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Abstract 

Background: Identifying critical genes is important for understanding the patho-
genesis of complex diseases. Traditional studies typically comparing the change 
of biomecules between normal and disease samples or detecting important vertices 
from a single static biomolecular network, which often overlook the dynamic changes 
that occur between different disease stages. However, investigating temporal changes 
in biomolecular networks and identifying critical genes is critical for understanding 
the occurrence and development of diseases.

Methods: A novel method called Quantifying Importance of Genes with Tensor 
Decomposition (QIGTD) was proposed in this study. It first constructs a time series 
network by integrating both the intra and inter temporal network information, which 
preserving connections between networks at adjacent stages according to the local 
similarities. A tensor is employed to describe the connections of this time series 
network, and a 3-order tensor decomposition method was proposed to capture 
both the topological information of each network snapshot and the time series char-
acteristics of the whole network. QIGTD is also a learning-free and efficient method 
that can be applied to datasets with a small number of samples.

Results: The effectiveness of QIGTD was evaluated using lung adenocarci-
noma (LUAD) datasets and three state-of-the-art methods: T-degree, T-closeness, 
and T-betweenness were employed as benchmark methods. Numerical experimental 
results demonstrate that QIGTD outperforms these methods in terms of the indices 
of both precision and mAP. Notably, out of the top 50 genes, 29 have been verified 
to be highly related to LUAD according to the DisGeNET Database, and 36 are signifi-
cantly enriched in LUAD related Gene Ontology (GO) terms, including nuclear division, 
mitotic nuclear division, chromosome segregation, organelle fission, and mitotic sister 
chromatid segregation.

Conclusion: In conclusion, QIGTD effectively captures the temporal changes in gene 
networks and identifies critical genes. It provides a valuable tool for studying temporal 
dynamics in biological networks and can aid in understanding the underlying mecha-
nisms of diseases such as LUAD.
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Introduction
Complex networks are common in real life and the research has shifted from discover-
ing the macro laws of structure and dynamics to uncovering the role of macro elements 
as nodes in real systems [1–5]. In the past several decades, designing effective centrality 
methods to identify critical nodes in complex networks has become a significant topic. 
Many methods have been designed to measure the importance of nodes in static net-
works, such as degree [6], closeness [7] and betweenness [8, 9]. Those centrality meas-
ures have been used in predicting essential proteins [10], identifying influential nodes 
from social networks [11, 12], finding critical links [13]. With the development and evo-
lution of organisms, the structure of biological networks changes dynamically over time 
[14–17], by increasing or decreasing the number of nodes or edges [18, 19]. The research 
on dynamic biological networks and the identification of critical nodes are helpful to 
better understand biological processes [20].

At present, several methods have paying attention to identify critical genes in bio-
logical networks [21–23]. Liu et al. [24] identified potential critical genes related to the 
pathogenesis and prognosis of gastric cancer by protein-protein interaction (PPI) net-
work and Cox proportional hazards. Li et al. [25] identified critical miRNAs, genes and 
transcription factors of lung adenocarcinoma by analyzing Gene Ontology terms, path-
ways, and PPI networks. Liu et  al. [26] used the robust rank aggregation method, re-
constructed the PPI network and performed modules analysis to identify critical genes. 
However, most of those methods are based on static network and ignoring the stage het-
erogeneity of complex diseases. He et al. [20] investigated miRNAs in serum exosome-
like microvesicles to identify stage-common and stage-specific miRNAs, but ignored 
the connections between stages. Kim et al. [27] defined the temporal version of degree, 
closeness and betweenness on temporal networks, which reduced a dynamic network 
to a static one with directed flows. Nevertheless, those methods simply calculated the 
degree, closness and betweenness centrality of nodes in different time snapshots and 
obtained a mean value. The information of nodes changing with time would be lost. In 
our previous studies, we have proven that the studies of cancer stages is important for 
understanding the evolution of cancers [28, 29].

