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Abstract

Background: Non-additive interactions among genes are frequently associated with
a number of phenotypes, including known complex diseases such as Alzheimer’s,
diabetes, and cardiovascular disease. Detecting interactions requires careful selection
of analytical methods, and some machine learning algorithms are unable or
underpowered to detect or model feature interactions that exhibit non-additivity.
The Random Forest method is often employed in these efforts due to its ability to
detect and model non-additive interactions. In addition, Random Forest has the
built-in ability to estimate feature importance scores, a characteristic that allows the
model to be interpreted with the order and effect size of the feature association
with the outcome. This characteristic is very important for epidemiological and
clinical studies where results of predictive modeling could be used to define the
future direction of the research efforts. An alternative way to interpret the model is
with a permutation feature importance metric which employs a permutation
approach to calculate a feature contribution coefficient in units of the decrease in
the model’s performance and with the Shapely additive explanations which employ
cooperative game theory approach. Currently, it is unclear which Random Forest
feature importance metric provides a superior estimation of the true informative
contribution of features in genetic association analysis.

Results: To address this issue, and to improve interpretability of Random Forest
predictions, we compared different methods for feature importance estimation in
real and simulated datasets with non-additive interactions. As a result, we detected a
discrepancy between the metrics for the real-world datasets and further established
that the permutation feature importance metric provides more precise feature
importance rank estimation for the simulated datasets with non-additive interactions.

Conclusions: By analyzing both real and simulated data, we established that the
permutation feature importance metric provides more precise feature importance
rank estimation in the presence of non-additive interactions.
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Background
Machine learning has become a common analytical approach for modeling the relation-

ship between measures of biological systems and clinical outcomes. Models generated

from machine learning can be used for prediction, in which case the biological basis for

the pattern being modeled may not be of interest. However, biological interpretation of

machine learning models can be extremely important if the goal is to generate bio-

logical hypotheses that need to be validated clinically or experimentally. As such,

methods for model interpretation have become an important component of machine

learning research. A group of methods provide a graphical description of the model’s

global behavior (i.e. partial dependency plots [1] and decision tree surrogate models).

Several methods such as individual conditional expectation (ICE) plots [2], local inter-

pretable model-agnostic explanations or LIME [3] and Shapley additive explanations or

SHAP [4] focus on explaining individual model predictions. Another class of methods

focus on assigning weights to individual variables or features based on how much infor-

mation they provide to the predictions being made by the machine learning model.

This latter approach generates ‘feature importance scores’ that can be used to create a

list of features ranked according to their importance. This allows the modeler to focus

on the most important features for biological interpretation. Interpretability (along with

performance) is the key quality of the machine learning model, specifically when it is

applied to biomedical research goals such as biomarkers discovery and patient

diagnostics.

It has been widely discussed that for the complex biomedical phenotypes non-

additive epistatic interactions between genes could be present more frequently than

previously thought [5–7]. Indeed, gene-gene interactions have been detected in mul-

tiple genome-wide association studies of various disease phenotypes, including Alzhei-

mer’s disease [8], cataracts [9], diabetes [10, 11], cardiovascular diseases [12, 13],

neurological diseases [14, 15], and various cancer types [16, 17]. Epistasis has been de-

fined in several different ways [18, 19]. Here, we define epistasis as interactions between

two or more gene loci such that the phenotype cannot be accurately predicted by sim-

ply adding the effects of individual gene loci. This is a statistical definition of epistasis

as it measures the deviation from additivity using models that summarize genotypic

and phenotypic variability of human population data. In contrast to that, biological

epistasis is identified at the cellular level in an individual as a result of a physical inter-

actions among molecules within the biological network. The relationship between two

epistatic concepts is complicated such that statistical epistasis does not necessarily

translate into biological epistasis [18].

The intrinsic complexity of non-additive interactions creates several analytical and

practical challenges for its detection via traditional statistical methods due to its inabil-

ity to detect non-additive effects in the large volume of data from GWAS studies. Ma-

chine learning methods have more flexibility in their power to detect an underlying

complexity of genetic architecture and, therefore, has been widely used in epistasis dis-

covery [20]. A large body of research has been accumulated on epistatic interaction de-

tection with neural networks, support vector machines, multifactor dimensionality

reduction, and random forest (RF) models [21, 22]. Specifically, RF algorithm is known

for its ability to take into account non-additive effects through its hierarchical tree-

based structure [20, 23]. A number of studies have been conducted on the integration
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of RF method into the epistatic interaction discovery. Among them RF with sliding

window sequential forward feature selection method [24], mixed RF approach that ac-

counts for both population structure and epistatic interactions [25], relative recurrency

variable importance metric (r2VIM) [26] for RF that generates variable set with main

and interaction effect, and the permuted RF method that identifies interacting pair of

SNPs by calculating the effect of disrupted interaction on the RF prediction error rate

[27].

