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Abstract

Background: A common complication of viral pulmonary infections, such as in the ongoing COVID-19 pandemic, is
a phenomenon described as a “cytokine storm”. While poorly defined, this hyperinflammatory response results in
diffuse alveolar damage. The low molecular weight fraction of commercial human serum albumin (LMWF5A), a
novel biologic in development for osteoarthritis, demonstrates beneficial in vitro immunomodulatory effects
complimentary to addressing inflammation, thus, we hypothesize that LMWF5A could improve the clinical
outcomes of COVID-19 by attenuating hyperinflammation and the potential development of a cytokine storm.

Presentation of the hypothesis: A variety of human in vitro immune models indicate that LMWF5A reduces the
production of pro-inflammatory cytokines implicated in cytokine storm associated with COVID-19. Furthermore,
evidence suggests LMWF5A also promotes the production of mediators required for resolving inflammation and
enhances the barrier function of endothelial cultures.

Testing the hypothesis: A randomized controlled trial, to evaluate the safety and efficacy of nebulized LMWF5A in
adults with Acute Respiratory Distress Syndrome (ARDS) secondary to COVID-19 infection, was developed and is
currently under review by the Food and Drug Administration.

Implications of hypothesis: If successful, this therapy may attenuate the cytokine storm observed in these patients
and potentially reduce mortality, increase ventilation free days, improve oxygenation parameters and consequently
lessen the burden on patients and the intensive care unit.

Conclusions: In conclusion, in vitro findings suggest that the immunomodulatory effects of LMWF5A make it a
viable candidate for treating cytokine storm and restoring homeostasis to the immune response in COVID-19.

Keywords: LMWF5A, Cytokine storm, SARS-CoV-2, COVID-19, Acute lung injury, Acute respiratory distress syndrome,
Barrier function
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Background
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the virus responsible for the infectious respiratory
condition now formally known as coronavirus disease of
2019 (COVID-19) [1]. This virus was first identified in
Wuhan, Hubei Province, China in December of 2019 and
declared a global pandemic by the World Health
Organization in March 2020 [2]. COVID-19 symptoms
(cough, fever, and shortness of breath) generally appear
within 14 days of exposure and 20% of these patients pro-
gress to severe disease [3]. Hallmarks and complications of
severe COVID-19 infection include acute respiratory dis-
tress syndrome (ARDS), pneumonia, sepsis and septic
shock, cardiomyopathy and arrhythmia, acute kidney injury,
and prolonged hospitalization [3]. Based on the size and
scope of the COVID-19 pandemic, the disease burden on
healthcare facilities and hospitals is severe, to the point that
the US will continue to experience widespread shortages of
critical standard of care items such as ventilators [4].
While the pathogenesis of COVID-19 is still poorly de-

fined, it is believed to involve viral-induced suppression
of innate pathogen surveillance systems. Under normal
conditions, pathogen pattern recognition receptors
(PPR) on resident innate immune cells sense viral RNA
molecules that trigger anti-viral, interferon (IFN) expres-
sion which prevents replication and promotes the re-
moval of infected cells [5]. However, genomic studies
conducted on the original severe acute respiratory syn-
drome coronavirus (SARS-CoV) demonstrate that the
virus encodes for proteins that serve as innate immune
antagonists by suppressing the expression of IFN and
promoting evasion of viral RNA from host defense
mechanisms, independent of pro-inflammatory cytokine
release [5]. As a result, early in infection, innate toll-like
receptor (TLR) and PRR signaling pathways continue to
potentiate the release of pro-inflammatory mediators,
such as cytokines (i.e., TNFα, IL-6, IP10 or CXCL10,
etc.) while viral replication remains unchecked. Hence, it
has been theorized, coronaviruses pathogenesis involves
the delayed release of IFN and an accumulation of
monocyte/macrophages together with an inappropriate
T-cell response [6]. Adding support to this etiology, se-
vere cases of COVID-19 appear to present with dysregu-
lated T-cell counts and elevated inflammatory cytokine
levels [7].
In the case of severe COVID-19, this disruption leads to