In this study, a lightweight and effective method that quantify the importance of genes 
with tensor decomposition (QIGTD) was proposed to identify the critical genes along 
with the progression of lung adenocarcinoma (LUAD). To start with, a time-series net-
work was constructed to represent the molecular connections of individual pathological 
stages of LUAD, and a third-order tensor was employed to capture topological infor-
mation of both intra-stage and inter-stage. The intra-stage topological connections were 
obtained from gene co-expression relationships, while the inter-stage topological con-
nections were calculated by combining both local similarities and a pre-defined param-
eters. Then, a tensor decomposition method was proposed to identify critical gene from 
the temporal network, which considers not only the intra-stage topological information, 
but also the inter-stage temporal characteristics. It is also a learning free method, which 
can work well with a small amount of samples. The precision and mAP are presented to 
evaluate the performance of QIGTD, and the other three state-of-the-art methods: tem-
poral versions of degree, betweenness and closeness [30, 31] were employed as bench-
mark methods. The overall framework of the proposed method was show in Fig. 1.
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Materials and methods
Data collection and processing

The critical genes are identified in the Stage I - Stage IV temporal networks of LUAD. 
The LUAD related gene expression dataset were downloaded from Xena (https:// xenab 
rowser. net/), where there are 206 samples in Stage I, 93 samples in Stage II, 59 samples in 
Stage III, and 20 samples in Stage IV.

The networks of the four stages are constructed separately according to the PCC 
and the obtained p-value. In this study, the selection criteria were p-value< 0.01 and 
|PCC| > 0.8 according to the characteristics of biological networks. As a result, there are 
17,830 edges in Stage I, 21,951 in Stage II, 11,170 in Stage III and 611 edges in Stage IV.

The known critical genes can be obtained from DisGeNET (https:// www. disge net. 
org/), where there are 3,899 genes appearing in the temporal network, and 566 of them 
have been verified to be associated with LUAD.

The temporal network construction

The network representing each stage of LUAD was constructed with pearson correlation 
coefficient (PCC) calculated with gene expression. Besides the connections within stage, 
there was also a fixed set of genes connected between different stages of LUAD.

Currently, there are two typical ways to construct connections between networks of 
adjacent stages. One is to use a fixed constant to represent the interlayer relationship, 
and the value of the parameter can indicate the strength of the interlayer relationship. 
The other method is to use similarity metrics to measure inter layer relationships. It 
was stated that the features in temporal networks are studied by converting time into 

Fig. 1 The module of forming the tensor and decomposing tensor. a The way of constructing temporal 
network into tensor. The edges, consist of inter-stage edges and intra-stage edges are both taken into 
consideration. The yellow one is the network of Stage I, the green one is Stage II, the blue one is Stage III and 
the red one is Stage IV. The black represents inter-stage network. b The decomposition of tensor

https://xenabrowser.net/
https://xenabrowser.net/
https://www.disgenet.org/
https://www.disgenet.org/
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a snapshot sequence of the network, so the similarity measurement method between 
nodes in static networks can be extended to the node relationships between adjacent 
layers.

In this study, a novel method for measuring inter layer node similarity in temporal 
networks was proposed by combining the calculation of node local similarity index with 
fixed parameters, which is

where C is a constant parameter that indicate the strength of the interlayer relationship, 
N is the number of vertices in the network, if j w

t
ij = 1 , then the vertex i and vertex j 

has connection in the network of Gt , while if 
∑

j w
t
ij = 0 , then the vertex i and vertex j 

does not have connection. SN (t,t+1)
i  represents the number of common vertices in two 

adjacent network Gt and Gt+1.
The first part of Eq. 1 is a constant parameter, which can be setup according to the 

experimental requirement. If a relatively small parameter was used, then it enhances 
the importance of vertices with high inter layer similarity in temporal networks, while 
selecting larger fixed parameters strengthens the importance of isolated vertices. In this 
study, the value of C was set to 0.5 based on the characteristics of the biological network. 
The second part of Eq.  1 is network local similarity, which represents the proportion 
of local neighbors of adjacent snapshot nodes in the entire network at different times. 
The third part of Eq. 1 represents the proportion of shared neighbors of adjacent snap-
shot vertices in the entire network. Hence, the overall value of TLS can characterize the 
degree of vertices in a temporal network and the inter layer relationship of node adja-
cency in different time snapshots. The larger the TLS value, the higher the probability of 
the node continuously appearing on two snapshot layers, and the more stable the node 
adjacency relationship.