In addition to the good performance of RF method on datasets with epistasis, bench-

mark studies have recognized the RF classification algorithm to be among the best clas-

sifiers for the majority of the real-world datasets [28, 29]. RF is conveniently

interpretable with built-in feature importance scores implemented in a majority of

popular programming languages and analytics platforms including Python and R. These

are calculated with entropy or Gini importance criterion. Despite the utility of RF fea-

ture important scores, some studies have reported a bias introduced by the RF feature

importance scores when working with categorical, grouped, and varying types of fea-

tures [30]. An alternative way to estimate feature importances with the RF classifier is

by calculating permutation feature importance (PFI) scores. This metric employs an ex-

haustive permutation concept where features are permuted one at a time and the im-

portance scores expressed via the difference in the ML algorithm’s performance score.

While computationally intensive for large feature sets, this approach is advantageous

due to its applicability to any machine learning method of any complexity and, there-

fore, is independent of the characteristics of any given algorithm.

In this study, we aim to improve the interpretability of RF predictions for genetic data

in the presence of non-additive interactions by comparing three feature importance

metrics: RF’s built-in feature importance coefficients (BIC), mean SHAP values, and

PFI coefficients. We use two real-world datasets with previously described non-additive

interactions to compare model interpretation using the two different feature import-

ance score metrics. We also compare the metrics using simulated data with varying

levels of interaction, imbalance in case/control ratio, and sample size where the ground

truth is known.

Results
Evaluation of feature importance metrics performance with simulated datasets

An RF classification algorithm with Gini impurity criterion was fitted on all simulated

replicates with non-additive interactions (for details see Methods 2.1). For majority of

them, 10-fold cross-validated balanced accuracy (unweighted average of the accuracies

calculated on a per-class basis) was estimated as 1.0 or very close to 1.0 (Fig. S1). PFI,

SHAP, and BIC metrics were estimated for the fitted RF models and further compared

to the real feature importances retrieved with the HIBACHI sensitivity analysis (for de-

tails see Methods 1.1–1.4 and 2.2). The percentage of successful rank identification per

100 replicates of each experiment was reported in Table 1. For all combinations of fac-

tors that were considered in HIBACHI simulations, PFI metric consistently outper-

formed BIC and SHAP metrics in the ability to determine feature importance order.

The most accurate PFI evaluation was produced for the datasets in the category with

sample size 1000, two-way Information Gain (IG) and 50% of cases, where the most
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important feature (F1) was identified precisely in 91% of replicates, F2–90%, and F3–

78%. For the sample size 10,000 category, the most accurate estimate by PFI was done

for the three-way IG, with 25% of cases where F1 was identified correctly for 89% of

replicates, F2 – for 80%, F3 -for 89%, F4 – for 84%. Overall, feature ranks estimated by

PFI metric were at least twice more accurate than BIC estimates for nearly all the cor-

responding experiments. SHAP metric also had a greater success in feature rank esti-

mation as compared to BIC and were equal to PFI for the settings with the imbalanced

datasets with two-way IG and population size 1000 however overall showed a greater

error than PFI.

Interestingly, for the majority of replicates of the experiments with the two-way IG,

the PFI metric was able to identify the top three features, while for the three-way IG

this came up to the top four features. We investigated further into the population of

the feature importance effect sizes and discovered that experiments with the two-way

interactions observe the same range of effect sizes for the top two important features,

while the effect sizes of the bottom two features are 2–3 orders of magnitude smaller

than the top ones or zero (Fig. 1a, b). To support this observation Table 2 report the

percentage of replicates with zero effect size at each feature importance rank: for the

majority of the experiments with the two-way IG, two out of five features didn’t have

an effect on the phenotype. A more thorough exploration of the fitness function land-

scape confirmed that in the majority of cases only one pair or trio of features had

enough time to evolve strong non-additive interactions due to the limited simulation

time. Hence, we observe that the interacting pair of features share the major inform-

ative contribution towards the phenotype, while non-interacting features contribution

