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Abstract

Background: Based on amyloid cascade and tau hypotheses, protein biomarkers of different AR and tau species in
cerebrospinal fluid (CSF) and blood/plasma/serum have been examined to correlate with brain pathology. Recently,
unbiased proteomic profiling of these human samples has been initiated to identify a large number of novel AD
biomarker candidates, but it is challenging to define reliable candidates for subsequent large-scale validation.

Methods: We present a comprehensive strategy to identify biomarker candidates of high confidence by integrating
multiple proteomes in AD, including cortex, CSF and serum. The proteomes were analyzed by the multiplexed
tandem-mass-tag (TMT) method, extensive liquid chromatography (LC) fractionation and high-resolution tandem
mass spectrometry (MS/MS) for ultra-deep coverage. A systems biology approach was used to prioritize the most
promising AD signature proteins from all proteomic datasets. Finally, candidate biomarkers identified by the MS
discovery were validated by the enzyme-linked immunosorbent (ELISA) and TOMAHAQ targeted MS assays.

(Continued on next page)

* Correspondence: hong.wang@stjude.org; junmin.peng@stjude.org
"Hong Wang and Kaushik Kumar Dey are co-first authors.

'Departments of Structural Biology and Developmental Neurobiology, St.
Jude Children’s Research Hospital, Memphis, TN 38105, USA

Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13024-020-00384-6&domain=pdf
http://orcid.org/0000-0003-0472-7648
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:hong.wang@stjude.org
mailto:junmin.peng@stjude.org

Wang et al. Molecular Neurodegeneration (2020) 15:43

Page 2 of 20

(Continued from previous page)

PRDX3, and NTN1 by integrating all proteomic datasets.

AD community.

Results: We quantified 13,833, 5941, and 4826 proteins from human cortex, CSF and serum, respectively. Compared
to other studies, we analyzed a total of 10 proteomic datasets, covering 17,541 proteins (13,216 genes) in 365 AD,
mild cognitive impairment (MCl) and control cases. Our ultra-deep CSF profiling of 20 cases uncovered the majority
of previously reported AD biomarker candidates, most of which, however, displayed no statistical significance
except SMOC1 and TGFB2. Interestingly, the AD CSF showed evident decrease of a large number of mitochondria
proteins that were only detectable in our ultra-deep analysis. Further integration of 4 cortex and 4 CSF cohort
proteomes highlighted 6 CSF biomarkers (SMOCT, CTQTNF5, OLFML3, SLIT2, SPON1, and GPNMB) that were
consistently identified in at least 2 independent datasets. We also profiled CSF in the 5xFAD mouse model to
validate amyloidosis-induced changes, and found consistent mitochondrial decreases (SOD2, PRDX3, ALDH6AT1,
ETFB, HADHA, and CYB5R3) in both human and mouse samples. In addition, comparison of cortex and serum led to
an AD-correlated protein panel of CTHRC1, GFAP and OLFM3. In summary, 37 proteins emerged as potential AD
signatures across cortex, CSF and serum, and strikingly, 59% of these were mitochondria proteins, emphasizing
mitochondrial dysfunction in AD. Selected biomarker candidates were further validated by ELISA and TOMAHAQ
assays. Finally, we prioritized the most promising AD signature proteins including SMOCT, TAU, GFAP, SUCLG?2,

Conclusions: Our results demonstrate that novel AD biomarker candidates are identified and confirmed by
proteomic studies of brain tissue and biofluids, providing a rich resource for large-scale biomarker validation for the

Keywords: Alzheimer’s disease, Biomarker, Cerebrospinal fluid, Brain tissue, Cortex, Blood, Plasma, Serum, Mass
spectrometry, Proteomics, Proteome, Tandem mass tag, Systems biology

