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Abstract

A number of neurodegenerative diseases, including Alzheimer’s disease, Parkinson's disease, and amyotrophic lateral
sclerosis, share intra- and/or extracellular deposition of protein aggregates as a common core pathology. While the
species of accumulating proteins are distinct in each disease, an increasing body of evidence indicates that defects
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in the protein clearance system play a crucial role in the gradual accumulation of protein aggregates. Among protein
degradation systems, the endosome-autophagosome-lysosome pathway (EALP) is the main degradation machinery,
especially for large protein aggregates. Lysosomal dysfunction or defects in fusion with vesicles containing cargo are
commonly observed abnormalities in proteinopathic neurodegenerative diseases. In this review, we discuss the available
evidence for a mechanistic connection between components of the EALP-especially lysosomes-and neurodegenerative
diseases. We also focus on lysosomal pH regulation and its significance in maintaining flux through the EALP. Finally, we
suggest that raising cCAMP and free zinc levels in brain cells may be beneficial in normalizing lysosomal pH and EALP flux.

Introduction: Contribution of lysosomal
dysfunction to the pathogenesis of
neurodegenerative disorders
The survival and health of a eukaryotic cell depends on
maintenance of a homeostatic state of continuous gener-
ation and degradation of cellular macroconstituents,
such as membrane lipids, proteins, and organelles. If a
cellular degradation process becomes compromised,
abnormal proteins, lipids, and dysfunctional organelles
accumulate. Accumulation of certain waste proteins
can lead to the formation of toxic protein oligomers
and aggregates [1]. In addition, remnants of dysfunctional
organelles, such as mitochondria and peroxisomes, due to
the lysosomal dysfunction may contribute to an excessive
generation of reactive oxygen species (ROS) [2]. Taken to-
gether, these events lead to severe cellular dysfunction
and, ultimately, cell death.

Macromolecular degradation occurs in diverse cellular
compartments, including proteasomes, peroxisomes, and
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lysosomes. Lysosomes are specialized for the all-purpose,
high-capacity degradation of large proteins, protein
aggregates, and organelles [3]. Cargoes are delivered to
lysosomes via diverse routes that include autophagy, endo-
cytosis and phagocytosis, collectively referred to as the
endosome-autophagosome-lysosome pathway (EALP). By
definition, an endosome is a membrane-bound organelle. It
is a component of the endocytic membrane transport path-
way originating from the trans-Golgi membrane. Endo-
somes provide an environment for material to be sorted
before it reaches the degradative lysosome. Autophago-
some, also called initial autophagic vacuoles (AVi), is a
double-membrane bound vesicle, which doesn’t yet contain
lysosomal membrane proteins and enzymes. After fusion
with lysosome,s autophagosomes are called autolysosomes.
Finally, lysosome is the organelle containing various proteo-
lytic enzymes. It functions as the cellular digestive organ
[3-5]. As the site of degradation in the EALP, lysosomes
contain more than 60 hydrolases that act in concert to
degrade almost all cellular macroconstituents [6]. All of
these enzymes function optimally at the acidic pH (4.5-5.5)
of the lysosomal lumen [6]. Although the mode of activa-
tion of each enzyme may differ, autocatalytic conversion of
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a proform to an active form seems to be the main mechan-
ism for many lysosomal enzymes, such as cathepsins [7].

In humans and other mammals that have a relatively
long life span, the maintenance of adequate lysosomal
function is especially important for the health of post-
mitotic neurons in central nervous system (CNS) that
are destined to survive the entire lifetime of the organ-
ism. Therefore, lysosomal dysfunction tends to affect the
CNS to a greater extent than other tissues or organs in
humans. One example of such dysfunctions is a group of
disorders termed lysosomal storage disorders (LSDs),
which include neuronal ceroid lipofuscinosis (NCL, also
known as Batten’s disease), Niemann-Pick type C (NPC),
and Mucolipidosis type IV (MLIV). Although these dis-
eases are caused by defects in different genes, specifically
CLNI-CLN3, NPCI1, and MCOLNI1 (transient receptor
potential mucolipin channel 1, TRPML1), respectively,
all of these genetic defects converge on the common
consequence of lysosomal dysfunction [8].