Table 1 PFI, BIC and SHAP success in identification of feature ranks in datasets with two-way and
three-way epistatic interactions. It is expressed as the percentage of a match of a metric rank’s
estimate with the true feature rank that was retrieved with the HIBACHI sensitivity analysis

Sample size 1000

Two-Way IG Three-Way IG

% of cases: 25% 50% 25% 50%

Metrics: PFI BIC SHAP PFI BIC SHAP PFI BIC SHAP PFI BIC SHAP

F1 70% 41% 71% 91% 42% 82% 80% 38% 57% 79% 18% 68%

F2 63% 41% 62% 90% 42% 82% 69% 33% 45% 60% 36% 52%

F3 93% 84% 89% 78% 82% 81% 79% 33% 53% 71% 18% 73%

F4 17% 17% 15% 15% 17% 16% 74% 55% 58% 11% 14% 11%

F5 5% 4% 5% 4% 5% 3% 33% 31% 29% 5% 6% 4%

Sample size 10,000

Two-Way IG Three-Way IG

% of cases: 25% 50% 25% 50%

Metrics: PFI BIC SHAP PFI BIC SHAP PFI BIC SHAP PFI BIC SHAP

F1 79% 36% 73% 83% 39% 75% 89% 42% 68% 86% 19% 76%

F2 79% 32% 73% 83% 39% 75% 80% 34% 49% 75% 34% 56%

F3 100% 87% 99% 81% 79% 81% 89% 33% 66% 85% 22% 70%

F4 13% 12% 13% 44% 38% 40% 84% 62% 69% 53% 51% 52%

F5 5% 4% 5% 15% 13% 14% 40% 38% 37% 11% 9% 10%

F1, F2, etc. – feature ranks, PFI permutation feature importance, BIC build-in coefficients, SHAP shapley additive
explanations, IG information gain
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effect is orders of magnitude smaller and insufficient to be detected accurately by both

importance metrics (Fig. 2a, b).

Evaluation of the feature importances in real-world datasets with non-additive

interactions

We used the HIBACHI simulation framework to obtain datasets with strong non-

additive interaction between the features - genetic variants and the phenotype. We were

able to demonstrate that regardless of the dataset’s parameters, the best method to de-

termine features’ informative contribution to the phenotype is PFI. To validate our

findings for real-world data we analyzed two datasets with complex disease phenotype

which previously have been identified to have non-additive interactions among SNPs.

Fig. 1 Effect size per feature rank estimated by PFI, BIC, SHAP and HIBACHI sensitivity analysis for sample
size 1000 (a) and 10,000 (b). F1, F2, etc. – feature ranks, PFI -permutation feature importance, BIC – build-in
coefficients, SHAP - shapley additive explanations, IG- Information Gain, p25, p50 – percentage of cases
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The subset of seven SNPs was selected from the Alzheimer’s disease data and the sub-

set of six SNPs was selected from the Glaucoma dataset as described above (see

Methods 2.4). A ViSEN analysis and plot for the Alzheimer’s dataset (Fig. 3a) revealed

one SNP with large independent effect affiliated with ApoE gene (rs429358, MI 0.08) –

a known risk factor for Alzheimer disease, and three strong two-way gene-gene interac-

tions (rs4955208 - rs7782571, IG 0.05; rs12785149 - rs12209418, IG 0.05; rs2414325 -

rs1931073, IG 0.05). ViSEN analysis of the Glaucoma dataset revealed two strong gene-

gene interactions (rs7738052 - rs1489169, IG 0.015, and rs10915315 - or rs1266924, IG

0.015). We built a predictive model for each dataset with the RF classifier: the model

was tuned with grid search and had classification balanced accuracy 62.6% for the Alz-

heimer dataset, and 60% for the Glaucoma dataset. We verified the significance of the

cross-validated balanced accuracy scores of the optimized classifiers by doing a

Fig. 2 Example of ViSEN plots for the datasets with two-way (a) and three-way (b) interactions. Features
main effects, two-way and three-way IG values are noted respectively