a condition described as a “cytokine storm”, in which exces-
sive amounts of pro-inflammatory cytokines are produced
and may contribute to morbidity and mortality in these pa-
tients. A potential INFγ-related cytokine storm was first
identified in some patients suffering with SARS-CoV infec-
tion involving a distinct pattern of cytokines including
IFNγ, CXCL10, and IL-6 [8]. Subsequently, clinical studies
are now confirming similar responses in COVID-19

patients. In a study published in the Lancet, COVID-19 pa-
tients exhibit increased plasma levels of cytokines and che-
mokines, such as IFNγ, CXCL10, IL-1β, and TNFα [9]. As
a result, therapeutic interventions for COVID-19 must ad-
dress a range of pro-inflammatory cytokines and chemo-
kines that can direct the arrival of immune cells and the
development of a late phase hyperactivation.
It has been proposed this hyperinflammatory response

triggers a violent attack on the body that potentiates
cytokine storm development [10]. Studies demonstrate
that viral infections, through both the result of viral-
induced cellular toxicity and the immune response itself,
drive the production of damage-associated molecular
pattern (DAMP) molecules that are recognized by innate
TLRs. For example, Imai et al. have demonstrated that
oxidized phospholipids, generated by reactive oxygen
species following exposure to inactivated influenza virus,
lead to TLR4-mediated alveolar macrophage cytokine re-
lease and acute lung injury (ALI) in mouse models [11].
Importantly, they also found that inactivated influenza virus
causes oxidative stress and TLR4 mobilization in human
peripheral blood mononuclear cells (PBMC) [11]. In
addition, viral infections have been shown to induce TLR4-
mediated release of pro-inflammatory cytokines through
the release of the DAMP molecules S100 calcium-binding
protein A9 and high mobility group box 1; proteins nor-
mally sequestered inside the cell [12, 13]. Functionally,
blocking TLR4 protects from and TLR−/− mice are highly
resistant to influenza-induced lethality [11, 14]. It is also
important to note, that TLR4 signaling may contribute to
fibrosis, further complicating management of COVID-19
[15]. These observations suggest that DAMP-mediated
TLR signaling is an important therapeutic target in
COVID-19, to reduce feed-back loops potentially critical
for cytokine storm development. Interestingly, T-cells in-
fected with SARS-CoV exhibit elevated expression of
TLR4, 7, and 9, further demonstrating that this is a critical
target for coronavirus intervention [16].
The low molecular weight fraction of commercial hu-

man serum albumin (LMWF5A), a novel biologic drug in
development for the treatment of inflammation associated
with osteoarthritis, exhibits mechanisms of action that
may be complimentary to addressing the innate-immune-
mediated inflammation seen in patients suffering from
COVID-19. In the course of development history, the bio-
logic effects of LMF5A have been established using a var-
iety of human immune cell ex vivo and in vitro models
stimulated using the DAMP, TLR4 agonist lipopolysac-
charide (LPS) as well as relevant barrier-function assays
using human endothelial cells (Table 1; also see review on
LMWF5A mechanisms of action [25]). Thus, we
hypothesize that LMWF5A could improve the clinical
outcomes of COVID-19 by attenuating hyperinflamma-
tion and the potential development of a cytokine storm as
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well as the resulting increase in vascular permeability. In
this report, we discuss key findings that support the use of
LMWF5A as a therapeutic agent for patients suffering
from COVID-19 following and provide translational links
drawn from literature searches to bridge our research to
modulation of key inflammatory mediators and function
of the alveolar-epithelial barrier.

Presentation of the hypothesis
LMWF5A inhibits the release of pro-inflammatory cytokines
from PBMC, macrophages, and T-cells
One of the ways LMWF5A may address the excessive
cytokine production seen in these patients is by sup-
pressing pro-inflammatory cytokines released from
mononuclear cells infiltrating from blood. This is
reflected in the ability of LMWF5A to inhibit the release
of a key set of cytokines and chemokines associated with