Background

Alzheimer’s disease (AD), the most common cause of de-
mentia, affects more than 5 million Americans and an
estimated 47 million worldwide [1]. It is a progressive
neurodegenerative brain disorder clinically characterized
by extracellular amyloid plaques deposition, intracellular
neurofibrillary tangle growth, memory and cognition im-
pairments [2—4]. Traditionally, AD is diagnosed by pa-
tient’s symptoms, memory and behavior tests, and
confirmed by post-mortem brain pathologies, with recent
additions of brain imaging of these pathologies [5]. Ac-
cording to the amyloid cascade and tau hypotheses, pro-
tein biomarkers in cerebrospinal fluid (CSF) and blood/
plasma/serum have also been developed or under develop-
ment, including amyloid-p (AP) level, AB42/AB40 ratio,
total tau level, and the accumulation of phosphorylated
tau isoform [6—9]. Currently, techniques like structural
magnetic resonance imaging (MRI), and molecular im-
aging of deposited AP and tau proteins using positron
emission tomography (PET), are highly accurate in detect-
ing the presence of pathophysiological and neuropatho-
logical changes of AD and are used in the drug
development [10, 11]. But their high cost and insufficient
accessibility are being major limitations [12]. Therefore,
the field will benefit from increasing availability of blood-
related and CSF biomarkers that systematically reflect the
AD pathogenesis. To accomplish this ambitious goal, un-
biased profiling of human CSF and blood samples has
been attempted to reveal AD novel biomarkers to improve
diagnosis and prognosis [13].

Proteomic profiling of human specimens is largely
achieved by the approach of modern mass spectrometry
(MS) [14, 15]. With the advances in peptide separation
power by multi-dimensional liquid chromatography
(LC), and the improvement of MS resolution and scan
rate, MS can profile more than 12,000 proteins (> 10,000
genes) from mammalian tissue samples [16—18]. Both
data dependent acquisition strategy (e.g. label free
method and stable isotope labeling) [19] and data-
independent acquisition strategy [20] are currently used.
Tandem-mass-tag (TMT) has been emerging as a com-
mon stable isotope labeling method [21], enabling up to
16-plexed analysis [22]. Although ratio compression oc-
curs during quantification because of peptide co-elution,
the limitation can be addressed by the introduction of
the MS3 method [23], extensive LC fractionation, MS
optimization, and computational correction [24], to
allow deep proteomic analysis [18, 25, 26].

Compared with the analysis of human cell cultures or
solid tissues, comprehensive proteomic analysis of hu-
man CSF and blood is often difficult because individual
protein concentration spans a large dynamic range of at
least 10 orders of magnitude [27]. For example, albumin
is the most abundant protein in human blood present at
a concentration of ~50mg/ml. In sharp contrast, the
cytokine of interleukin-6 is detected at a concentration
of 4.2 pg/ml in healthy individuals [28, 29]. To reduce
protein dynamic range, antibody-based depletion of the
most abundant proteins is often utilized to enhance the
detection of proteins of low abundance [30-32], but the
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depletion is not complete and can introduce experimen-
tal variations [32]. More recently, our group utilized the
superior separation capacity of the latest TMT-LC/LC-
MS/MS to bypass the depletion step and detect about
5000 proteins in human CSF and serum toward AD bio-
marker discovery [18, 25]. In addition, several other
groups used the similar strategies in AD biomarker stud-
ies [33, 34]. Although a large number of new protein
biomarker candidates have been reported by the MS
analysis, it is not straightforward to determine the reli-
able candidates for the following large-scale validation
studies.

Here we introduce an integrated approach to analyze
unbiased, large-scale and ultra-deep proteomes in cor-
tex, CSF and serum from multiple independent cohorts,
totaling 10 large proteomic datasets with 17,541 proteins
(13,216 genes) from 365 samples. We also analyzed CSF
samples from an AD mouse model to show protein cor-
relation with amyloidosis. Given this urgent requirement
for biomarkers that reflect AD neuropathology, compre-
hensive systems-based approaches are likely to develop
network-based biomarkers across multiple human tis-
sues (brain cortex and biofluids). Our ultra-deep CSF
profiling uncovered the majority of previously reported
AD CSF biomarkers and also identified deregulated pro-
teins associated with mitochondrial function. Further as-
similation of human cortex and CSF proteomes and
validation in the mouse model show amyloidosis-
induced changes. Finally, we introduced a comprehen-
sive systems approach to prioritize the most promising
targets for Alzheimer’s disease.