Table 2 Percentage of the features with zero effect size for every rank position

Sample size 1000

Information gain: IG2 IG3

Percent of cases: 25% 50% 25 50%

F1 0% 0% 0% 0%

F2 0% 0% 0% 0%

F3 0% 15% 0% 0%

F4 76% 70% 23% 83%

F5 91% 92% 65% 92%

Sample size 10,000

Information gain: IG2 IG3

Percent of cases: 25% 50% 25% 50%

F1 0% 0% 0% 0%

F2 0% 0% 0% 0%

F3 0% 17% 0% 0%

F4 85% 54% 16% 47%

F5 94% 84% 59% 88%

F1, F2, etc. – feature ranks, PFI permutation feature importance, BIC build-in coefficients, SHAP shapley additive
explanations, IG information gain
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permutation test [31] and confirmed that both models have reliable classification per-

formance (Fig. 4). We further calculated PFI, BIC and SHAP estimates for the opti-

mized RF models. For Alzheimer dataset (Fig. 5a) the most important feature,

according to PFI, BIC and SHAP metrics, is the SNP with the largest independent effect

– rs429358. This SNP has been discovered by ViSEN analysis and expected to have

strong effect on the phenotype. However, the consecutive feature importance order di-

verged between two metrics. According to PFI rank, SNPs located at second and third

position belong to the same interaction and valued with the highest IG out of all calcu-

lated pairwise interactions for this dataset (Fig. 3a). At the same time, SNPs located at

the second and third position by BIC ranking didn’t create a strong pairwise interac-

tions with each other. SHAP metric has placed SNPs that belong to the second stron-

gest pairwise interaction at the second and third position correspondingly.

We observed a similar discrepancy between the metric rank evaluations for the Glau-

coma datasets (Fig. 5b): while SNP rs2157719 has the largest main effect among all

SNPs and was assigned to be the top feature by all compared metrics, the following

order of SNPs was outlined conversely by different metrics. SNP rs10915315 has the

largest number of detected pairwise interaction among all SNPs and is ranked second

by both PFI and SHAP, while only fourth by BIC; SNP rs1489169 has three pairwise in-

teractions (including the strongest one) detected and is ranked third by PFI and second

by BIC. Interestingly, both metrics identified the less important and non-important

SNPs in the same order, suggesting that the issue with the discrepancy between the

metrics evaluations should be address for the top features only.

Evaluation of the two-way and three-way permutation feature importance metrics for

interaction detection

We further investigated whether two- and three-way PFI could be used in the inter-

action detection and we evaluated the success of these metrics for the HIBACHI simu-

lated datasets. We calculated the IG of all pairs and trios of features for each dataset

and evaluated the detection success of the strongest interaction with the top two-way

and three-way PFI correspondingly (Table S1). Additionally, we calculated the inter-

action detection success with the top two and three features identified by single feature

Fig. 3 ViSEN plots for selected SNPs in Alzheimer’s (a) and Glaucoma (b) datasets. SNPs main effects, two-
way and three-way IG values are noted respectively
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PFI (Table S1). As it can be seen from the table, a single feature PFI metric has a sub-

stantially higher success in interaction detection across all experimental settings. We

also observed a clear trend for decreased success rate for the experiments with the im-

balanced datasets (only 63 and 54% for the datasets with the two-way interactions and

48 and 53% for the datasets with the three-way interactions). We suggest that this trend

can be observed due to the presence of the second and third interaction pair and/or

trio since HIBACHI fitness function is set up to maximize all possible interactions

combinations. Moreover, it is possible that imbalanced dataset creates an additional

Fig. 5 PFI and BIC estimates for Alzheimer’s (a) and Glaucoma (b) datasets. PFI -permutation feature
importance, BIC – build-in coefficients, SHAP - shapley additive explanations

Fig. 4 Permutation test scores for the RF classifier for Alzheimer’s (a) and Glaucoma (b) datasets
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selective pressure for the second and third interactions to appear during the GP

process. This possibility is supported by increased effect size of the third most import-

ant feature in the IG2 datasets (F3) and the fourth most important feature (F4) in the

IG3 datasets with the case/control imbalance parameter (p25) as compared to balanced

experiments (p50) (Fig. 1).

We calculated IG values for all pairs and trios of features in all HIBACHI datasets

and visualized the distribution of the top three strongest interactions stratified by the

status of its detection success by two-way and three-way PFI (Figure S2). In the major-

ity of settings, the effect size of the second and third interaction was higher for the

datasets where two-way and three-way PFI failed to detect the strongest interaction.