SARS-CoV-2 infection in ex vivo human PBMC models
activated through innate pattern recognition pathways.
For example, LMWF5A reduces TNFα release by human
PBMC stimulated using LPS as an agonist for TLR4 sig-
naling (Fig. 1) [19]. LPS-stimulation mimics the
pathogen-associated molecular pattern (PAMP) and
DAMP signaling seen in the end stage of disease where
excessive viral loads and tissue damage trigger excessive
induction of the immune response. Subsequent unpub-
lished findings show that this response extends to a re-
duction of CXCL10, IL-1β, and IL-12 as well. Thus,
demonstrates that LMWF5A treatment appears to target
the release of a pattern of cytokines observed in
COVID-19 and other viral cytokine storms.
Tissue resident and blood-derived macrophages are

key contributors in the inflammatory response to viral
infections and the pro-inflammatory precursors of ARDS

Table 1 Ex vivo and in vitro immunomodulatory and barrier function effects of LMWF5A

Cell Model Results Conclusions Study

Influenza HA presented human T-cell
clone

LMWF5A and DA-DKP
treatment results in:
↓ TNFα
↓ IFNγ

Reduced release of cytokines associated with COVID-19 cytokine storm. [17]

Influenza HA presented and CD3/CD28
stimulated human T-cell clone

DA-DKP treatment
results in:
↓ TNFα
↓ IFNγ
↑ RAP-1 phosphoryl-
ation and activity

Reduced release of cytokines associated with COVID-19 cytokine storm.
Also, increased activation of barrier enhancing GTPase.

[18]

LPS-stimulated human PBMC LMWF5A and DA-DKP
treatment results in:
↓ TNFα

Reduced release of cytokine associated with COVID-19 cytokine storm. [19]

LPS-stimulated human PBMC LMWF5A treatment
results in:
↓ TNFα
↑ PGE2 and 15d-PGJ2

Reduced release of cytokine associated with COVID-19 cytokine storm to-
gether with increased pro-resolving mediator release.

[20]

LPS-stimulated, PMA-differentiated THP-
1 macrophages

LMWF5A treatment
results in:
↓ IL-6, IL-12, and
CXCL10
↑ IL-10
↑ AhR activity

Reduced release of cytokines associated with COVID-19 cytokine storm
with apparent shift from M1 to M2 phenotype.

[21]

Monolayer and 3D cultured human
BMMSC

LMWF5A treatment
results in:
↓ RhoA activity
↑ Rac1 activity
↓ Stress fiber formation
↑ Stem cell homing
potential

Rebalancing of overall GTPase activity conducive to barrier enhancement.
Also, increased progenitor cell homing potential.

[22]

Dedifferentiated primary human
chondrocytes

LMWF5A treatment
results in:
↑ SRY-Box transcription
factor
↓ Apoptosis

Activation of transcription factor protective of fibrosis and increased cell
survival.

[23]

Primary human endothelial cell
permeability models

LMWF5A treatment
results in:
↑ Acetylation of α-
tubulin
↓ Vascular leakage

Enhanced barrier function of endothelial cells with reduced vascular
leakage. Also, apparent stabilization of microtubule network.

[24]
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[26]. Alveolar macrophages are the predominant tissue
resident immune cells found in the lung and are likely to
be involved in both the early anti-viral response and
trophic end-stages of tissue damage and recovery. In
addition, pleiotropic monocytes, invading across the
capillary-epithelial bed, will differentiate into pro-
inflammatory M1 macrophages upon arrival and may
contribute to the excessive immune response in the lung
[26]. Moreover, macrophages that develop into an in-
flammatory M1 lineage become a potent source of in-
flammatory cytokines (e.g., TNFα, IL-1β, IL-6, IL-12,
CXCL10), furthering inflammation [26, 27]. Of note, the
balance of macrophage polarization between the micro-
bial/IFNγ-induced M1 phenotypes and the anti-
inflammatory M2 could dictate the amplitude of classical
activation versus neutrophil efferocytosis and immune
resolution, respectively, during pulmonary insult [28].
In vitro studies using human macrophages further

support an immunomodulatory action with LMWF5A
treatment by shifting macrophage phenotypes from an
inflammatory M1 lineage to an anti-inflammatory M2
lineage [21]. In these experiments, a human THP-1
monocyte cell line was differentiated to induce
macrophage-like characteristics, then treated with
LMWF5A and stimulated with LPS. Reductions in both
secreted cytokine and mRNA transcription were ob-
served for the M1 markers IL-6, CXCL10, and IL-12.
Importantly, the same cells exhibited an increase in the