Materials and methods

Human brain cortex, cerebrospinal fluid, and serum
Human brain cortex, CSF, and serum specimen were
provided by the brain and body donation program at
Banner Sun Health Research Institute and the
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Alzheimer’s Disease Research Center at Icahn School of
Medicine at Mount Sinai with well-established criteria
for clinical and pathological diagnoses [35, 36]. All sub-
jects consented to the study. A total of 110 human brain
tissue, 20 CSF, and 11 serum cases were used as discov-
ery cohorts (datasets i, ii, v, x in Table 1) for the present
proteomics study. All samples were frozen and stored at
- 80°C in aliquots of polyethylene tubes until use. Sam-
ple information is provided in Table 1.

Mouse cerebrospinal fluid

Wide type (WT) control and 5xFAD transgenic mice
that overexpress familial AD mutants (the Swedish mu-
tation, K670N/M671L; the Florida mutation, 1716V; and
the London mutation, V717I) and PS1 (M146L, L286V)
transgenes at the age of 9-12 months were used for the
spinal fluid collection. Mice were bred and maintained
in a specific pathogen free facility in the Animal Re-
source Center at St. Jude Children’s Research Hospital.
All protocols were approved by the Institutional Animal
Care and Use Committee. CSF samples were collected
following an established protocol [37], and then were
snap-frozen in liquid nitrogen, and stored at — 80 °C be-
fore analysis.

Protein extraction and quantification

The frozen samples were lysed in the fresh lysis buf-
fer comprised of 50 mM HEPES, pH8.5 8M urea,
and 0.5% sodium deoxycholate with 1x phosphatase
inhibitor cocktail (PhosSTOP, Sigma-Aldrich). Protein
extraction and concentration measurement were done
by our established protocol [25, 38]. In brief, BCA
assay (Thermo Fisher Scientific) was used for measur-
ing protein amount, and the quantifications were fur-
ther confirmed by short SDS Coomassie-stained gel
[39]. The protein lysates were stored at — 80 °C in ali-
quots before use.

Table 1 Summary of Human and Mouse Proteome Datasets for Biomarker Analysis

Tissue Type Dataset ~ Total Case ~ AD MCl Control Proteins Quantified Reference

Human Cortex i 48 19 7 22 12,578 This study and cohort 1 in Bai B, et al. Neuron. 2020
Human Cortex ii 62 23 0 39 13,702 Cohort 2 in Bai B, et al. Neuron. 2020

Human Cortex iii 40 10 20 10 8817 Cortex cohort 1 in Higginbotham L, bioRxiv. 2019
Human Cortex iv 27 9 8 10 11,244 Cortex cohort 2 in Higginbotham L, bioRxiv. 2019
Human CSF v 20 1 0 9 5941 This study and Bai B, et al. Neuron. 2020

Human CSF vi 40 20 0 20 2875 CSF cohort 1 in Higginbotham L, bioRxiv. 2019
Human CSF vii 9% 33 31 32 792 CSF cohort 2 in Higginbotham L, bioRxiv. 2019
Human CSF viii 10 5 0 5 2321 Sathe G, et al. Proteomics Clinical Applications. 2019
¢ Mouse CSF ix 1" 6 0 5 1058 This study

Human Serum X 11 6 0 5 4826 Dey KK, et al. Clinical Proteomics. 2019

Summary 10 365 142 66 157 17,541

“Note: AD cases are 5 x FAD mice, control cases are age matched healthy mice
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Protein digestion and tandem-mass-tag (TMT) labeling
Protein digestion and labeling were carried out with a
previously optimized protocol [38, 40]. ~ 0.1 mg of quan-
tified proteins in the lysis buffer with 8 M urea were first
digested with Lys-C (Wako, 1:100 w/w) at 21°C for 2 h,
and then the solution was diluted 4-fold to urea concen-
tration of 2 M; trypsin (Promega, 1:50 w/w) was further
added for digestion at 21 °C for overnight. The digestion
process was terminated by 1% trifluoroacetic acid (TFA).
The supernatant was desalted with Sep-Pak C18 cart-
ridge (Waters), and then dried by a speed vacuum. Each
sample was re-dissolved in 50 mM HEPES (pH 8.5) for
TMT reaction for 30 min, and then mixed and pooled
equally. Pooled samples were desalted for the subse-
quent fractionation by offline basic pH Liquid chroma-
tography (LC).

