcquity Ultra Perform-
ance liquid chromatography (UPLC) system (Waters,
USA). A C18 trapping column (Waters, 180 pm x 20
mm, 5um, 100A) and an analytical C18 column
(Thermo Fisher Scientific™ Acclaim PepMap™ RSLC,
75 um x 25 cm, 2 um, 100 A, USA) were used to separate
peptides. The UPLC was coupled with Q Exactive Hy-
brid Quadrupole-Orbitrap Mass Spectrometer (Thermo
Fisher Scientific™). The positive voltage was set to 1.8
kV; the scan range m/z was 375-1600 Th; the collision
energy of HCD was 27%; the MS2 acquisition was in the
data-dependent mode by top 10. The data were processed
by the Thermo Xcalibur 4.0.27.13 (Thermo Fisher
Scientific™). The database searching and label-free quantifi-
cation (LFQ) were performed by MaxQuant platform (Ver-
sion No. 1.6.2.3, http://www.coxdocs.org/doku.php?id=
maxquant:start). All the raw files were searched with
mouse proteome sequences from UniProt. The “unique
plus razor peptides” was chosen for protein quantification
[22]. The precursor mass tolerance was set to 20 ppm; the
fragment mass tolerance was 0.5 Da; dynamic modification
included oxidation (15.995Da), acetyl (42.011Da) and
fixed modification carbamidomethyl (57.021 Da).
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Fig. 1 Comparison of protein patterns in corpora callosa of wildtype and Npc1 mutant mice at P12. a: The schematic diagram of the workflow
for proteomic analysis from 3 biological replicants of wildtype (WT) and Npc1 mice (NPQ). b, c¢: Separated brain was cut according to the dashed
lines in the forebrain and the corpus callosum (CC) in the transaction was separated with the cortex (CTX) and the striatum (STR) from sections 2
to 4 in b. Scale bar: 1 cm in b. ¢ was adapted from the Allen Brain Atlas (http://atlas.brain-map.org/). d: The Venn diagram of identified proteins
from each sample. Valid proteins from each genotype were illustrated in green for WT samples and in red for NPC samples. The common
proteins from both WT and NPC were in yellow. e: The Scatter plots of Log2 LFQ values of identified proteins between samples and the Pearson

correlations were calculated (the values of R)

Data analysis and comparison with other proteomic data
Data was uploaded into Perseus software and the online
manuals were followed (Version No. 1.6.2.1, http://www.
coxdocs.org/doku.php?id=perseus:start). Basically, the pro-
teins labeled by only identified by site, reverse, and potential
contaminant were removed from the data and the proteins
were valid if they were identified from all samples in WT
or NPC group. Pearson’s correlation was calculated with
the default setting from the software. To obtain the signifi-
cantly expressed proteins, two-sample student’s t-test was
used, and SO of 1 and false discovery rate (FDR) of 0.05
were set.

To elucidate the function of the identified proteins, the
valid proteins were analyzed by the gene ontology cellular

compartment term enrichment (Go CC; GOTERM_CC_-
DIRECT) from DAVID online tool (https://david.ncifcrf.
gov/). The differentially expressed proteins were uploaded
to the Gene Ontology Consortium (http://geneontology.
org/) for the Go CC, biological processes (Go BP), and
Reactome pathway (Reactome) analysis, both the protein
count and FDR value of each term were obtained. The
background of all analyses is based on all proteins of Mus
musculus and the terms with FDR below 0.05 were listed.
Additionally, our data were compared with the published
data from John et al. [15] and from the supplement Table-2
(https://www.nature.com/articles/nn.4160#supplementary-
information) reported by Sharma et al. [23] to verify our re-
sults and assign the cell type specificity of identified proteins,
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respectively. All the histogram, Pie chart, and the Venn dia-
gram were produced by excel.