release of the anti-inflammatory M2 marker, IL-10 with
LMWF5A treatment as compared to saline controls.
The reduction in inflammatory M1-type cytokine release
and gene expression combined with increased anti-
inflammatory M2-type cytokine release indicates
LMWF5A modulates the immune response by shifting
the cytokine profile towards homeostasis. This shift in
macrophage phenotype could reduce macrophage hyper-
activity and partially address the overproduction of in-
flammatory cytokines observed in COVID-19.
Although COVID-19 may be characterized as an in-

nate response, studies also indicate that adaptive cells
contribute to the etiology of lung jury as well. Animal
models demonstrate that T-cells facilitate the release of
pro-inflammatory cytokines, such as TNFα, and the ar-
rival of neutrophils in the lung [29]. As observed with
macrophage polarization, this may result from an imbal-
ance in inflammatory and regulatory subsets. For ex-
ample, the ratio of pro-inflammatory Th17 to T
regulatory cytokines in the peripheral blood of patients
has been found to be predictive of 28-day mortality with
ARDS [30]. In support of this evidence, activated and
proliferating pro-inflammatory T-cells have been de-
tected in bronchoalveolar lavage samples taken from
ARDS patients [31]. Moreover, lymphocyte counts have
been associated with increased disease severity in
COVID-19 with patients who die exhibiting significant
leukopenia [32]. These cells represent a potentially

Fig. 1 TNFα release from LPS-stimulated PBMC in the presence of LMWF5A. PBMC were incubated with LMWF5A, 0.1 μM dexamethasone, or
saline for 1 h then stimulated with LPS for 18 h. TNFα release was determined by ELISA and presented as means ± SEM from 13 individual
donors. % inhibition in LPS-induced TNFα release was also calculated for the LMWF5A treatment groups versus saline control release (∗ = p≤ 0.05
vs. saline control). Adapted and modified from Thomas et al. 2016 [19]
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underappreciated source of both IFNγ and proinflamma-
tory cytokines, such as TNFα, and contributors of dis-
ease progression in COVID-19. Once in the lung, INFγ
priming of T-cells will provide for intense, superantigen-
like signaling that may exacerbate autocrine and para-
crine cytokine activity. While their role in COVID-19 is
yet to be fully elucidated, targeting persistent and long-
lived immune regulators, such as T cells, could prove
valuable in balancing the immune response.
One of the earliest documented activities of LMWF5A

is its ability to reduce cytokine release from immune
cells stimulated through the T-cell receptor (TCR) by
CD3/28 antibody or specific antigen presentation.
LMWF5A was found to reduce TNFα and IFNγ release
from CD3/28-stimulated PBMC and influenza HA
antigen-presented human T-cell clones [17]. This activ-
ity was attributed, in part, to an identified diketopipera-
zine molecule formed by the cleavage and cyclization of
the two N-terminal amino acids of human serum albu-
min, DA-DKP, present in LMWF5A. Treatment of these
cells with DA-DKP resulted in significant reductions of
TNFα and IFNγ release from antigen presented T-cells
clones [18]. Interestingly, this effect appears to be spe-
cific to memory (CD45RO+) but not naïve (CD45RA+)
phenotypes (unpublished findings). These findings dem-
onstrated that LMWF5A can reduce cytokine release
during an adaptive immune response triggered by the
presentation of antigen or activation of T-cells. There-
fore, with respect to COVID-19, LMWF5A may shift the
overall inflammatory response away from the hyper-
cytokine production observed as the disease transitions
to ARDS without impacting the body’s ability to fight
the primary viral infection.

LMWF5A down-regulates pro-inflammatory transcription
factors
Mechanistically, COVID-19 pathogenesis seems to be
conducted through distinct transcriptional signaling
pathways. For example, activation of NF-κB appears to
be a hallmark of alveolar macrophages found in patients
during ARDS [33]. More importantly, inhibition of NF-
κB has been shown to limit the production of pro-
inflammatory cytokines like IL-6 and CXCL10 in mouse
models resulting in reduced mortality [34]. Dysregula-
tion of NF-κB activity has been broadly implicated in the
production of inflammatory cytokines (TNFα, IL-1β, IL-
6) and cell apoptosis [35–37]. Also, it has been reported
that NF-κB signaling pathways can coordinate with other
hallmark pro-inflammatory transcription factors in the
immune response [38].
Another pro-inflammatory transcription factor associ-