The tensor description of the temporal network

The temporal network was represented as X = {Gt ,C} . The Gt is the network of differ-
ent stages of LUAD and C is the set of interconnections between different networks. The 
elements in C were concerned as ‘cross network’. The temporal network could be repre-
sented in tensor as follows. Let X ∈ R

I×J×K  . The elements can be defined according to 
Formula 2.

where 0 ≤ i < I , 0 ≤ j < J , 0 ≤ k < K  , the wijk is the element in Gt and cijk is the element 
in C.

The process to form the tensor from temporal network is shown in Fig. 1a, where dif-
ferent colors represent different stages. The edges between the different stages compose 
the cross network. There are four kinds of networks in Gt and three kinds of cross net-
works in C.

(1)TLS
(t,t+1)
i = C +

∑

j w
t
ij +

∑

j w
t+1
ij

2N
+

|SN
(t,t+1)
i |

N

(2)Xijk =







wijk if Xijk ∈ Gt

cijk if Xijk ∈ C
0 otherwise
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The tensor could be transformed into matrix by unfolding or flattening. In this study, we 
expanded the n-order tensor X along mode-n into a matrix Xn . The mode-1 corresponds 
to the 1-order of tensor, mode-2 corresponds to the 2-order of tensor and mode-3 corre-
sponds to the 3-order of tensor. After the matricization of the tensor, the Kronecker, Khatri-
Rao, and Hadamard products can be calculated respectively as follows.

The Canonical Polyadic (CP) decomposition of tensor

A tensor can be expressed as the sum of finite rank tensors. In this study, the 3-order could 
be decomposed as follows.

where

The symbol “ ◦ ” is the outer product, the vector ar ∈ R
I is column r of factor matrix 

A ∈ R
I×R , the vector br ∈ R

J is column r of factor matrix B ∈ R
J×R , and the vector cr ∈ R

K  
is column r of factor matrix C ∈ R

K×R.
The outer product of these vectors is a rank one tensor, so the R rank-one tensors was 

used to approximate the original data, which is shown in Fig.  1b. By utilizing the factor 
matrix, the 3-order tensor can be decomposed as follows.

The formulas can be approximately as

(3)A⊙ B = [a1 ⊗ b1a1 ⊗ b1a2 ⊗ b3 · · · aN ⊗ bN ]

(4)A⊗ B =

∣

∣

∣

∣

∣

∣

∣

a11B · · · a1NB
...

. . .
...

aN1B · · · aNNB

∣

∣

∣

∣

∣

∣

∣

(5)A ∗ B =

∣

∣

∣

∣

∣

∣

∣

a11B11 · · · a1NB1N

...
. . .

...

aN1BN1 · · · aNNBNN

∣

∣

∣

∣

∣

∣

∣

(6)X ≈ [[A,B,C]] =

R
∑

r=1

ar ◦ br ◦ cr

X ∈ R
I×J×K

A = (a1, a2, a3, ..., aR) ∈ R
I×R

B = (b1, b2, b3, ..., bR) ∈ R
J×R

C = (c1, c2, c3, ..., cR) ∈ R
K×R

(7)

minA
∑

i,j,k

(

xijk −
R
∑

r=1

airbjrckr

)2

= minA
∥

∥X(1) − A(C ⊙ B)⊤
∥

∥

2

F

minB
∑

i,j,k

(

xijk −
R
∑

r=1

airbjrckr

)2

= minB
∥

∥X(2) − B(C ⊙ A)⊤
∥

∥

2

F

minC
∑

i,j,k

(

xijk −
R
∑

r=1

airbjrckr

)2

= minB
∥

∥X(2) − B(C ⊙ A)⊤
∥

∥

2

F
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Consequently, the A[n] could be calculated with back propagation and gradient descent. 
Since the goal is to make the tensor X̂ estimated by A, B, C as close as possible to the origi-
nal tensor X, the loss function is set as follows.

The partial derivative of A, B and C could be quantified and the parameters could be 
updated by the following formulas.

where α is the learning rate. The vertex centrality is now can be calculated as

In this study, where I = J represents the number of genes, and K = 4 represents the 
number of layers in the network. The importance score of every gene could be determined 
with either I = A⊙ C or I = B⊙ C . Additionally, if R is set to 1, so I = A or I = B.