Western blot analysis

The ground samples (produced by the same procedure
as in MS) were homogenized in the RIPA buffer with the
complete protease inhibitor cocktail (Roche 4,693,159,001).
SDS-PAGE was performed in the 8-16% Criterion TGX
Precast Midi Protein Gels (Bio-rad, #567-1084) and pro-
teins were blotted to Midi Nitrocellulose membranes
(Bio-rad, #17001915) by the Trans-Blot Turbo Transfer
System (Bio-rad, #17001915). The antibodies against Mbp
(Biolegend, SMI-99, 1: 1000), Gltp (Santa Cruz, SC-
514289, 1:200), Enpp6 (Thermo Fisher, PA5-25140, 1:500),
Bcasl (Sigma-Aldrich, SAB2900809, 1:500), and GAPDH
(Abcam, ab8245, 1:10,000) were applied to the membrane.
IRDye-680/800 conjugated secondary antibodies (Rock-
land, #926-68,021, #610-131-121, 1:10,000) were used to
visualize the detected proteins by the Odyssey Infrared
Imaging System. Semi-quantitative analysis was performed
by Image Studio Lite 4.0. Data were reported as mean *
SEM from three independent experiments. Student’s t-test
was calculated in MS Excel software. A difference was
considered as significant when the p-value was less than
0.05 (p < 0.05).

Results

Similar proteomic patterns in the corpora callosa

between WT and NPC mice

To unravel factors that are involved in hypomyelination
in NPC disease, three replicates of corpora callosa from
either WT or NPC mice at P12 were separated for
NanoLC-MS/MS analysis (Fig. 1a-c). We identified 3281,
3320 and 3246 proteins from the three WT samples, and
3300, 3241 and 3288 proteins from NPC samples, re-
spectively. In the WT samples, 3114 proteins were iden-
tified in all replicants and in the NPC 3141 proteins
(green and pink color in the Venn diagram; Fig. 1d).
Furthermore, 3009 proteins were confirmed in both
groups (yellow in Fig. 1d), while 105 proteins only in
WT and 132 only in NPC. Noted that most of the pro-
teins identified only in one group were the low abundant
proteins (the lowest 30%) and the exclusion of these
proteins was due to the limited resolution by the current
proteomic approaches. Therefore, the proteins detected
in both WT and NPC mice were used for analysis
(Additional file 1: Table S1).

To estimate the quality of our data, the Pearson cor-
relation was calculated. The coefficients between repli-
cants were above 0.97 in both WT and NPC groups,
demonstrating the technical reliability of our analyses
(Fig. 1e). Unexpectedly, the coefficients were only slightly
different between WT and NPC samples when com-
pared to them each other (Fig. le), suggesting similar

Page 4 of 11

proteomic patterns between them, although myelin-
ation was significantly disrupted in the corpus callo-
sum in NPC mice [10].

The identification of reported myelin proteins

To categorize the identified proteins, Go CC analysis
was performed and the top 20 terms with the lowest
EDR values were listed (Fig. 2a). Besides the regularly
cellular compartments, such as the extracellular exo-
some, cytoplasm, membrane, and mitochondrion, vari-
ous proteins were categorized into cell-type specific
compartments: a total of 171 proteins were classified
into the term of myelin sheaths (green in Fig. 2a); 209
proteins into the neuron projection, 229 proteins into
the synapse, and 172 proteins into the axon (red in
Fig. 2a). In addition, astrocyte-specific proteins [23]
including glial fibrillary acidic protein (Gfap), aquaporin-4
(Aqgp4), and cytosolic 10-formyltetrahydrofolate dehydro-
genase (Aldh1l1l) were also identified. The results demon-
strated the anatomical features of the corpus callosum,
where not only myelin sheaths and axons, but also cell
bodies of oligodendrocytes, astrocytes, and microglia were
located.

Jahn et al. have summarized a total of 344 proteins,
including 26 well-known myelin proteins and 318
myelin-associated proteins, from the myelin-enriched
fraction of the mouse CNS [15]. Similarly, most of these
proteins were identified in this study, including 21 mye-
lin proteins and 273 myelin-associated proteins in the
WT group and 18 myelin proteins and 265 myelin-asso-
ciated proteins in the NPC (Fig. 2b). Furthermore, the
relative abundance of the identified myelin proteins was
evaluated by comparing their LFQ intensities with the
sum of all valid proteins in each group. Because the pro-
teins of other cellular compartments and from other cell
types were included in our data, the amount of identified
myelin proteins consisted of only 47.40% (45.94% +
1.46%) in the WT group and 47.55% (47.3% + 0.25%) in
the NPC of the total identified proteins from the corpus
callosum (Fig. 2c). The amount of the most abundant
myelin proteins, such as Plpl (17%), Mbp (8%),
2',3"-cyclic-nucleotide 3’-phosphodiesterase (Cnp; 4%),
Mog (1%), myelin-associated glycoprotein (Mag; 1%),
NAD-dependent protein deacetylase sirtuin-2 (Sirt2;
1%), and Claudin-11 (Cldnll; 1%), is about 33% of the
total proteins in the myelin-enriched fraction as esti-
mated by Jahn et al. (Fig. 2c) [15]. The sum of these high
abundant myelin proteins composed only 1.46% for all
the identified proteins of the corpus callosum in WT
mice, while only 0.25% in the NPC mice (Fig. 2c). The
reduced amount of myelin proteins in the NPC group
when compared to WT, was consistent with hypomyeli-
nation in the NPC mice.
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Differentially expressed proteins in NPC mice