ated with lung inflammation is signal transducer and ac-
tivator of transcription (STAT). The canonical IFNγ
signaling pathway involves the activation of Janus kinase

and STAT1 which promotes M1 polarization of macro-
phages and augments TCR signaling priming [39].
STAT1 and STAT3 activation has also been shown to
be a driving factor in LPS-induced lung injury by medi-
ating the release of IL-6 and TNFα [40]. Supporting this
mechanism, inhibition of STAT3 reduces the accumula-
tion of immune cells as well as the amount of detectable
TNFα and IL-1β in bronchoalveolar lavage fluid in LPS-
induced mouse lung ALI models [41].
Several lines of preliminary evidence demonstrate that

LMWF5A reduces the activity of both NF-κB and STAT.
NF-κB luciferase HEK293 reporter cells treated with
LMWF5A and then stimulated with TNFα exhibit dose-
dependent reductions in NF-κB expression as measured
by luciferase activity. As for STAT, preliminary experi-
ments, using the LPS-stimulated human PBMC model
described above, indicate that LMWF5A reduces STAT1
and STAT3 activation as measured by DNA-binding
ELISA in nuclear and cytoplasmic protein fractions
taken from cells after 24 h in culture. While these find-
ings need to be fully evaluated, reduction in NF-κB ac-
tivity could reduce the overall inflammatory status of
COVID-19 patients while a reduction in STAT could
provide an avenue to help suppress the robust IFNγ and
M1 signaling that appears to trigger the cytokine storm
development in these patients.

LMWF5A upregulates anti-inflammatory transcription
factors
Conversely, LMWF5A appears to activate the anti-
inflammatory and/or immunoregulatory transcription
factors, aryl hydrocarbon receptor (AhR) and peroxi-
some proliferator-activated receptor (PPAR). A source of
endogenous AhR ligands are tryptophan metabolites,
and one of the active ingredients in LMWF5A is n-
acetyl-tryptophan, suggesting that AhR activation con-
tributes to the immunomodulatory action of LMWF5A.
The effect on AhR activity was confirmed using an AhR
antagonist (CH223191) in the THP-1 model described
above. When an AhR antagonist was added to these
macrophage-like cultures, the IL-6 response was partially
attenuated, demonstrating that the AhR activation plays
a partial role in the reducing of cytokine observed in this
model. However, AhR antagonism had no significant ef-
fect on CXCL10 inhibition, indicating other pathways
are involved in LMWF5A activity as well [21]. Another
target pathway for activity was identified based on the
fact that endogenous PPAR ligands are comprised of
fatty acids and their derivatives, and LMWF5A contains
the fatty acid, caprylate. Furthermore, 15-delta prosta-
glandin J2 (15d-PGJ2), a resolving prostaglandin known
to be a natural ligand for PPARγ, is upregulated by
LMWF5A (to be discussed more below). To establish
the contribution of PPAR in our models, DNA-binding

Thomas et al. Patient Safety in Surgery           (2020) 14:21 Page 5 of 11



and pathway specific antagonism was evaluated. Prelim-
inary findings suggest that human PBMC treated with
LMWF5A exhibited increased PPAR DNA binding and
the addition of the PPARγ antagonist GW9662 to these
cultures results in the attenuation of the LPS-induced
TNFα inhibition. Together, these data indicate that both
AhR and PPAR transcriptional pathways play a role in
the anti-inflammatory responses observed by LMWF5A.
A large body of evidence suggests that AhR and PPAR