Another example is a group of age-related neurode-
generative disorders that includes Alzheimer’s disease
(AD), Parkinson’s disease (PD), and amyotrophic lateral
sclerosis (ALS). In addition to these neurodegenerative
diseases, aging itself is accompanied by lysosomal dys-
function. It has been reported that lysosomal proteolytic
activity declines with aging; as a consequence, damaged
organelles and mutated toxic proteins accumulate over
time [9]. Lysosomal accumulation of lipofuscin, a non-de-
gradable pigmented polymeric substance, serves as an in-
dicator of lysosomal dysfunction. Lipofuscin accumulation
further inhibits lysosomal degradative activity [10], foster-
ing gradual accumulation of other age-related waste prod-
ucts in lysosomes. Because aging is the most definitive
common risk factor for neurodegenerative disorders such
as AD and PD, the age-dependent decline in lysosomal
function may lay the groundwork for the accumulation of
protein aggregates such as amyloid beta (A), tau, and
a-synuclein under the respective neurodegenerative con-
ditions [4]. As noted above, some of these protein aggre-
gates, in turn, may cause further lysosomal dysfunction,
creating a vicious cycle that leads to progressive increases
in protein aggregation and lysosomal dysfunction. Hence,
regardless of how it is triggered, be it by aging or specific
genetic defects, lysosomal dysfunction not only provides
fertile soil for initiating diverse neurodegenerative condi-
tions, it also contributes to disease progression.

Factors that govern overall lysosomal functions
The proper maintenance of lysosomal functions requires
that several parameters be held within a suitable range.
The first is having a sufficient quantity/total volume
of lysosomes to meet the demand at a particular mo-
ment. Depending on cell type, the number of lysosomes
varies between 50 and 1000 per cell [11]. The size of

Page 2 of 11

lysosomes is in the range of 0.2—0.8 um in diameter [12],
and their combined volume accounts for about 1-15%
of the total cell volume [13]. The demand for degradation
in a cell changes dynamically depending on a number of
factors, including the rate of protein synthesis, the rate of
endocytosis, the amount of organelle damage, and energy
requirements (e.g, under starvation conditions) among
others. To manage such continuously changing demands
for degradation, cells must be equipped with mechanisms
to rapidly adjust lysosomal quantity accordingly. At the
transcription level, the Microphthalmia family of bHLH-LZ
transcription factors (MiT/TFE) play important roles in
lysosomal biogenesis. Especially, transcription factor EB
(TEFEB), one of MiT/TFE family, and ZKSCANS3 (zinc fin-
ger with KRAB and SCAN domains 3) function as major
activator and inhibitor, respectively, of lysosomal biogenesis
[14, 15]. However, following a transcription-based increase,
for example through TFEB activation, how the quantity of
lysosomes returns to baseline levels is not clearly under-
stood. After the increase, some lysosomes lose their lyso-
somal membrane markers and/or luminal enzymes, and are
recycled to generate other membrane-bound organelles
[16]. In addition, some of the lysosomal membrane may be
incorporated into the plasma membrane, endoplasmic
reticulum (ER), or Golgi [17-19]. The biogenesis of lyso-
somes is also not fully elucidated. Late endosomes may lose
endosomal membrane markers, such as Rab7, and acquire
lysosomal enzymes and membrane proteins, such as
LAMP1 (lysosomal-associated membrane protein 1) and
LAMP2, and in the process transmorph into lysosomes
[20]. Lysosomes are also regenerated from autolysosomes
through a process termed autophagic lysosome reformation
(ALR) in which proto-lysosomes bud from autolysosomes
[21]. In this process, clathrin (and its adaptor proteins),
actin polymerization, and PI (4,5) P2 play key roles [22]. In
addition, inhibition of phosphoinositide 5-kinase (PIK-
FYVE), an enzyme critical for the synthesis of PI (3,5) P2,
results in the failure of lysosome biogenesis and the accu-
mulation of vacuoles [23, 24]. These reports indicate that
different phosphoinositol lipids are involved in many steps
of lysosomal regeneration.