Results
The evaluation indices

The performance of QIGTD is evaluated by the precision, mean average precision (mAP) 
and fold enrichment.

The precision show the true positive ratio by giving a list of predictions, which is

The primary objective revolves around the task of ranking, where precision alone may 
not insufficiently reflect the algorithm’s performance. The mAP does not only consider the 
accuracy of identifying the critical genes, but also considers the differences in genes order. 
More robustly, the mAP is utilized to reflect the model’s performance, which can be defined 
as Formula 13.

where Pi = 1
∑i

j=1 j
 , and the Li is the label of the i-th gene. In this study, the label com-

prises 0 and 1. Since there is only one query in the problem, so the mAP is equal to the 
AP.

(8)
X(1) ≈ [A(C ⊙ B)⊤]
X(2) ≈ [B(C ⊙ A)⊤]
X(3) ≈ [C(B⊙ A)⊤]

(9)
Loss1 =

1
2
[X(1) − A(C ⊙ B)⊤]

Loss2 =
1
2
[X(2) − B(C ⊙ A)⊤]

Loss3 =
1
2
[X(3) − C(B⊙ A)⊤]

(10)
A = A− α ∗ ∂Loss1

∂A

B = B− α ∗ ∂Loss2
∂B

C = C − α ∗ ∂Loss3
∂C

(11)si =
1

T

T
∑

t=1

((a1)i(c1)t + (b1)i(c1)t)

(12)precision =
TP

TP + FP

(13)AP(qi) =

∑

i∈i1,i2,...,iM
Pi × Li

M
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Comparing with the benchmark methods

The important score of every gene in temporal network were calculated with three 
benchmark methods: T-degree, T-closeness, T-betweenness and the proposed QIGTD 
method.

The T-degree is defined as

where Dt(v) represents the degree of vertex v at the tth network snapshot, and T is the 
total number of network snapshot.

The T-closeness is defined as

where �t,T (u,v) represents the shortest path length between vertex u and vertex v.
The T-betweenness is defined as

where σ(s, d, v) represents the number of shortest path between vertex s and vertex v 
that through vertex d, whileσ(s, v) represents the number of all shortest path between 
vertex s and vertex v.

The precision of different methods are summarized in Table 1. The QIGTD consist-
ently performs better than the other three state-of-the-art methods from the top 10 to 
top 500 predictions. In top 10, the precision of QIGTD is 0.50, while the best in the 
other three methods is T-betweenness with the precision of only 0.20. This situation also 
hold for predictions from the top 50 to top 500. The top three important genes calcu-
lated by QIGTD are highly related to LUAD.

The results of mAP@M, presented in Table 2, indicate that QIGTD outperforms the 
other three methods. QIGTD exhibits superior performance in accurately identifying 
the LUAD related genes without learning.

The fold enrichment is carried out to measure the performance of the model, 
which indicates how precisely the method can locate disease-related genes. QIGTD 

(14)T -deg(v) =

∑T
t=1 Dt(v)

T

(15)T -clo(v) =
∑

1≤t≤T

∑

u∈V \v

1

�t,T (u,v)

(16)T -bet(v) =
∑

1≤t≤T

∑

s �=v �=d∈V

σ(s, d, v)

σ (s, v)

Table 1 The precision of QIGTD and the three SOTA methods

The rank is calculated with the four methods. And the precision is obtained by comparing with DisGeNET. For example, 
the precision of QIGTD is 0.50 in top 10 and it means there are 50% genes appear in DisGeNET among top 10 genes. The 
precision of QIGTD consistently surpasses that of the other three methods

Rank T-deg. T-clo. T-bet. QIGTD

Top 10 0.10 0.00 0.20 0.50
Top 50 0.22 0.08 0.16 0.58
Top 100 0.28 0.11 0.19 0.52
Top 150 0.27 0.15 0.17 0.46
Top 500 0.21 0.20 0.20 0.23
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consistently exhibits significantly higher values compared to the other three methods as 
shown in Fig. 2.