signaling plays a pivotal role in immunosuppression and
the direction of regulatory immune cell phenotypes. To
illustrate, AhR has been shown to suppress NF-κB activ-
ity by: increasing DNA binding of the NF-κB subunit
p50 (p50)/p50 NF-κB homodimer to competitively in-
hibit the active p50/ NF-κB subunit p65 (RelA) heterodi-
mer [42], sequestering co-regulators (RelA, NF-κB
subunit RelB) to prevent translocation into the nucleus
[43] and direct trans-repression in the presence of
STAT1 [44]. AhR also promotes anti-inflammatory cyto-
kine production (IL-10, IL-21) and the differentiation of
T-cells to regulatory phenotypes through cross-talk with
the transcription factors proto-oncogene c-Maf and
STAT3 [45, 46]. As with AhR, PPAR has been shown to
suppress NF-κB activity by: binding to DNA and directly
interacting with the RelA and p50 subunits of NF-κB, in-
ducing the expression of inhibitor NF-κB protein, se-
questering coactivators required for NF-κB such as
CREB-binding protein, and releasing the repressor B-cell
lymphoma 6 protein which redirects its activity towards
NF-κB-mediated promoters [47]. This activity decreases
the production of several pro-inflammatory cytokines
regulated by the NF-κB pathway, including TNFα and
IL-6 [47, 48]. More importantly, the PPARγ agonist,
rosiglitazone, is protective of endotoxin induced ARDS
in rat models with marked reductions in nitric oxide and
oxidative damage observed [49]. Based on these results,
we suspect that activation of these pathways could help
suppress the release of key cytokines, such as IL-6,
during COVID-19, provide additional control over pro-
inflammatory signaling pathways, and potentially rebal-
ance inflammatory immune cells to regulatory and
immunotolerant phenotypes that appear to be missing in
critical stages of ARDS.

LMWF5A enhances the release of pro-resolving lipid
mediators
One of the unique aspects of LMWF5A-induced immuno-
modulation is the suppression of pro-inflammatory cyto-
kines concomitant with the enhancement of pro-resolving
molecules. In our LPS-stimulated PBMC investigations,
we found that unlike the steroid dexamethasone, which
reduces cytokine and prostaglandin release, LMWF5A in-
hibits TNFα release while potentiating the production of
pro-resolving prostaglandin E2 (PGE2) and 15d-PGJ2 in

these cultures (Fig. 2) [20]. On the other hand, treatment
with ibuprofen, a nonsteroidal anti-inflammatory drug,
strongly attenuates prostaglandin release but does not re-
sult in a significant reduction in TNFα release. Conse-
quently, LMWF5A offers a distinctive
immunomodulatory profile to other hallmark anti-
inflammatory drugs. Western blot analysis shows that
LMWF5A accomplishes this by upregulating
prostaglandin-endoperoxide synthase 2 (COX-2) expres-
sion [20]. A similar PGE2 response is observed in
macrophage-like cell culture models using PMA-
differentiated U937 monocytic cells stimulated with LPS,
suggesting that while LMWF5A can suppress pro-
inflammatory cytokines, healing and resolution phase me-
diators are still produced and possibly enhanced by
treatment.
In regard to COVID-19, it is now appreciated that

COX-2 plays a critical role in protection through the
resolution phase of inflammation. Hangai et al. found
that PGE2 release from necrotic macrophages may rep-
resent a mechanism to suppress DAMP-induced inflam-
mation and that inhibition of COX-2 results in elevated
serum TNFα levels in liver necrotic models [50]. Inter-
estingly, studies have also shown that PGE2 in the
wound site is sufficient to drive the reverse migration of
neutrophils as well as promote the apoptosis of neutro-
phils and efferocytosis critical for the resolution phase of
the inflammatory process [51]. The authors further hy-
pothesized that this activity is temporally important, in
part, to allow neutrophils to perform critical functions,
then provide timely resolution. While it is certain that
DAMP signaling has evolved to help achieve homeosta-
sis after insult or injury, excessive and/or sustained re-
sponses can exacerbate disease. As a result,
compensatory mechanisms exist within the biologic mi-
lieu and it appears that LMWF5A may help drive lipid-
mediated feed-back loops of immunosuppression.
More importantly, this pathway also appears critical to