The second parameter for maintenance of proper lyso-
somal function is adequate formation of cargoes and
their delivery to lysosomes—packaging, transport,
and fusion. There are two systems for delivering large
cargoes to lysosomes in a cell: macroautophagy (via
autophagosomes) and endocytosis (via endosomes). De-
fects in these processes are frequently observed in neurons
of neurodegenerative diseases. A reduction in autophago-
phore formation, the initial event in autophagy, results in
accumulation of waste proteins and organelles in the cyto-
sol without accumulation of autophagosomes as vacuoles.
For instance, a decrease in beclin-1 expression leads to ac-
cumulation of mutant huntingtin protein in Huntington’s
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disease (HD) and loss of laforin polyglucosan inclusions in
Lafora’s body disease via activation of mTOR (mamma-
lian/mechanistic target of rapamycin) signaling pathway
[25, 26]. Similarly, defects in endocytosis can result in the
accumulation of membrane proteins in the plasma
membrane, with little vacuole accumulation. For ex-
ample, neurodegenerative disease-related protein aggre-
gates, such as polyglutamine, huntingtin, ataxin-1, and
superoxide dismutase-1, block clathrin-mediated endo-
cytosis and intracellular trafficking in neurodegenerative
disease [27]. In contrast, defects in vesicle transport result
in the accumulation of vacuoles derived from endosomes
or autophagosomes. In neurons, especially at axon termi-
nals, endocytosed materials require retrograde transport
along microtubules in long axons to the cell body, where
mature lysosomes normally reside. Defects in this trans-
port process result in the accumulation of endosomes
somewhere along the axons [28]. In the case of macroau-
tophagy, a microtubule-based transport system involving
interactions with LC3 is also involved [29]. Deficits in this
process also contribute to neurodegenerative disease [26].
Finally, defects in fusion between cargo-containing autop-
hagosomes and lysosomes also result in the accumulation
of autophagosomes and/or endosomes. A reduction in
autolysosome formation can lead to the accumulation
of waste proteins and damaged organelles inside double-
membrane autophagosomes. Various drugs that alkalinize
the lysosomal lumen, for instance chloroquine, have been
reported to inhibit fusion of lysosomes and autophago-
somes [30]. Presenilin-1 (PSEN1) has recently been shown
to play a role in maintaining lysosomal acidity [31, 32].
Hence, it is likely that a deficiency in PSEN1 function re-
sults in lysosomal alkalinization and defective fusion.
Interestingly, it has been reported that lysosomal pH tends
to shift toward a more alkaline direction with aging alone
[33], suggesting that fusion of cargo-containing vesicles
with lysosome becomes compromised with age.

The third parameter is a sufficient quantity and
adequate quality of lysosomal enzymes. While the
detailed mechanisms responsible for regulating the quan-
tity of lysosomal enzymes have yet to be fully delineated,
the transcription factors TFEB and ZKSCAN3 again have
been found to play crucial roles as activator and inhibitor,
respectively [14, 15]. As master switches, these transcrip-
tion factors link changing cellular demands to appropriate
synthesis of lysosomal enzymes. After synthesis, most
lysosomal enzymes leave the trans-Golgi network (TGN)
after their modification with mannose-6-phosphate (M6P)
residues [34]. These M6P-modified enzymes can then be
transported to the endosomal/lysosomal system through
interactions with M6P receptors (MPRs). Alternatively,
some enzymes are recognized by lysosomal integral
membrane protein-2 (LIMP-2) and sortilin, and subse-
quently transported to lysosomes [35]. Any defect in
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these processes may cause a deficiency in lysosomal
enzymes. In addition to quantity, the quality of lyso-
somal enzymes is important; mutations in genes encod-
ing lysosomal enzymes result in enzyme deficiency and
reduced degradation of particular substrates, causing
their accumulation in lysosomes. For instance, Gaucher
disease (GD), a lysosomal storage disorder, come from
an inherited deficiency of lysosomal glucocerebrosidase
(GCase) arising from mutations in the gene glucosylcerami-
dase (GBA) [36, 37]. GCase deficiency caused by GBA mu-
tations interferes with the degradation of a-synuclein [38].
Patients with GD show parkinsonian symptoms, mean-
while, GBA mutations are more frequently observed in pa-
tients with PD. Thus, the adequate quality of the lysosomal
enzyme is also crucial for lysosomal function and is associ-
ated with the onset of neurodegenerative diseases.

Finally, the lysosomal lumen milieu must be adequately
controlled for enzymes to function optimally. One of the
most critical known variables is luminal pH. Because most
lysosomal enzymes function optimally at an acidic pH, the
lysosomal lumen is kept slightly acidic, mainly owing to the
action of vacuolar ATPase (V-ATPase), which moves pro-
tons (H") from the cytosol to the lysosomal lumen against a
concentration gradient using the energy of ATP hydrolysis
[39]. Abnormalities in the function of V-ATPase result in an
overall decrease in lysosomal degradation [40, 41]. Another
potential candidate that may affect lysosomal pH is the Na*/
H" exchanger (NHE). Although the presence of NHEs in
the endosomal membrane and their function in lysosomal
biogenesis have been demonstrated [42], their role in regu-
lating lysosomal pH is not yet clear. In addition to H*, lyso-
somal enzymes may require adequate levels of other ions,
such as calcium (Ca®"), iron (Fe**) and zinc (Zn**). Various
cation channels may take part in homeostasis of these ions
in the lysosomes including TRPML1-3 (also called mucoli-
pins), two-pore channels (TPCs) [43] and transporters, such
as Zn>" transporter 2 (ZnT2), ZnT4 and ATP13A2 (ATPase
cation transporting 13A2, also known as PARKY). For
instance, mutation of TRPMLI causes neurodegenera-
tion through the accumulation of lipofuscin in lyso-
somes [44, 45]. In fact, loss of TRPML function results
in dyshomeostases of intracellular Ca®*, Fe**, and Zn **
as well as abnormal lysosomal pH [45, 46]. A loss-of-
function mutation in the gene encoding ATP13A2/PARKY,
a putative Zn>* transporter in intracellular vesicles, de-
creases autophagy-lysosomal pathway-associated vesicular
Zn**, alters expression of Zn>* transporters, and increases
sensitivity to Zn%* [47-49]. These events lead to lysosomal
dysfunction and accumulation of a-synuclein in PD. These
channels and transporters may also take part in signaling
lysosomal distress to nuclei. For instance, under starvation
conditions, Ca>* released into the cytosol via the TRPML1
channel activates the Ca®"-dependent phosphatase cal-
cineurin, leading to dephosphorylation of TFEB and its
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translocation across the nuclear envelope into the nucleus,
where it induces lysosomal biogenesis [50, 51]. Interest-
ingly, starvation-induced nuclear translocation of TFEB is
reduced in fibroblasts from patients with MLIV or by
knockdown of TRPML1 [50].