Therefore, we suggest using single feature PFI as more precise metric for non-additive

interactions detection, especially for complex datasets where the presence of more than

one interaction is expected.

Discussion
In this study we addressed the problem of interpretability of the RF classification

method predictions in datasets with non-additive interactions by comparing the power

of various feature importances metrics: PFI, SHAP and BIC. The real-world data ana-

lysis which included genetic datasets with Alzheimer’s and Glaucoma patients con-

firmed the discrepancy in feature importance ranking among the studied metrics. We

analyzed the metrics’ performances for HIBACHI-simulated datasets with a range of

parameters including sample size, case/control imbalance and degree of interaction

complexity and find the PFI metric has superior performance. We further analyzed the

ability of single- and multi-feature PFI metrics to identify the strongest non-additive

interaction and the single-feature PFI consecutive ranking appeared to be the most ac-

curate interaction detection approach.

Multiple research studies suggested that epistatic interactions are widespread by na-

ture and that many genes work in an interactive manner [5]. Epistatic interactions are

expected to be found in a variety of pathophysiological processes with one of them

most likely to be Alzheimer’s disease [8]. The most powerful predictor of Alzheimer’s

disease at this time is ApoE E4 gene variation: one or two copies of ApoE is associated

with an increased risk of disease onset [32]. However, some carriers of ApoE E4 vari-

ation haven’t developed an Alzheimer’s disease so it is very likely that other genetic fac-

tors are involved in disease’s pathophysiology. ViSEN entropy-based analysis revealed

several strong pairwise genetic interactions, along with the known largest independent

signal from the ApoE variant (rs429358) (Fig. 3a). Furthermore, ViSEN method allo-

cated non-additive interactions within the Glaucoma disease dataset: several strong

pairwise interactions in addition to the independent main effect contribution from the

SNP affiliated with retinal ganglion cells pathology (rs2157719) have been confirmed

(Fig. 3b). Evaluation of an informative contribution of a single genetic factor involved

in the two- or three-way interactions towards the phenotypic outcome is a challenging

analytical task and it requires a non-linear solution which RF classifier is notorious for.

Therefore, we aimed to identify whether RF classifier is capable to detect genetic signa-

tures that were previously confirmed by ViSEN analysis and whether different RF’s fea-

ture importance metrics will be able to agree on the rank.
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Three feature importance metrics were considered, PFI, BIC and SHAP, and each

was compared after RF analysis of data derived from genome-wide association studies

of Glaucoma and Alzheimer’s. The resulting feature ranking confirms the lack of con-

sensus between the studied metrics (Fig. 4). Indeed, while all three metrics identified

the SNPs with the largest independent main effects (rs429358 and rs2157719) as a top

feature in both real-world datasets, genes involved in the non-additive interactions have

been assigned different importance ranks by different metrics. More specifically, in the

Alzheimer data, the second and the third most important feature predicted by PFI and

SHAP belong to the same interacting pairs (rs4955208 and rs7782571, and rs12209418

and rs12785149), while the same rank positions predicted by BIC were occupied by

SNPs that do not belong to the same genetic interaction (Fig. 3a, Fig. 5a). A similar dis-

crepancy has been observed in the Glaucoma dataset: PFI, BIC and SHAP indicated dif-

ferent interacting pairs of SNPs as the second and third most important feature (Fig.

5a), however SNP predicted to be the second most important by PFI and SHAP is a

part of four additional SNP-SNP interactions, while SNP predicted second by BIC is a

part of only three interacting SNP pairs (Fig. 3b).

Such uncertainty has been associated with RF predictions in the past and we

attempted to reveal the true interpretation with the computational experiments driven

by HIBACHI simulations. The HIBACHI framework has the ability to consider any de-

sirable biological concept in the form of mathematical expressions that define the

genotype-phenotype relationship and evolve models that can be used to simulate data

consistent with that relationship. We set up a simulation goal to maximize two- or

three-way interactions among features and compared RF’s feature importance metrics

with the sensitivity analysis results of the simulated data that provided us with the

ground truth information about the feature ranks (Fig. 6). In all HIBACHI experimental

setups, which included such factors as the proportion of cases and controls, sample size

and interaction complexity, PFI metrics produced the most precise feature ranking

(Table 1, Fig. 1). Although BIC and SHAP metrics misplaced feature ranks for the large

percentage of replicates with BIC failed to identify the majority of them, it correctly

identified features that belong to the interactive pair or trio by putting them as a top-

ranked two and three features correspondingly. Therefore, we can suggest that while

Fig. 6 Scheme of sensitivity analysis for the HIBACHI experiments
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BIC and SHAP metrics can still be useful, when there is a need for an absolute preci-

sion, PFI estimation method should be used.