viral immunity and may afford some protection from the
robust inflammation in late phase viral infection that leads
to ARDS. For example, in some coronavirus studies, it has
been shown that the virus manipulates prostaglandin re-
lease from infected cells during different phases of infec-
tion. Fang et al. showed that SARS-CoV achieves this is by
membrane protein-induced down regulation of NF-κB,
with a resulting reduction in COX-2 expression [52]. The
authors suggest that this is a protective measure by the
virus to evade the immune response in the early stages of
infection. In addition, the host response with these mole-
cules also appears to dictate disease progression. To illus-
trate, in mouse studies, age-related differences in PGD2
release result in defective migration of dendritic cells and
cytotoxic CD8+ T-cell activity into the lung [53]. Further-
more, it has also been found that anti-inflammatory PGD2
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signaling, through D-prostanoid receptor 1, reduces
inflammasome-induced IL-1β release and mortality in
coronavirus-infected mice [54]. Finally, influenza studies
have established that 15d-PGJ2 treatment protects mice
against lethal influenza infection through a PPARγ-
dependent mechanism with a marked reduction in viral
load and lung inflammation observed [55]. It has been
theorized that bioactive lipids, such as arachidonic acid,
may serve as endogenous anti-viral compounds, thus, to-
gether with the findings above, prostaglandins could

provide a therapeutic advantage for ARDS secondary to
viral infections such as COVID-19 [56].

LMWF5A enhances endothelial barrier function
There are many clinical parameters that may contribute
to the pathogenesis and morbidity associated with
COVID-19. One of these is dysregulation of the
alveolar-epithelial barrier, which results in the build-up
of protein-rich fluid and decreased oxygen diffusion.
Resolution and repair of the widespread inflammation

Fig. 2 Differential modulation of prostaglandins from LPS-stimulated PBMC pre-treated with LMWF5A and other anti-inflammatory compounds.
PBMC were incubated with compounds for 1 h, followed by overnight stimulation with 100 ng/mL LPS. PGE2 and 15d-PGJ2 release were
determined by ELISA, and percent changes are presented as mean ± SD (N = 3). (* = p < 0.05 versus saline control). Adapted and modified from
Thomas et al. 2016 [20]
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characteristic of ARDS, depends not only on clearance
of infiltrating immune cells and suppression of inflam-
mation but also on removal of fluid and restoration of
barrier function. Interventions that enhance barrier
function should provide a rational approach for the
treatment and prevention of COVID-19.

Prostaglandins and barrier function
Research findings suggest that LMWF5A may protect
barrier integrity in several ways. First, and expanding on
an intrinsic ability described above, prostaglandins and
COX-2-derived mediators also appear to promote the
recovery of barrier function in both endothelial and epi-
thelial cells. To illustrate, PGE2 release from LPS-
stimulated A549 epithelial cells, acting through PGE2 re-
ceptor EP4, has been shown to enhance microvascular
endothelial cell barrier function [57]. Moreover, murine
models indicate that COX-2 derived mediators are pro-
tective of acid-induced ALI and that selective inhibition
delays resolution [58]. Thus, the authors propose that in-
creased COX-2 activity could provide some level of pro-
tection against the edema associated with ALI [58].

LMWF5A enhances endothelial barrier function
Equally significant, LMWF5A, and its component DA-
DKP, have been found to impact the activity of enzymes
that link extracellular signals to cytoskeletal rearrange-
ments known as small guanosine triphosphate hydro-
lases (GTPases). Proteomic analysis and pulldown assays
of human T-cells stimulated through the TCR shows
that DA-DKP elevates the phosphorylation and activity
of the GTPase, Ras-related protein RAP-1 (RAP-1), as
compared to controls [18]. Changes in the activity of
other GTPases are also observed in bone-marrow de-
rived mesenchymal stems cells (BMMSC) treated with
LMWF5A. Following treatment with LMWF5A,
BMMSC exhibit a rapid reduction in the intracellular
level of active Ras homolog family member A (RhoA) to-
gether with an increase in Rac family small GTPase 1
(Rac1) [22]. Finally, DA-DKP treatment of human
umbilical vein endothelial cells appears to reduce RhoA
activation induced by thrombin (unpublished find-
ings). This body of evidence provides support for the
idea that LMWF5A treatment can rapidly regulate
GTPase activity in culture.
These molecular switches are intimately linked to a

variety of cell processes that help regulate the barrier
function of both endothelial and epithelial cells. Of crit-
ical importance, specific exchange protein activated by
cAMP (EPAC) activation of RAP-1 both prevents and
reverses dysregulation of vascular function induced by
inflammatory cytokines through stabilization of cytoskel-
etal components [59]. As seen in endothelial cells, epi-
thelial cell GTPase activity dictates the arrangements