Evidence for lysosomal dysfunction in certain
neurodegenerative diseases
If cargo delivery to lysosomes were compromised and/or
lysosomal degradation were suboptimal, a variety of
waste products would accumulate in cells. Although
some waste products can be degraded by proteasomes
or get secreted as exosomes through the formation of
multivesicular bodies (MVBs), a substantial fraction re-
mains and accumulates in organelles and the cytosol,
disrupting various cell functions. It is not yet clear which
waste products are particularly neurotoxic, but in neuro-
degenerative conditions, oligomers of peptides and pro-
teins such as AP, phospho-tau, a-synuclein, and TDP-43
(encoded by the TARDBP gene) are the main culprits.

AP, the main component of amyloid plaques in AD, is
produced from the plasma membrane protein amyloid
precursor protein (APP), mainly in late endosomes, by
the action of beta secretase-1 (BACE1l). BACEL is a
transmembrane aspartic protease responsible for most of
the B-secretase activity, but there is no direct evidence
to support a causative role for increased BACE1 activity
in AD. Instead, a growing body of evidence indicates
that AP is a normal product of APP metabolism that
serves diverse physiological functions [52, 53]. For in-
stance, a recent study reported that AP acts as an anti-
microbial peptide in the brain [54]. Since BACE1 works
within a narrow pH range, with peak activity at pH 4.5
[55, 56], prolonged residence of APP in acidic late endo-
somes, as may occur under conditions of lysosomal dys-
function, could be a contributing factor to the increase
in AP. Taken together with decreased lysosomal degrad-
ation, this late-endosomal retention of BACE1 would
culminate in the accumulation of A in late endosomes,
cytosol, and possibly in exosomes. In fact, Ap itself can
cause lysosomal alkalinization and dysfunction [57]. Ac-
cordingly, a small increase in AP production caused by
APP mutations could induce mild lysosomal dysfunc-
tion, which, in turn, leads to further increases in AP
levels. This type of a positive feedback loop would result
in a gradual increase in AP} accumulation. Intriguingly in
this context, mutant PSEN1, which has been suggested
to increase AP levels by virtue of its role as a component
of y-secretase, also causes lysosomal alkalinization by
inhibiting V-ATPase assembly [31, 58]. Hence, a com-
mon denominator in the effects of both mutated APP
and PS-1 may be lysosomal dysfunction.

Another potential contributor to aberrant lysosomal deg-
radation in AD is hyperphosphorylation and accumulation
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of tau, which leads to the formation of neurofibrillary tan-
gles, another hallmark of AD. Normally, tau associates with
and stabilizes microtubules. Dissociation of tau from micro-
tubules disrupts retrograde transport of peripherally derived
endosomes to perikaryal lysosomes, interfering with deg-
radation of endosomal cargoes. Conversely, inhibition of
lysosomal degradation aggravates phospho-tau accumula-
tion [59]. Although mutations in the tau gene cause tauopa-
thies without producing conspicuous AP accumulation
[60], mutations in APP genes cause accumulation of Af,
a-synuclein, and tau [61, 62]. These findings indicate that
aberrant APP processing and A} may have broader effects
on the EALP than tau. Alternatively, lysosomal dysfunction
alone may not be sufficient for Ap accumulation.