We further aimed to establish whether a two-way and three-way PFI could be used

as a metric for non-additive interaction detection in the simulated datasets. Interaction

detection success with the multi-feature PFI underperformed in all experimental set-

tings and our investigation identified that this is most likely due to the presence of an

additional non-additive interactions of smaller strength. Indeed, the HIBACHI datasets

evolved to have multiple non-additive interactions of different strength in addition to

the strongest one and this was especially prevalent in settings with the imbalanced

case/control ratio. Permutating one feature which is involved in the non-additive inter-

action would remove its informative effect in full and, therefore, the combined permu-

tation effect of features from the different non-overlapping interactions (even orders of

magnitude weaker) would be picked up as the top feature combination by multi-feature

PFI metric. Therefore, a single-feature PFI metric provides a more accurate non-

additive interaction detection with its effect size distribution stratification in complex

data which are most likely very common in the genetics of human diseases. This, how-

ever, may not be true for all real-world scenario, for example, if two and more interac-

tions of equal strength are present, a single-feature PFI will not be useful and a better

method is needed for this aim.

PFI has some limitations we didn’t cover in our experiments – it is particularly sensi-

tive to highly correlated features. In case such features are present in the dataset, PFI

requires a special preprocessing directed onto the removal of such features. An ex-

ample of this could be a hierarchical clustering based on the Spearman’s rank correl-

ation coefficients with following cluster-based filtering. In future studies, other feature

importance techniques may be considered which can include joint importance by max-

imal subtrees, joint variable importance and corrected Gini importance score [33] as

well as a more complex epistatic schemes could be explored (e.g. different combina-

tions of marginal and interaction effects as in [34], multiple strong interactions and/or

combination of two- and three-way interactions). Within our simulation framework we

mostly observed one or two strong interactions and this might be an overly simplistic

given the complexity of common diseases such as Alzheimer’s and glaucoma.

Conclusion
In this study, we performed a comparative analysis of feature importance metrics with

the aim to improve Random Forest’s interpretability in datasets with complex interac-

tions. By analyzing both real and simulated data, we established that the permutation

feature importance metric provides more precise feature importance rank estimation in

the presence of non-additive interactions.

Methods
Random forest and its properties

RF is a popular ML algorithm because it often demonstrates good performance while

remaining relatively easy to optimize and interpret. RF algorithms belong to a Bagging

(Bootstrap Aggregation) type of ensemble ML methods where a group of weak learners

in a form of decision trees (DT) classify the outcome using majority vote. Decision
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trees are sensitive to the data they are trained and often suffer from high variance prob-

lem especially when the depth of the tree is high. To address that RF algorithm trains

each tree on a subset of samples drawn from the complete dataset with the bootstrap

procedure. An additional source of randomness within the RF algorithm is introduced

during the construction of a tree when selecting a split node from the random sample

of features (in place of the greedy search through all feature set like in DT). These two

sources of randomness aim to decorrelate weak learners and correspondingly decrease

the variance of an estimator by combining diverse trees prediction via majority vote.

During the construction of a DT, the decrease in the error function can be calculated

for a feature at each split node. In a classification task, this is often done via estimating

the Gini score or the entropy score. The function decreases can be averaged across all

trees and returned as feature importances score (the greater the decrease the higher

feature importance). Feature importance scores are often conveniently implemented as

a RF function which makes this method more interpretable.

Permutation feature importances

Permutation feature importance metrics were first introduced by Breiman in his Ran-

dom Forest manuscript [35] and further extended by Altmann [36] to correct for the

bias of the RF’s Gini importance and entropy criterion for feature selection. We utilize

a custom implementation of PFI which could be applied to any machine learning classi-

fication and regression algorithms (Fig. 7). Here, PFI metric is calculated with following

steps: 1) the dataset is shuffled and split into the training and testing datasets 2) the

model is fitted on the training dataset and the balanced accuracy is estimated on the

testing dataset, 3) feature 1 out of N is permuted for the testing dataset 4) the balanced

accuracy is estimated on the permuted testing dataset 5) the relative decrease of the

permuted and non-permuted balanced accuracies is calculated and stored as relative

decrease in accuracy, 4) step 2 and 3 are repeated for the remaining N-1 features, 5)

steps 1 through 4 are replicated for N-1 times with the new seeds for shuffle and split

procedure, 6) mean of relative decrease in accuracy per feature is calculated across the

splits and is used as features’ PFI value. Retrieved PFI values were normalized to sum

to 1.