Biological evidences of the predictions

Table  3 illustrated top 10 genes identified by the four methods as well as their rank. 
Among the top 10 genes identified by QIGTD, 5 genes are associated with LUAD in Dis-
GenNET, indicating a higher level of association with the disease compared to the other 
methods.

Additionally, the rest 5 genes have the potential to become biomarkers of LUAD. 
The NCAPH was verified to be negatively associated with Mcl-1 in non-small cell 

Table 2 The mAP of the four methods

The mAP of QIGTD demonstrates higher performance compared to the other methods

Rank T-deg. T-clo. T-bet. QIGTD

mAP@5 0.000 0.000 0.250 0.458
mAP@10 0.017 0.000 0.120 0.214
mAP@20 0.008 0.003 0.063 0.125
mAP@50 0.009 0.003 0.028 0.061
mAP@100 0.007 0.002 0.016 0.034

Fig. 2 The curve of fold enrichment in the top 500 genes. The x axis is the rank of genes in every method. 
The y axis is the score of fold enrichment. The fold enrichment could be calculated with precision and the 
correlation rate between all genes and LUAD
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lung cancer [32]. Nguyen et  al. [33] found that CDCA5 (cell division cycle associ-
ated 5) upregulated in the majority of lung cancers. The study of Wei et al. [34] found 
that the knockdown of HJURP inhibits non-small cell lung cancer cell proliferation, 
migration, and invasion. Coincidentally, there are many researchers found that BUB1 
may hopefully become a novel marker and therapeutic target for LUAD [35–37]. The 
BUB1B was also identified to be a significant biomarker for a poor prognosis and poor 
clinicopathological outcomes in patients with LUAD [38].

The differentially expressed analysis is also performed on the top 10 genes, which is 
shown in Fig. 3. The blue box is the gene expression in control and the rest 4 boxes are 
that in four stages. The top 10 genes are obviously differentially expressed in stages 
compared to control.

Moreover, in top 50 genes identified by QIGTD, 29 genes are verified have a strong 
association with the disease, which is demonstrated in Table 4.

The sub-networks of top 10 genes are extracted as Fig. 4a. The figure shows the sub-
graphs of top 10 genes of Stage I to Stage IV respectively. The thickness of the edge in 
the figure indicates the weight of the edge. The thick edges gradually decrease from 
Stage I to Stage IV, and some edges also disappear at Stage IV, thus the subgraphs of 
top 10 genes exhibit the evolution of LUAD.

The sub-networks of top 50 genes are extracted as Fig.  4b. The red nodes are top 
10 genes, the purple are top 20 genes and the green are top 50. The thickness of the 
edges is not obviously as there are too many edges in the networks, but the sub-net-
works gradually become sparse with the stages, which shows a signal of the evolution 
of LUAD.

Among top 50 genes, 36 genes are enriched to 5 GO terms in Fig. 5. The GO terms 
are nuclear division, mitotic nuclear division, chromosome segregation, organelle fission 
and mitotic sister chromatid segregation, all of which have been verified to be associated 
with LUAD [39–41]. The different color of the ribbon represents the different GO terms. 
The numbers of ribbon means the number of GO terms that genes enrich. For example, 
the DLGAP5 has five ribbons, which means it enriches all 5 GO terms. The SPC25 has a 
green ribbon, which means it only enriches the chromosome segregation.

Table 3 The top 10 genes identified by the four methods and verified by DisGeNET

There is the rank of top 10 genes calculated with the four methods. In the gene columns, genes are arranged in descending 
order based on the scores obtained in each method. In the disease columns, 1 represents the gene has been verified to be 
associated with LUAD in DisGeNET. The top 3 ranked with QIGTD have all verified in dataset. And 5 in top 10 genes have 
verified to be highly related to LUAD according to DisGeNET

T-deg. Dis. T-clo. Dis. T-bet. Dis. QIGTD Dis.