Recent studies have found that a substantial fraction of
genes involved in PD are related to endosomal trafficking
and/or lysosomal function, including VPS35 GBA,
ATPI3A2, ATP6AP2, DNAJCI13/RME-8, RAB7L1, and
GAK (cyclin G-associated kinase) [63]. For instance, the
ATP13A2/PARK9 gene encodes a lysosomal ATPase that
transports cations, and the ATP6AP2 gene encodes a
transmembrane protein that is a component of V-ATPase.
The resultant functional defects in lysosomes likely
contribute to accumulation of a-synuclein aggregates in
midbrain dopaminergic neurons as well as cortical neu-
rons. Reciprocally, as in case of AB in AD, thus-formed
a-synuclein aggregates can further impair macroauto-
phagy [64, 65], again giving rise to a vicious cycle.

In addition to their involvement in AD and PD, lyso-
somal dysfunction has been implicated in the pathogenesis
of other neurodegenerative diseases, including ALS, HD,
and other trinucleotide repeat disorders [66—68]. Aggre-
gates of SOD-1 (superoxide dismutase-1) or TDP-43,
which are associated with ALS, disrupt the EALP [69-72].
Aggregates of mutant huntingtin, and likely those of other
polyglutamine proteins, also inhibit the EALP [67]. Hence,
it is tempting to speculate that a common mechanism
underlying neurodegenerative diseases, especially those
accompanied by accumulation of aggregated proteins,
may be lysosomal or EALP dysfunction. Hence, therapies
that normalize EALP function may be efficacious in di-
verse neurodegenerative diseases.

How to restore lysosomal function

The EALP is a complex pathway regulated by a number
of kinases, membrane proteins, transport machinery, sig-
naling membrane phospholipids and cations, such as
Ca**, Mg®*, Fe** and Zn®* [73-77]. It is not an easy task
to determine which step is most critically affected in a
particular neurodegenerative condition. Intensive efforts
have been undertaken to find ways to activate autophagy
at the autophagosome-formation step. For instance, in-
hibitors of mTORC1 (mammalian/mechanistic target of
rapamycin complex 1), such as rapamycin, activate the
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ULK (Unc-51-like autophagy activating kinase) complex,
which is necessary for autophagosome formation. In the-
ory, however, if the main defect is lysosomal dysfunction
causing arrested autophagy, activation of autophagosome
formation alone may not be sufficient to restore lysosomal
protein degradation. Although it has been reported that
levels of beclin-1 are reduced in AD brains [78, 79], no
direct evidence for abnormalities in autophagosome for-
mation exists. Instead, a growing body of evidence indi-
cates that autophagosomes, as well as late endosomes,
likely accumulate as a result of inefficient fusion between
cargo-containing vesicles and lysosomes [80, 81]. Consist-
ent with this, a recent study presented evidence that
autophagosome formation is not reduced, but is instead
upregulated, in the early stage of AD [82].

On the other hand, as discussed above, there is ample
evidence that lysosomal dysfunction plays a role in neu-
rodegenerative disorders. One way to increase lysosomal
function is to upregulate lysosomal proteins, including
enzymes. Although the level of TFEB, the master tran-
scriptional activator of lysosomal proteins, is not re-
duced in AD brains, further increasing it by delivering
viral TFEB constructs has been shown to reduce Ap and
phospho-tau levels in AD mice [83, 84]. Hence, TFEB
may be a viable target for the development of drugs that
boost lysosomal degradation. There appear to be diverse
ways to increase the level and activity of TFEB in addition
to introducing the corresponding gene. For example,
AKT, mTORC]1, and ERK-2 (extracellular signal-regulated
kinase-2) phosphorylate TFEB to inhibit its translocation
to nuclei; thus, inhibitors of these kinases may upregulate
TEEB activity. Notably, the disaccharide sugar trehalose
activates TFEB and induces lysosomal biogenesis [85]; it
also prevents accumulation of TDP-43 in a cell model of
ALS through TFEB activation [86].