Two-way and three-way permutation feature importances

To calculate two- and three-way PFI we used the methodology described above with

two or three features permuted at step 3 correspondingly.

SHAP values

SHAP (SHapley Additive exPlanations) method [4] uses a cooperative game theory ap-

proach to explain the machine learning model predictions with SHAP values which are

calculated as a weighted average of features’ marginal contribution. SHAP is commonly

used as a local explanation tool, however it also provides the approximation for a global

solution via mean SHAP values metric and we will be using this as an alternative metric

for Random Forest feature importances success comparison.
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Evaluation of the feature importance metrics
Data simulation using HIBACHI

We used Heuristic Identification of Biological Architectures for simulating Complex

Hierarchical Interactions (HIBACHI) software to simulate genetic datasets with non-

additive epistatic interactions of different complexity. The HIBACHI method employs

biological and mathematical frameworks to connect genotype and phenotype [37] At

the bottom of the biological framework is the concept of information transfer from the

DNA sequence to a clinical phenotype through complex interactions at multiple levels:

gene expression, pathway, and cell. Within this framework, a population of samples is

expressed as a collection of genes (genotype) each of which has three variants 0, 1 or 2.

The mathematical framework’s goal is to specify a relationship between genotype and

phenotype in terms of logical, arithmetical and other functions. HIBACHI merges the

frameworks by evolving a mathematical expression tree which when applied to a geno-

type, generates a binary clinical phenotype.

HIBACHI employs Genetic Programming (GP) as an optimization engine. One of the

key characteristics of GP is a fitness function which is represented through the mathemat-

ical expression that satisfy a specific objective of interest defined by user. This objective

could be a performance of a machine learning pipeline, complexity of genetic interactions,

odds ratio of genetic effect sizes, length of expression tree, etc. or a combination of those

in the form of the multi-objective fitness function. Additionally, user to allowed to specify

the length of the optimization (by specifying the number of generations), the population

size (number of samples) and genotype size (number of genes) of the dataset.

At the beginning of the GP optimization process, a population of individuals with

random mathematical expression trees is initialized and is further subjected to muta-

tional and recombinational processes. This process serves as a source of variation for

the expression trees and have a pre-defined rate. After that, a user-defined fitness func-

tion is calculated and the best-fitted individuals are selected for the next round. At the

last optimization round, an overall best-fitted individual is used as an output dataset.

For the aims established within this study, we wanted to generate datasets with non-

additive epistatic interactions that would involve two and three genetic variants and,

therefore, we have defined a fitness function that maximizes two-way and three-way in-

formation gain term (indicate the synergy or the redundancy between two/three

Fig. 7 Scheme of the permutation feature importance custom implementation
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variables (or genotype) with respect to the third/fourth variable (or phenotype)).

Entropy-based IG approach to detect epistatic interactions has been introduced by

Moore et al. [38]. Two-way IG defined as:

IG X;Y ;Zð Þ ¼ I X;Y ;Zð Þ − I X;Zð Þ − I Y ;Zð Þ ;

Where I is mutual information that describes the dependency between variables X, Y

and Z. It measures the reduction of uncertainty of one variable (Z) given the knowledge

of others (X and Y) It is expressed with entropy terms:

I(X, Y; Z) =H(Z) −H(Z| X, Y); I(X; Z) =H(Z) −H(Z| X); I(Y; Z) =H(Z) −H(Z| Y),

Where entropy H defined with the probability mass function:

H ZjXð Þ ¼ H Z;Xð Þ −H Zð Þ;H Zð Þ ¼ −
X

z∈Z

p zð Þ logp zð Þ;

H Z;Xð Þ ¼ −
X

zϵZ

X

xϵX

p z; xð Þ logp z; xð Þ

Definitions of three-way IG can be found in Hu et al., 2013 [39]. We used the follow-

ing version of this term:

IG X;Y ;Z;Nð Þ ¼ I X;Y ;Z;Nð Þ − IG X;Y ;Nð Þ − IG X;Z;Nð Þ − IG Y ;Z;Nð Þ − I X;Nð Þ − I Y ;Nð Þ − I Z;Nð Þ

Additionally, a second fitness objective was set up as maximization of expression tree

length, to encourage multiple combinations of genetic interactions. In addition to the

variability in the interaction complexity, the following factors have been considered in

the HIBACHI experimental schemes: percent of cases (25 and 50%) to address an im-

balanced dataset structure, and sample size (1000 and 10,000). Each experimental setup

was reproduced 100 times using random seed generator and the whole population of

replicates was considered in the consecutive analysis. All simulated data used here is

available upon request.

Sensitivity analysis

We implemented a HIBACHI-based sensitivity analysis to determine the true feature

importances ranks and the effect sizes. For this the permutation-based framework was

implemented with the following steps (Fig. 6): 1) split HIBACHI-generated dataset into

the outcome vector and the feature set 2) permute feature vector 1 out of N and re-

evaluate the outcome by applying the HIBACHI-generated expression tree 3) calculate

the dissimilarity of the outcome as of mismatch between the perturbed and unper-

turbed feature set 4) repeat the estimate 2) for the remaining feature and normalize the

counts by the total sum; 5) replicate steps 2–4100 times and calculate the average of

the replicates per feature as a final true feature importance score. Sensitivity scores

were further normalized to sum to 1.

Real world data analysis
To examine the convergence of the RF’s feature importance metrics we used two real-

world datasets with evidence for non-additive interactions. The first includes prese-

lected SNPs from a genome-wide association study of Alzheimer’s Disease while the

second includes preselected SNPs from a genome-wide association study of Primary

Open Angle Glaucoma (POAG). The Alzheimer’s dataset came from the Alzheimer’s
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Disease Neuroimaging Initiative during which functional MRI was taken every 6 to 12

months for patients with three health conditions (neuro-typical (identified here as con-

trols), and mild cognitive impairment and Alzheimer’s disease (identified here as

cases)). A computational evolution system [40] identified a model of seven SNPs with

evidence of non-additive interactions and a classification accuracy of 0.738. Among

these SNPs are the SNP with the large main effect that is located in the APOE gene

(rs429358) – a known risk factor for Alzheimer disease, four SNPs located within genes

with known functionality/disease state (rs1931073 – an intergenic region near the

PPAP2B gene that is participating in cell-cell interactions, rs7782571 – near the ISPD

gene that is associated with the Walker-Walburg syndrome, rs4955208 – in the

OSBPL10 genes which are expressed into intracellular lipid receptor, rs12209418 – in

the PKIB gene that codes a protein kinase inhibitor) and two remaining SNPs

(rs2414325, rs12785149) are located within genes with unknown functionality.

The glaucoma dataset came from the Glaucoma Gene Environment Initiative study

and contained with POAG individuals identified as cases and healthy individuals as

controls. This dataset has been previously analyzed by Moore at al [41]. with the

EMERGENT algorithm that resulted in the identification of a model of six SNP’s with

evidence of non-additive interactions and a classification accuracy of 0.615. Two of

these SNPs (rs2157719, and rs1266924) are located within the genes that were previ-

ously associated with glaucoma disease, two SNPs (rs10915315, and rs1489169) are lo-

cated within the genes that are associated with glaucoma-non-related diseases and

relevant pathology, and two more SNPs (rs936498, and rs7738052) are located within

the genes that were not previously associated with any disease, but have a known func-

tionality that is relevant to visual cortex and retina development.

We used the visualization of the statistical interaction network (ViSEN) method [42]

to analyze and visualize SNP main effects, and two-way and three-way gene-gene inter-

actions among SNPs for real-world datasets. The ViSEN method calculates the mutual

information (MI) between individual SNP (genotype) and the phenotype, the pairwise

interaction between every pair of SNPs and the phenotype and the three-way inter-

action between every combination of three SNPs and the phenotype via the IG term. A

positive IG indicates synergistic (i.e. non-additive) effects of SNPs on the phenotype.

The IG metrics used in the ViSEN method were designed to detect pure epistatic inter-

actions and excluded all lower-order effects (by subtracting all main effects and pair-

wise synergies in cases of the three-way term).
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