Although the protein profiles exhibited high similarities
between WT and NPC mice, the expressions of 21
proteins were significantly different (the 2 isoforms of
Mbp were combined in this study), in which 17 proteins
were downregulated (red in Fig. 3a) and 4 proteins up-
regulated in NPC mice (green in Fig. 3a). The Go CC
analysis indicated that the enrichment of myelin struc-
ture proteins, such as Plp1, Cnp, Sirt2, Mbp, Mag, Mog,
gelsolin (Gsn), and Cldnl1, were included in the term of
the myelin sheath, also some of them were categorized
into specific myelin structures, e.g., Sirt2, Mbp, and Mag
in the compact myelin, and Sirt2 and Mag in the
Schmidt-Lanterman incisure (Fig. 3b). The Go BP
analysis exhibited the enrichment of proteins in develop-
ment, myelination, and gliogenesis. The proteins of Plpl,
Bcasl, Sirt2, Mbp, Mag, Ugt8, Hexb, Cldnll, Cnp,
Cers2, and plexin-B3 (Plxnb3) were included in the term
of nervous system development, while Plp1, Bcasl, Sirt2,

Mbp, Mag, Ugt8, Hexb, and Cldn11 also in the axon en-
sheathment; and Cnp, Sirt2, Mag, Hexb in the
gliogenesis (Fig. 3b). Additionally, the proteins of Plpl,
Mbp, Cnp, Mog, Mag, Sirt2, Cldnll, Enpp6, Bcasl,
Rho-related GTP-binding protein RhoG (Rhog), and Gsn
have been reported in the myelin-enriched fraction [15].
Taken together, the twelve-downregulated proteins
(Plpl, Mbp, Cnp, Mog, Mag, Sirt2, Cldnll, Enpp6,
Bcasl, Rhog, Ugt8 and Gsn) and the upregulated protein
(Hexb) in the corpus callosum of NPC mice were in the
myelin structures or involved in the regulation of mye-
lination, demonstrating hypomyelination in the disease.
Besides the myelin-related proteins, the Reactome
pathway analysis indicated the enrichment of proteins in
the sphingolipid metabolism: the proteins of Gltp,
Ugt8, Hexb, Cers2 were in the sphingolipid metabol-
ism; Gltp, Ugt8, and Hexb in the glycosphingolipid
metabolism. The Protein of PBDC1 (Pbdcl), Plxnb3,
and chloride intracellular channel protein 4 (Clc4)



Yang et al. Molecular Brain (2019) 12:17

Page 6 of 11

5 Bcas1-
4
) Gitp.  Gsn-
S 3 Enpp6 %0% Sirt2. Rhog-
a Mbp < , Cers2-
Mog."PIRt
2 _lcidnit. Mg gy
o 2
o
-
1 .
vo
0

-3 -2 -1 0 1 2
Log2 LFQ difference NPC vs WT

C

WT NPC

Bcas E-h* m- - — : -
eeo (e S ER EES SR 52

Gltp

Vb D e—— -
p
e em—

GAPDH " s quesmms @i Sw—— S——

B -Log10 FDR
5

D

Fig. 3 Differentially expressed proteins between WT and NPC mice. a: Volcano plot of the Log2 LFQ differences versus -Log10 P-values of the
common proteins between WT and NPC. The downregulated proteins in NPC were on the left side and significant ones were labeled in red; the
upregulated proteins were on the right and significant ones were labeled in red. b: The Go CC, biological processes (Go BP) and Reactome
pathway (Reactome) enrichment of differentially expressed proteins, the names of protein in each term were listed on the bars, the red point
marked FDR value presented by its -Log10 values. ¢, d: Western blots (c) and quantification (d) of the differentially expressed proteins from
corpus callosum of mice. The value of each protein was normalized to the corresponding loading control and the values of WT were set to 1.
Three biological replicants were compared and GAPDH was used as the loading control. Student’s t-test was used. *** p < 0.001