Extensive two-dimensional LC/LC-MS/MS analysis

The pooled TMT labeled peptides were resolved and frac-
tionated by offline basic pH reverse phase LC, and each of
the fractions was analyzed by acidic pH reverse phase LC
coupled with MS/MS analysis [24, 41, 42]. The offline
basic pH LC was performed with an XBridge C18 column
(3.5 um particle size, 4.6 mm x 25 cm, Waters), buffer A
(I0mM ammonium formate, pH8.0), buffer B (95%
acetonitrile, 10 mM ammonium formate, pH 8.0), using a
2-3h gradient of 15-35% buffer B [38]. Up to 180 frac-
tions were collected every minute for biofluid samples,
and a total of 40 concatenated fractions were collected for
cortex. In the acidic pH LC-MS/MS analysis, fractions
were analyzed sequentially on a column (75 um x 15-30
cm, 1.9 um C18 resin from Dr. Maisch GmbH, 65 °C to re-
duce backpressure) coupled with a Fusion or Q Exactive
HF Orbitrap mass spectrometer (Thermo Fisher Scien-
tific). Peptides were analyzed with a 1-3 h gradient (buffer
A: 0.2% formic acid, 5% DMSO; buffer B: buffer A plus
65% acetonitrile). For mass spectrometer settings, positive
ion mode and data-dependent acquisition were applied
with one full MS scan followed by a 20 MS/MS scans.
MS1 scans were collected at a resolution of 60,000,1 x 10°
AGC and 50ms maximal ion time; higher energy
collision-induced dissociation (HCD) was set to 32—38%
normalized collision energy; ~ 1.0 m/z isolation window
with 0.3 m/z offset was applied; MS2 spectra were ac-
quired at a resolution of 60,000, fixed first mass of 120 1/
z, 410-1600 m/z, 1 x 10° AGC, 100~150 ms maximal ion
time, and ~ 15 s of dynamic exclusion.

Protein identification and quantification by the JUMP
software suite

The bioinformatics processing of protein identification
and quantification were carried out with the JUMP soft-
ware suite [43-45]. In brief, MS/MS raw data were
searched against a target-decoy database to estimate
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false discovery rate (FDR) [46]. We combined the down-
loaded Swiss-Prot, TrEMBL, and UCSC databases and
removed redundancy (human: 83,955 entries) to create
the database. Main search parameters were set at pre-
cursor and product ion mass tolerance (+15ppm), full
trypticity, maximal modification sites (n =3), maximal
missed cleavage (n = 2), static mass shift including carba-
midomethyl modification (+57.02146 on Cys), TMT
tags (+229.16293 on Lys and N-termini), and dynamic
mass shift for oxidation (+15.99491 on Met). Peptide-
spectrum matches (PSM) were filtered by mass accuracy,
clustered by precursor ion charge, and the cutoffs of
JUMP-based matching scores (J-score and AJn). The
peptide was represented by the protein with the highest
PSMs according to the rule of parsimony when one pep-
tide was matched to multiple homologous proteins [47].
Protein quantification was performed based on the re-
porter ions from MS2 using our previously optimized
method [24].

Differential expression analyses of proteome datasets
Blood contamination is a major established covariate in
tissue/biofluids proteome analysis, especially in serum/
plasma [48]. Thus we applied a robust linear regression
model for blood contamination correction [49]. The re-
sidual was then used for the following differential expres-
sion analysis except for certain blood covariates (e.g.
coagulation in serum proteome) that are biased in AD and
control groups in the small cohorts of discovery pro-
teomes. Blood contamination outlier samples were re-
moved when biased blood covariates were detected. For
instance, three outlier samples were removed in CSF due
to erythrocyte contamination. Differential expression
analyses of discovery proteomes were carried out via
the LIMMA R package [50], and multiple test correc-
tion was performed by Benjamini-Hochberg (BH) proced-
ure [51]. For individual proteome analysis, we applied
two cutoffs, including Z score transformed Log, fold
change >2 and FDR < 0.05 or p value <0.05. For mul-
tiple proteome integration, Z score difference >2 and
FDR < 0.2 were used.