Although TFEB activates not only lysosomes, but the
entire EALP, there are measures that can be employed to
specifically target the lysosome. For instance, mutations
of GBA gene are linked to PD. Whereas homozygous
mutations lead to Gaucher disease, heterozygosity is a
risk factor for PD. GBA interacts with a-synuclein and
disrupts functions of lysosomes, including lysosomal re-
cycling. Whether this defect is caused by accumulation
of glucosylceramide, the substrate of GBA, in lysosomes,
or a deficiency in GBA non-enzymatic functions is un-
known. Regardless, treatment of GBA-deficient fibroblasts
with imiglucerase, a recombinant human GBA, is effective
in normalizing lysosomal functions. Another potential ex-
ample is progranulin (PGRN). Whereas a haploinsufficiency
of PGRN results in frontotemporal lobar degeneration ac-
companied by TDP-43 accumulation, a homozygous muta-
tion in PGRN is associated with lysosomal storage diseases,
including neuronal ceroid lipofuscinosis and Gaucher dis-
ease [87, 88]. Although it remains unknown why a PGRN
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deficiency induces neurodegenerative diseases, several lines
of evidence implicate PRGN in lysosomal function. First,
PGRN facilitates the acidification of lysosomes and matur-
ation of cathepsin D (CTSD) [89]. Second, PGRN may act
through its C-terminal granulin E domain to function as a
chaperone that regulates multiple lysosomal enzymes, in-
cluding GBA and CTSD [90]. PGRN also has links to
TFEB. The promoter of GRN contains TFEB binding sites,
and PGRN expression is upregulated by TFEB overexpres-
sion [14]. Furthermore, a reduction or complete deletion of
PGRN changes the expression of genes associated with
lysosomal function and lipid metabolism, indicative of lyso-
somal dysfunction [91].

One of the key determinants of lysosomal function is
the luminal pH. For optimal activity of lysosomal en-
zymes, the lysosomal pH should be 4.5-5.5, largely
reflecting the requirements for V-ATPase function. In
diverse cell models of proteinopathic neurodegenerative
diseases, it is found that lysosomal pH is shifted in the
alkaline direction, a change that may be brought about
by downregulating the amount and/or H*-pumping ac-
tivity of V-ATPase. The end result of lysosomal alkalini-
zation is decreased fusion between autophagosomes/
endosomes and lysosomes, and suboptimal enzyme ac-
tivities. Regardless of the specific cause, re-acidification
of lysosomes tends to normalize fusion as well as deg-
radation functions. Hence, measures that help re-acidify
lysosomes may prove useful in ameliorating the progres-
sion of proteinopathic neurodegenerative diseases. A re-
cent study reported that acidic nanoparticles may be
useful for this purpose [92, 93].

Possible therapeutics that target normalization of
lysosomal acidity: CAMP and Zn**
As potential therapeutics that might help maintain the
lysosomal acidity that is critical for lysosomal enzyme
activity as well as cargo-lysosome fusion, we would
propose to focus on modulating cAMP and Zn** levels in
cells (Fig. 1). For example, it has been shown that raising
the level of cAMP re-acidifies lysosomes in mutant PS-1—
transfected fibroblasts [31]. Conversely, inhibiting or
knocking out adenylyl cyclase, which produces cAMP, re-
sults in lysosomal alkalinization [94]. Although the precise
mechanism by which cAMP re-acidifies lysosomes has
not yet been determined, one study suggested that cAMP
may be necessary for the assembly of V-ATPase complex,
the main H" pump in the lysosomal membrane [94].
Pharmacologically, there are two ways to increase cAMP
levels: activation of adenylyl cyclases, the cAMP-synthesizing
enzymes, and inhibition of phosphodiesterases (PDEs), the
cAMP-degrading enzymes. Although several drugs indirectly
activate adenylyl cyclase by modulating G-protein-coupled
receptors, colforsin, a water-soluble form of forskolin used
to treat asthma, is the only direct activator in clinical use. In
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Fig. 1 Schematic depiction of cAMP- and Zn?"-mediated lysosomal acidification. Increases in CAMP levels through activation of adenylyl cyclase
and/or inhibition of PDEs activate PKA. PKA activation leads to increases in lysosomal free Zn** levels by an as yet unidentified mechanism.
Increases in lysosomal Zn”* levels restore lysosomal acidity through an unknown mechanism, even in the presence of BA, a potent and selective

cell models, both forskolin and colforsin have been demon-
strated to acidify lysosomes [84].

The PDE superfamily in humans consists of 12 fam-
ilies whose members are expressed in variable propor-
tions in different cell types. Although all PDE isoforms
degrade both cAMP and cGMP, some are more selective
for cAMP, and others for cGMP. In contrast to the pau-
city of adenylyl cyclase activators in human use, a num-
ber of PDE inhibitors are in clinical use for various
conditions, including erectile dysfunction, asthma and
thrombosis prevention, each with well-documented side
effects. Hence, repurposing these inhibitors as therapeu-
tics for neurodegenerative diseases might not face large
regulatory hurdles. Among PDE inhibitors, cilostazol is
known as a PDE3-specific inhibitor that inhibits platelet
aggregation, and hence is being used as an antiplatelet
agent to prevent coronary or cerebral ischemic events.
We experimentally confirmed that cilostazol acidifies ly-
sosomes and increases autophagic flux in astrocytes
(Fig. 2). Consistent with this, cilostazol reduces A accu-
mulation in these cells. Recent studies have shown that
rolipram, a selective PDE4 inhibitor developed as a
potential antidepressant, reduces tau accumulation in a
model of tauopathy, likely by activating the proteasome
system [95]. However, the authors of this study did not
examine the EALP, which might be an additional mech-
anism of degradation. Although anecdotal evidence such
as this exists for the efficacy of PDE inhibitors in various
models of neurodegenerative diseases, systematic studies
covering the whole spectrum of PDE inhibitors,

especially with a focus on their effects on the EALP, have
not been conducted, and now seem warranted.