Go CC terms: 0 10

myelin sheath

compact myelin

myelin sheath adaxonal region
myelin sheath abaxonal region
Schmidt-Lanterman incisure
paranode region of axon

Go BP terms:

axon ensheathment
ensheathment of neurons
myelination

gliogenesis

nervous system development

Reactome:
Glycosphingolipid metabolism

Sphingolipid metabolism

I Numberof protein 0 5 10
— FDR value Number of protein

1.4
T1.2 l
s

= 1.0 e e e

Q
508
Q

0 0.6
>

=
004 *x
(0]

X2 I

Gltp

o WT
= NPC

Kk

= .

Mbp

Bcas1 Enpp6

were also upregulated, but their functions were not
related to myelination. Besides Hexb protein, Ctsf and
CtsD are lysosome proteases that participate in intra-
cellular degradation; and Clqc (a subunit of comple-
ment Clq) was the significantly upregulated protein
in the corpus callosum of NPC mice.

To confirm the results of the proteomic data, we sepa-
rated the corpus callosum from both WT and NPC mice
at P12 and performed Western blot analyses. Our results
revealed that the amounts of Bcasl, Enpp6, and Gltp
were obviously reduced in the corpus callosum of NPC
mice, with only 51.7% of Bcasl, 41.2% of Enpp6, and
32.2% of Gltp in NPC samples when compared to WT at
P12 (Fig. 3¢, d). The Mbp protein was used as a positive
control, which was only 9.8% in NPC mice compared to
WT mice (Fig. 3c, d).

Discussion

Analyzing myelination in the corpus callosum

To investigate the disturbed signal pathways of myelin-
ation in NPC mice, the proteomic analysis of the corpus
callosa from P12 mice was performed in the present
study. The myelin-enriched fraction from the density
gradient centrifugation has been utilized in studies to ex-
plicate the protein composition of the myelin, but it con-
tains exclusively compacted myelin sheaths [15, 16] and
rarely oligodendrocyte cell bodies and ensheathed axons.
However, myelination is coordinated by interactions
between neurons and oligodendrocytes and supported
by astrocytes [24]. Since the corpus callosum contains
multiple cell types, protein changes in other cell types
besides oligodendrocytes can also be monitored in the
corpus callosum. The absence of 20% proteins identified
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from myelin-enriched fraction in this study reflexes the
limitation of the current proteomics in analyzing com-
plex samples (Fig. 2b). Even though, the results of Go
CC analysis and the identification of most proteins re-
ported by John et al. [15] prove the reliability of our data
(Fig. 2). Therefore, our results advocate that the corpus
callosum or similar structures can aid as an appropriate
system for elucidation of protein dynamics and signal
cascades in different cell types during myelination.

The corpus callosa from P12 mice were chosen in the
present study to avoid the existence of the high-abun-
dant proteins, which challenge proteomic analysis. Be-
cause myelination in the corpus callosum starts at
around P9 and completes at P40 [10, 25], the relative
abundance of top 7 myelin proteins, which constitute
about 33% of total protein in myelin-enriched fraction, is
only 1.46 and 0.25% of all identified proteins in the
corpus callosum from P12 WT and NPC mice, respect-
ively (Fig. 2c). The lower abundance of these proteins is
due to the complex cellular composition of the corpus
callosum compared to myelin-enriched fraction and also
the less enrichment of myelin proteins from P12 versus
adult mice. Moreover, the proteins that participate in
regulating myelination are easier to be captured in the
developmental stages from younger mice than older
ones.