SASH3 0 CD4 0 ZEB2 1 TPX2 1
NCKAP1L 0 IKZF1 0 GIMAP8 0 NCAPG 1
CD53 0 ARHGEF6 0 CD53 0 KIF23 1
LCP2 0 PLEK 0 OLFML1 0 NCAPH 0

BTK 0 ACAP1 0 TCF4 1 KIF2C 1
PTPRC 1 C17orf87 0 WAS 0 CDCA5 0

IL10RA 0 MPEG1 0 STARD8 0 HJURP 0

CD4 0 FGD2 0 IL16 0 BUB1 0

PLEK 0 SELPLG 0 FLI1 0 KIF4A 1
ARHGAP25 0 MS4A4A 0 PLXDC2 0 BUB1B 0
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Fig. 3 The boxplot of the expression of top 10 genes. The different color in the plots is different stages. The 
blue box represents the expression in control. It shows that the genes identified with QIGTD are differentially 
expressed genes

Table 4 The top 50 genes identified by QIGTD and verified in DisGeNET

The scores in the table represent the significance of each gene under the QIGTD method, where higher scores indicate a 
higher ranking. Among the top 50 genes, 29 genes are associated with LUAD

Gene Score Disease Gene Score Disease

TPX2 0.13189 1 PLK1 0.11190 1

NCAPG 0.12907 1 CKAP2L 0.11183 1

KIF23 0.12859 1 TOP2A 0.10984 1

NCAPH 0.12847 0 NEK2 0.10982 1

KIF2C 0.12699 1 SPAG5 0.10966 1

CDCA5 0.12596 0 NDC80 0.10933 0

HJURP 0.12580 0 KIFC1 0.10894 0

BUB1 0.12566 0 GTSE1 0.10841 0

KIF4A 0.12427 1 ZWINT 0.10797 0

BUB1B 0.12413 0 CDC6 0.10767 0

CENPA 0.12363 1 KIF18B 0.10750 1

SGOL1 0.12327 0 RRM2 0.10728 1

MCM10 0.12241 1 SKA3 0.10700 0

TTK 0.12233 1 NUF2 0.10657 0

EXO1 0.12208 0 RAD54L 0.10550 0

CCNB2 0.12115 0 SKA1 0.10485 0

CCNA2 0.12071 1 KIF15 0.10482 1

KIF11 0.11880 0 SPC25 0.10462 1

DEPDC1 0.11584 1 KIF14 0.10388 1

DLGAP5 0.11541 0 FAM72B 0.10358 0

NUSAP1 0.11408 0 CDK1 0.10251 1

CDCA8 0.11397 0 FOXM1 0.10137 1

PRC1 0.11379 1 ESPL1 0.10133 1

CEP55 0.11346 1 ASPM 0.10064 1

CDC20 0.11205 1 PLK4 0.10004 1
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Discussion
The investigation of critical genes in temporal networks has become increasingly prev-
alent. Most of previous studies concentrate on the the structure of the network itself, 
but ignore the connections and changes between network at adjacent stages. Inspired 
by tensor decomposition, QIGTD is proposed in this research. Both the connections of 
genes inter and intra are taken into consideration.

The experimental results show that QIGTD outperforms the other three SOTA meth-
ods, especially in identifying the most critical genes. In the result, 5 genes in top 10 iden-
tified by QIGTD have been verified to be critical. At the same time, the other five genes 
may also be critical according to recent researches. The top 10 genes also differentially 
expression in stages compared to control. Furthermore, 29 genes are highly related to 
LUAD in top 50. The GO terms show indicate the top 50 genes ranked by QIGTD is 
associated with LUAD. The sub network of top 10 to top 50 undergoes changes across 
stages, which means the genes identified are potential to be biomarkers of the evolution 
of LUAD.

Fig. 5 The GO enrichment of top 50 genes. 5 Go terms chosen from the result of the enrichment are 
exhibited. The ribbons in different colors represents different GO terms. The number of the ribbons in gene is 
the number of GO terms it enriches. The boxed genes are LUAD-related genes. There are 32 genes enriched 
on nuclear division, 29 enriched on mitotic nuclear division, 30 on chromosome segregation, 32 on organelle 
fission and 25 enriched on mitotic sister chromatid segregation
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Additionally, QIGTD is a learning free and effective method, which does not require 
too many samples. The QIGTD has a low computational complexity and can be utilized 
in large-scale networks, which also could be easily embedded into the research of other 
complex problems.
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