Another potential therapeutic strategy for re-
acidification of lysosomes is to raise intracellular or lyso-
somal free Zn?* levels. Simple exposure of cultured cells
to Zn>*-enriched media or to a Zn>* ionophore such as
clioquinol is sufficient to achieve this effect. Clioquinol
increases cytosolic and lysosomal Zn>* levels and acti-
vates autophagy, resulting in degradation of mutant hun-
tingtin aggregates [96]. Increasing intracellular or
lysosomal Zn>* levels by clioquinol treatment reverse
lysosomal pH changes and autophagy arrest (Fig. 2e).
Consistent with these changes, clioquinol reduces levels
of APB or mutant huntingtin in the respective cell models
[97]. Also, in preclinical models of neurodegenerative
diseases such as AD, clioquinol or its analogue rescues
cognitive and behavioral dysfunctions through homeo-
static regulation of metal ions such as copper and zinc
[98-100].

Lysosomes contain various potential Zn>* transport
routes, including ZnT2 (Zn%* transporter-2) and ZnT4,
as well as ATP13A2/PARK9. Zn?** transporters (ZnTs)
are Zn**-H* antiporters that, upon activation, transfer
Zn** out of the cytosol, thereby reducing cytosolic Zn>*
levels [101]. ZnT1 moves Zn>* from the cytosol to the
extracellular space, and ZnT2 and ZnT4 transport Zn>*
into acidic organelles, such as endosomes, lysosomes,
and secretory vesicles. It was recently reported that
ZnT?2 interacts with V-ATPase, and further that loss of
ZnT2 disrupts V-ATPase assembly, impairing vesicle
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Fig. 2 Cilostazol (PDE3 inhibitor) increases lysosomal free Zn”* levels, re-acidifies lysosomes, and promotes autophagy flux. a. Fluorescence

photomicrographs of FluoZin3-loaded, cultured astrocytes before (left) and after a 1-h treatment (right) with 10 uM cilostazol alone or cilostazol
plus the PKA inhibitor H-89 (10 uM) or 7Zn?* chelator TPEN (500 nM). Cilostazol treatment raised free Zn?* levels in lysosomes, an effect that was
blocked by H-89 or TPEN. b. Fluorescence photomicrographs of astrocytes loaded with DND189 (a pH-sensitive lysosomal dye) before (left) and
after a 1-h treatment (right) with 100 nM bafilomycin A1 (BA) alone, BA plus 10 uM cilostazol, BA plus cilostazol and PKA inhibitor (H-89, 10 uM),
or BA plus cilostazol and TPEN (500 nM). ¢. Fluorescence images of H4 cells transfected with both GFP-LC3 and RFP-LC3 obtained after a 6-h
treatment with 100 nM BA alone, BA plus 10 uM cilostazol, cilostazol alone, or sham washed (CTL). With BA treatment, GFP fluorescence (left) did
not disappear, resulting in many yellow spots in the merged image. Addition of cilostazol substantially reduced GFP signals, resulting in a
reduction in yellow spots in the merged image. d. Western blots (upper) for p62, a marker of autophagy flux, and corresponding {3-actin in
samples obtained from astrocytes after a 6-h treatment with 100 nM BA alone, BA plus cilostazol, BA plus PKA inhibitor (H-89, 10 uM), or sham
washed (CTL). Another set of Western blots (lower) for p62 and corresponding (3-actin in samples obtained from astrocytes after a 6-h treatment

with BA alone, BA plus cilostazol, BA plus TPEN, or sham washed (CTL)

acidification [102]. Another player may be ATP13A2/
PARKY, a lysosomal type 5 P-type ATPase. Mutations in
ATP13A2 are associated with early-onset Parkinsonism,
known as Kufor-Rakeb syndrome (KRS). Studies using
ATP13A27"~ cells from a KRS patients revealed that
ATP13A2 encodes a Zn** transporter that serves to se-
quester Zn>* in endosomes and lysosomes [47]. These
studies showed that mutation or knockdown of the