Downregulated myelin structural and indispensable
proteins

Among the downregulated proteins, twelve were anno-
tated as myelin proteins, in which some are essential for
the axonal integrity and myelination. The deficiency of
Bcasl, Enpp6, Mbp, or Ugt8 disrupts myelination and
causes hypomyelination in mice [26-28]. While the
knockout of Plpl, Cnp, or Mag doesn’t inhibit myelin
formation but causes widespread axonal swelling and
degeneration [29-32]. The reduced transport of Sirt2
has been reported in the Plpl-knockout mouse [33] and
Sirt2-knockout exhibits axonal degeneration and loco-
motor disability in 13-month old mice [34]. Despite the
enrichment of Mog and Cldnll in the myelin-enriched
fraction, the knockout of these proteins doesn’t exhibit
clinical or histological abnormalities [35, 36]. The down-
regulation of essential proteins plausibly leads to disrupted
myelination or being the result of hypomyelination in
NPC disease, however, its connection to the disturbed
cholesterol transport is not axiomatic.

Although Oligl and Olig2 proteins are not identified
in the current results, their downregulation has been
found in the corpus callosum of NPC mice by our previ-
ous study [10]. Oligl and Olig2 are oligodendrocyte-spe-
cific transcription factors. Ablation of either protein
arrests oligodendrocyte in a progenitor stage and re-
duces the expressions of Mbp, Plpl, and Cnp, causing
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severe myelin deficits [37, 38]. Olig2 guides Smarcad/
Brgl to bind oligodendrocyte-specific enhancers and
increases the expression of myelin proteins [39]. A study
identifies several Olig2 binding regions of proteins
(Nkx2.2, Nkx6.2, and Sipl) that associated with oligo-
dendrocyte differentiation, and of proteins (Mog, Mag,
Mbp, Mobp, Mal, Cnp, Opalin/Tmeml0, Sirt2, and
Cldnl11) in myelination and ensheathment by the next-
generation sequencing analysis on immunoprecipitated
spinal cord DNA [40]. Therefore, at least some of the
decreased myelin proteins resulted from the downregu-
lation of Oligl and Olig2 in NPC mice.

However, not all identified myelin proteins are down-
regulated in this study. We found that only 7 out of the
18 myelin proteins from NPC mice exhibited more than
2-fold reduction when compared to WT mice and the
rest had very similar LFQ intensities to WT mice
(Fig. 4a). Compared to the proteomic data of different
cell types by Sharma et al. [23], the 7 downregulated
myelin proteins are exactly the oligodendrocyte-specific
proteins that highly expressed in oligodendrocytes but
much lower in other cell types (Fig. 4b). Most of the
unreduced myelin proteins are also massively expressed
in other cell types and plausibly not influenced in NPC
mice, therefore, the total amount of these proteins does
not present significant differences in the corpus callo-
sum of NPC mice (Fig. 4b).

Altered sphingolipid-related proteins

Because myelin-enriched lipid is highly required for
myelin formation, therefore, its reduction inevitably
disturbs myelination, although its shortage is not as de-
structive as accumulation, as summarized by the previ-
ous study from different diseases and animal models
[13]. In this study, three sphingolipid-related proteins
are downregulated in NPC mice: Cers2, a ceramide
synthase [41]; Ugt8, a key enzyme in synthesizing the
most abundant myelin lipid - galactosylceramide (Gal-
Cer); and Gltp, a transfer protein for various glycosphin-
golipids between membranes. From the cell type
proteomic data [23], Ugt8 and Gltp are exceedingly
expressed in oligodendrocytes, while Cers2 is also highly
expressed in microglia besides oligodendrocytes (Fig. 4c
and d). The defect of Cers2 significantly reduces the
compacted myelin and Mbp in the brain of 11-week old
mice [42]. Hypomyelinated white matter tracts with
unstable myelin sheaths have been reported in the Ugt8
deficient mice [43], however, the transcription and
expression of myelin proteins are unaltered [44]. The
expression of Ugt8 is positively controlled by Nkx2.2 but
negatively modulated by Olig2 [45]. Therefore, besides
Oligl and Olig2, other myelin regulatory signal path-
ways, e.g., Nkx2.2 pathway, are possibly disrupted in
NPC oligodendrocytes.
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The involvement of Gltp during myelination