Principal component analysis

Principal component analysis (PCA) was used to visualize
the differences among different sample groups in discov-
ery proteomes. Log, transformed relative expression of all
proteins was used as features of PCA. The pairwise Eu-
clidean distance between features was calculated. PCA
was performed using the R package prcomp [52].

Integrated ranking of proteins in individual datasets
though order statistics

To integrate multiple proteome datasets from distinct
tissue/biofluids and independent studies to prioritize
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disease proteins and pathways in AD, a comprehensive
order statistics-based protein ranking was carried out
similarly as previously described [17, 18], which com-
bined N distinct sets of protein rankings to output one
integrated ranking. In brief, a total of 10 individual data-
sets from three independent deep proteomic studies
were integrated for this analysis. The ranks of proteins
were normalized by the total number of proteins in each
dataset and the integrated protein ranking was generated
by the framework of order statistics [53, 54]. Specifically,
the ranks of each data source were randomly permutated
for 1000 times to derive null Q values, and the empirical
p values were then derived from the estimated null Q
distribution. Multiple test was corrected by BH method.
The integration was carried out in a 3-step tiered man-
ner. Discovery cohorts or reference cohorts were first
separately consolidated. Proteomes of individual tissue/
biofluids were then combined into cortex, CSF, or serum
ranking. Finally, after removing proteins without any
change in CSF and serum data sets, the three ranks were
integrated into a final integrative rank. To summarize
the integrated ranking into pathway rankings, we per-
formed pathway enrichment by GSEA [55]. The value
and FDR were derived by permuting the proteins sets
for 1000 times in a core pathway extracted from GO,
KEGG, and Hallmark. Pathways with FDR <0.05 were
accepted as enriched pathways.

TOMAHAQ targeted MS validation assay

The TOMAHAQ analysis was executed essentially the
same as the previous study [25] using an established
protocol [56]. The selected AK2 and PCK2 peptides
were synthesized, purified, and labeled by a TMTO re-
agent from Thermo Fisher Scientific, and were then
spiked into the TMT11-labeled pooled samples with op-
timized quantities. These labeled synthetic and target
peptide mixture were analyzed on a Fusion Orbitrap
mass spectrometer following the same steps applied in
the previous biomarker study [25]. Acquired targeted
MS3 level quantification were compared with the ori-
ginal discovery MS analyses. Finally, Pearson correlation
between the TOMAHAQ and the discovery MS assays
were carried out to confirm the validity of these bio-
marker candidates.

ELISA validation assay

GPNMB protein levels in the CSF samples from 7 AD
and 7 healthy controls were detected by human
Osteoactivin (GPNMB) ELISA kit (RayBiotech, US).
CSF samples were diluted 3 folds with the diluent
buffer before the assay. ELISA was carried out in ac-
cordance with the manufacturer’s manual. Student’s t-
test was applied for the DE analysis between AD and
Ctl groups, and Pearson correlation was performed to
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compare the quantification between ELISA and the
discovery MS assay.

Results

Comprehensive integration of ultra-deep AD proteomes
in cortex, CSF and serum

To systematically investigate AD biofluid biomarkers
that are associated with AD pathogenesis, we per-
formed comprehensive integrated analyses of 10 inde-
pendent AD proteomic datasets covering 5 ultra-deep
discovery datasets and 5 deep reference datasets from
brain cortex, CSF and serum (Table 1). The cortex
proteome consists of 2 discovery cohorts and 2 refer-
ence cohorts. The CSF proteome consists of 1 discov-
ery cohort and 3 reference cohorts. The 5 reference
datasets were mined from 2 independent biofluid
proteome studies of AD [33, 34]. The integrative ana-
lyses were carried out via a CSF-centric manner, and
datasets were assigned with labels from i to x (Table
1, Fig. la). In total, we analyzed 17,541 proteins (13,
216 genes) from 365AD, MCI and healthy control
cases (Fig. 1a), representing the most comprehensive
AD proteomic data to our knowledge.