corresponding gene results in reduced lysosomal Zn**
levels, increased lysosomal pH and reduced lysosomal
degradation, a mechanism that may contribute to the
pathogenesis of Parkinsonism. Hence, as is also true in
this case, lysosomal Zn>* levels seem to be linked to
lysosomal acidification. In theory, the action of ZnTs as
Zn**/H" antiporters is predicted to alkalinize lysosomes.
One possible explanation for this apparent paradox is
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that re-acidification may be a physical property of high
Zn** levels in lysosomes, reflecting the fact that Zn** in
solution lowers the pH [103]. Another possibility is that
cytosolic or lysosomal Zn** somehow activates V-ATPase
or other indirect routes of H' influx. For instance, Zn**
activates membrane protein kinase C (PKC), which is
known to upregulate V-ATPase activity [104]. Although
further studies are required to elucidate the underlying
mechanism, methods that raise lysosomal Zn>* levels may
be helpful for overcoming the lysosomal dysfunction that
contributes to the pathogenesis of diverse neurodegenera-
tive diseases. Intriguingly, raising the level of cAMP by
cilostazol also results in an increase in lysosomal free
Zn**, and chelation of Zn*>* with TPEN and PKA in-
hibitor blocks cAMP effects on lysosomal acidification
(Fig. 2). Hence, there may be a mechanistic link be-
tween cAMP/PKA (cAMP dependent protein kinase),
lysosomal Zn**, and lysosomal pH. How cAMP or PKA
mediates increases in lysosomal free Zn>* levels will re-
quire future investigation. One caveat in using Zn** iono-
phores as therapeutics is the potential toxicity of such
agents. Clioquinol was formerly used as an antimicrobial
drug in Japan, but was withdrawn because of a serious side
effect termed subacute myelo-optic neuropathy (SMON)
[105]. In culture conditions, clioquinol can kill neurons
and astrocytes by excessively increasing intracellular free
Zn** levels [96]. Also, treatment with clioquinol, likely act-
ing as zinc chelator, has been reported to negatively affect
short- and long-term memory and reduce levels of BDNF,
synaptic plasticity-related proteins and dendritic spine
density [106]. In light of this, developing Zn>* ionophores
with optimal physical parameters that do not raise intra-
cellular free Zn>* levels above the cytotoxic threshold may
prove to be critical for the clinical use of such agents.

A related finding is that metallothionein-3 (MT3), a
CNS-enriched isoform of Zn2+—binding metallothionein,
has multimodal effects on the EALP in astrocytes. First,
Zn**-bound MT3 (Zn-MT3) plays a key role in
clathrin-mediated endocytosis [107]. Hence, reduced levels
of MT3 may result in aberrant uptake of membrane pro-
teins, such as APP and exogenous proteins secreted from
nearby cells. Second, Zn-MT3 contributes to proper main-
tenance of lysosomal pH in the acidic range. Finally, as a
consequence, reduced levels of Zn-MT3 cause arrested au-
tophagy. All these actions appear to be somehow associated
with actin polymerization, since 1) MT3 binds to B-actin,
and the absence of MT3 inhibits actin polymerization
[108]; and 2) inhibitors of actin polymerization replicate the
above effects observed in MT3-null astrocytes [107].
Whether these effects of MT3 are mediated by Zn*>* re-
leased from MT3 or by direct interactions of Zn-MT3 with
other proteins, such as actin, remains to be determined.
Since MT3 is downregulated in AD brains [109], measures
to restore MT3 levels may help normalize the EALP in AD.
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In this review, we discussed the possibility that abnor-
malities in the EALP, especially lysosomal dysfunction
and the resultant arrested autophagy, may act as core
pathogenic events in diverse proteinopathic neurodegen-
erative disorders. In addition, we discussed some pos-
sible measures that can be taken to normalize lysosomal
functions under these conditions, and thereby restore
normal flux through the EALP. In particular, we pre-
sented evidence showing that measures that raise CAMP
and Zn>" levels, as well as those that normalize Zn-MT3
functions, may be effective in restoring lysosomal acidity
and catabolic flux through the EALP. Therapeutic strat-
egies for controlling metal dyshomeostasis have been
attempted. The use of metal-protein-attenuating com-
pounds (MPACs) such as clioquinol and PBT2 showed
the complex actions that are at the same time beneficial
or detrimental. Chelation of zinc solubilizes amyloid pla-
ques, but also attenuates synaptic transmission by se-
questration of zinc at the synaptic cleft [110-112]. Here,
we presented the possibility that an increase of intracel-
lular zinc by raising the level of cAMP or administrating
zinc jonophore may be the therapeutics for neurodegen-
erative diseases by enhancing lysosomal function and
consequently decreasing the accumulation of protein
aggregates.
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