Gltp is the only downregulated protein that has not been
reported whether it is related to myelination or any dis-
ease [46]. A decrease of glucosylceramide (GlcCer) level
inhibits Gltp expression in glucosylceramide synthase
(Ugcg) knockdown cells, while a drug-induced accumu-
lation of GlcCer in a fused endoplasmic reticulum-Golgi
complex increases Gltp expression at both mRNA and
protein levels [47]. Monohexosylceramides, including
GlcCer and GalCer, are reduced by 54.1% in the brain of
NPC mice which may result from reduced myelin in the
brain, despite massive accumulation in the liver and
spleen [48]. Furthermore, the expression of Gltp can
only be upregulated by ceramide, but not by other
sphingolipids (e.g., GlcCer, GM1, and sphingosine) [49].
We also observed increased Gltp expression in the cor-
pus callosum in WT mice during development (from P8
to adult mice, unpublished data), therefore, its upregula-
tion is conceivably induced by the elevated sphingolipid
levels during myelination. The reduction of Gltp in NPC
mice may result from the low sphingolipid-contained
pre-myelinated oligodendrocytes, which is possibly due
to inhibited Ugt8 and Cers2 expression. Moreover, the
transcription factor Spl (Spl) regulates the expression of

both Mbp and Gltp [49, 50]. Thus, it suggested a poten-
tial role of Gltp to participate lipids transport to con-
struct the specially formulated myelin sheaths during
myelination, in which its expression was upregulated
accompanying with the production of lipid synthase and
myelin structural proteins by myelination-related tran-
scription factors. Additionally, the manipulation of the
Gltp expression changes cellular lipidome, especially
when Gltp is upregulated, both the globotriaosylcera-
mide (Gb3) and GlcCer levels are increased [51] and its
overexpression modifies cell shape by interaction with
delta-catenin [52]. Therefore, Gltp possibly acts as a
sensor to monitor cellular lipid levels and modulates the
production of lipid and myelin structural proteins in
myelinating oligodendrocytes.

Upregulated lysosomal and inflammatory proteins

Four proteins are significantly upregulated in the corpus
callosum of NPC mice, while neither of them is highly
expressed in oligodendrocytes (Fig. 4d). Ctsd and Ctsf
are the lysosomal proteases [53, 54] and Hexb forms
lysosomal hexosaminidase with Hexa to hydrolyze GM2
[55]. Since lipids, including GM2, are accumulated in
the LE/LY and the activity of lysosomal proteases is
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inhibited in NPC disease, therefore, their upregulation indi-
cates a compensatory effect of the defected LE/LY functions.
Additionally, Ctsf is suggested to mediate MHC class II mat-
uration and peptide loading in macrophages [56], and iden-
tified in the macrophage-rich areas of the human
atherosclerotic lesions and can be secreted by cultured mac-
rophages [57]. Because Ctsf is highest expressed in microglia
(resident macrophages in the CNS) (Fig. 4d), its upregula-
tion reflects hyperactive microglia in the disease as re-
ported in NPC mice [58, 59]. The elevated Ctsd was
observed in the serum and brain of NPC mice [60, 61].
Furthermore, proteomic analysis by Sleat et al. reveals up-
regulation of Ctsf, Hexb and other lysosomal proteins in
the brain of NPC mice [62]. Clqc and the other 2 compo-
nents (Clga and Clgb) form the complement component
1q protein complex (C1q). Besides its function as the initi-
ating protein in the classical complement pathway, Clq
also mediates the synapse elimination in the CNS [63].
Furthermore, Clq protein level increases dramatically in
the normal aging mouse and human brain, suggesting a
linkage to aging-related cognitive decline [64] and the up-
regulation is also reported in Alzheimer disease [65]. Al-
though increased Clq proteins have been reported in
NPC mice [66], abolished Clga in NPC mice exhibited no
improvement, therefore the increased Clqc represents the
result of neuroinflammation but not the causes of neuro-
degeneration in NPC disease [67].

In summary, by the MS-based differential quantitative
proteomics, we revealed that the dysfunction of Npcl is
not only associated with a reduced expression of various
myelin structural and indispensable proteins (Bcasl,
Enpp6, Mbp, and Ugt8) but also the proteins (Cers2,
Ugt8, and Gltp) related to sphingolipid metabolism in
NPC mice. Furthermore, the involvement of Gltp during
myelination is proposed. Besides myelin sheaths, the
proteome of the corpus callosum contains proteins from
other cell types that contribute to myelination, therefore,
the use of the corpus callosum or similar structures is
suggested to elucidate protein dynamics from different
cell types during myelination.
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