We first examined the proteomic data quality of our 5
discovery datasets from cortex, CSF and serum (Supple-
mentary Table S1, S2, S3, S4 and S5). It appears that the
AD and control samples are distinguishable by principle
component analysis of the entire proteomic datasets
(Fig. 1b). We next examined the profiling depth of these
proteomic datasets. Ultra-deep proteomic profiling was
achieved through our newly established pipeline, which
combines undepleted biofluid sample processing, multi-
plexed tandem-mass-tag labeling, extensive two-
dimensional liquid chromatography fractionation and
high-resolution tandem mass spectrometry (termed
TMT-LC/LC-MS/MS) [18, 25]. As a result, our cortex
proteome (13,833 proteins from cortex datasets i and ii)
can cover 86% of the expressed cortex transcriptome
based on the human protein atlas database [57] (Fig. 1c).
Our CSF discovery proteome (5941 proteins in dataset v)
covers 80 and 86% of reference study 1 (2731 proteins in
dataset vi) and reference study 2 (2025 proteins in dataset
viii), respectively, while the reference studies 1 and 2
cover only 37 and 29% of our CSF proteome. Similarly,
our serum discovery proteome was compared with two
recent AD serum proteome studies [58, 59]. Our dataset
(4826 proteins in dataset x) covers 63 and 89% of the two
reference datasets (560 and 510 proteins), respectively,
while the reference datasets cover only 7 and 9% of our
proteome (Fig. 1d). Considering the low coverage of the
two human serum datasets, we did not use them in our
analysis. Together, these comparisons confirm the high
quality of our analyzed proteomes, highlighting the
deep coverage of the AD tissue/biofluid proteomes.



Wang et al. Molecular Neurodegeneration (2020) 15:43 Page 6 of 20

d
Discovery Reference
cohorts cohorts Human serum
H Summary:
cg:ea: EI EI - |E| \ / EI 10 datas\éts
365
Human / v\Mouse CSF 17,5:isgioteins
CSF EI - |E| |E| 13,216 genes

PC2 (17.5%)

PC1(14.1%) PC1(36.24%) PC1 (34.9%)

Cortex proteome CSF Serum
n=13,833 n="5941 n=4,826

® oo

Cortex transcriptome Ref. study 3 Ref. study 4
n=14,883 n =560 n=510

Ref. study 2
n=2,025

Ref. study 1
n=2,731

Fig. 1 Comprehensive integration of ultra-deep cortex, CSF and serum proteome datasets for biomarker analyses in Alzheimer's disease. a
Workflow for data integration. The human brain cortex proteomes consist of 4 datasets including 2 discovery cohorts (data i and ii) that were
validated by 2 reference cohorts (data iii and iv). The human cerebrospinal fluid (CSF) proteomes consist of 4 individual datasets including one
discovery cohort (data v) that was validated by 3 reference cohorts (data vi, vii, viii). Differential expression (DE) of CSF proteome was carried out
through LIMMA R package, and then integrated with cortex proteome. Next, the human CSF proteome was compared with mouse CSF (data ix).
Finally, the cortex and CSF proteomes were integrated with the serum proteome (data x). b Principle component analyses (PCA) of discovery
proteomes. Dot plots show two-dimensional principle component analyses of all quantified proteins in the representative discovery datasets
including human cortex (i), Human CSF (v), and human serum (x). Protein expression values of all datasets were log2-transformed for PCA
analyses. ¢ Advanced tissue proteome profiling pipeline achieves ultra-deep proteome coverage in cortex. The unique proteins quantified in the
cortex discovery cohorts were combined and then compared to the cortex transcriptome with consensus normalized expression (NX) values > 1
in the Human Protein Atlas database. d Advanced biofluid proteome profiling platform achieves ultra-deep proteome coverage in human CSF
and serum. The CSF proteome was compared to the two deepest MS-based CSF proteome studies in AD so far, Reference study 1 (data vi,
Higginbotham L, BioRxiv, 2019) and Reference study 2 (data viii, Sathe G, Proteomics Clin Appl. 2019), similarly the serum proteome data was
compared to the two recent MS-based AD serum protein biomarker studies, Reference study 3 (Ashton N, Science Advances, 2019) and
Reference study 4 (Lan J, Journal of Proteome Research, 2018)