and status of f-actin cytoskeletal elements and cellular
junction proteins [60]. It is important to note there is
relevance of this finding to COVID-19 as studies on the
pathology of severe coronavirus-induced ARDS/ALI
hypothesize that alveolar damage is dependent on a bal-
ance between coagulation and fibrinolysin pathways
[61]. Interestingly, viral infection also appears to activate
RhoA activity in some models [62]. Because one of the
underlying features of ARDS secondary to COVID-19 is
the breakdown of the endothelial-epithelial barrier in the
alveoli, this activity could provide a potential avenue to
reduce the influx of fluid into alveolar spaces.
An ancillary cytoskeletal rearrangement has also been

observed following LMWF5A treatment of human retinal
endothelial cells. When treated, these cells observe a rapid
increase in acetylated α-tubulin; a modification associated
with stabilization and longevity of polymerized microtu-
bules (Fig. 3a) [24]. This post-translational modification,
attributed to the release of Ca2+ from intracellular stores
in this model, can be detected in these cells in as little as
30min post-treatment and persists for 24 h (Fig. 3b) [24].
To put this in perspective, destabilization of microtubules
has been shown to be an integral endothelial barrier dys-
function as a result innate immune signaling and oxidative
stress [63]. Moreover, inhibition of histone deacetylase 6,
resulting in the acetylation of α-tubulin, has been shown
to reduce LPS-induced lung injury by down regulating
caspase 1 activity, resulting in lowered IL-1β levels [64].
Ergo, microtubule stabilization has a documented anti-
inflammatory and barrier enhancement effect in the lung.
The potential biologic relevance of this LMWF5A activ-

ity can be seen in functional assays of barrier activity and
in the microscopic examination of cytoskeletal rearrange-
ments. Treatment of both endothelial and epithelial
monolayers with DA-DKP increases barrier function for
extended periods of time as measured by increased trans
endothelial electrical resistance. Moreover, DA-DKP also
attenuates rapid increases in permeability, promotes cor-
tical f-actin rearrangement, and reduces stress-fiber for-
mation following thrombin stimulation of endothelial
cells; this activity is suggested to be dependent on EPAC1,
an exchange factor for the aforementioned small GTPase
RAP-1, and VE-cadherin organization (unpublished find-
ings). Altogether, these data on the molecular mechanisms
and more general functional effects of LMWF5A demon-
strate how this biologic may prove useful for the
treatment of lung vasogenic edema by enhancing the
alveolar-epithelial barrier via altering GTPase activity, pro-
moting cortical f-actin rearrangement, and stabilizing the
microtubule network.

Testing of hypothesis
To explore the use of LMWF5A for this indication, a
randomized controlled trial to evaluate the safety and
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efficacy of nebulized LMWF5A in adults with ARDS sec-
ondary to COVID-19 infection (supplement 1) was de-
veloped and is under review by the Center for Biologics
Evaluation and Research division of the Food and Drug
Administration. Briefly, this trial is designed to enroll up
to ten (10) patients, randomized 1:1 to nebulized
LMWF5A plus standard of care (SOC) for ARDS (active
arm, n = 5) or SOC for ARDS (control arm, n = 5). The
primary trial objective is to evaluate the safety and toler-
ability of nebulized LMWF5A in patients with ARDS
secondary to COVID-19 infection. The secondary trial
objectives are to evaluate the efficacy of nebulized
Ampion versus control in improving the clinical course
and outcomes of patients with ARDS secondary to

COVID-19 infection including mortality, ventilator free
days and PaO2/FiO2 ratio.

Implications of the hypothesis
If successful, this therapy may attenuate the cytokine
storm observed in these patients and potentially reduce
mortality, increase ventilation free days, improve oxygen-
ation parameters and consequently lessen the burden on
patients and the intensive care unit. This initial study will
be followed by larger randomized controlled trial in
COVID-19 positive patients exhibiting respiratory distress
and might avoid the need of mechanical ventilation.

Conclusion
In conclusion, in vitro findings suggest that the immu-
nomodulatory effects of LMWF5A make it a viable can-
didate for treating cytokine storm and restoring
homeostasis to the immune response in COVID-19.
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