Ultra-deep CSF proteome profiling identifies evident
mitochondrial protein reduction in Alzheimer’s disease
AD CSF biomarkers have been extensively explored in
shallow coverage due to technical challenges. Although
many biomarkers have been proposed, most of them
cannot be reproducible across laboratories; new proteo-
mics techniques that can support in-depth profiling are
urgently needed for biomarker studies. To explore novel
AD biomarker candidates in an ultra-deep proteome

setting, we recently developed a new in-depth biofluid
profiling pipeline [25] and applied it to the analysis of 20
CSF samples. In total, we quantified 5941 unique pro-
teins with a false discovery rate (FDR) of 1% in 11 AD
and 9 healthy control cases. Three sample outliers were
removed due to blood contamination. DE analysis was
carried out through LIMMA R package, resulting in 355
DE CSF proteins (Z value of logyRatio >2 and FDR <
0.05, Fig. 2a). Our ultra-deep CSF proteome identified
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Fig. 2 Ultra-deep CSF proteome profiling identifies evident mitochondrial protein reduction in Alzheimer's disease. a Workflow for CSF proteome
analysis. b Ultra-deep CSF proteome unveiled evident decrease of mitochondrial proteins in AD. The X-axis of the volcano plot for all quantified
CSF proteins shows the Z score transformed log2 level fold changes comparing AD to Ctl. Y-axis shows the -log10 level FDR value. Previously
reported AD CSF biomarkers are plotted in black. Top DE proteins with FDR < 0.01 and Z value < —5 are plotted in red. Red dashed lines indicate
the DE cutoff of FDR < 0.05 and Z score difference > 2. ¢ Majority of top DEs are mitochondrial proteins showing decreased level in AD. Heatmap
shows the relative expression of top DE proteins with Z score difference > 5 and FDR < 0.01 comparing AD to Ctl, these DE proteins are classified
into distinct groups (a-e) according to their mitochondrial functions as indicated on the right side of the heatmap. d Pie chart shows the
mitochondrial functional groups classified in panel c. The number of proteins in each subgroup is labeled. e Deep profiling depth is a
prerequisite for confident detection of evident mitochondrial protein changes. CSF proteins are plotted as a function of their concentration rank
(x-axis) and their mean log10 level TMT intensity in all samples (y-axis). Top DE mitochondrial proteins with Z score difference > 5 and FDR < 0.01
were plotted in red. The median concentration rank of these mitochondrial proteins is labeled and marked by dashed red line
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most of previously reported AD CSF biomarker candi-
dates (12 out of 13, Supplemental Table S6), however,
the majority of them displayed no statistical significance
except SMOC1 and TGFB2, which may be due to the
small sample size in our pilot study and/or the small
changes of these proteins in AD (Fig. 2b). Nevertheless,
we still observed 68 top DE proteins, even under a
highly stringent threshold (Z value >5 and FDR < 0.01).
Remarkably, 67 out of the 68 top DE proteins are mito-
chondrial proteins (Fig. 2b, c¢), and most of them are
tightly correlated with the others (Fig. S1). These pro-
teins are known to have functional roles in supporting
energy metabolism, mitochondrial biogenesis, reactive
oxygen species reduction, and mt DNA repair (Fig. 2d).

This correlated mitochondrial protein decrease in AD
is striking but was barely reported in previous CSF stud-
ies. To understand why these proteins were missed in
previous studies, we ranked all quantified proteins ac-
cording to their abundance, and found that these top DE
mitochondrial proteins were presented in the CSF at low
abundance, with a median abundance rank of 2960 (Fig.
2e). We then performed systematic investigation of the
DE proteins using distinct proteome coverage. If the
coverage is as shallow as the depth of 500 proteins, it is
sufficient to detect many previously reported AD bio-
marker candidates but miss all of these top mitochon-
drial DE proteins. While a small fraction of these
mitochondrial proteins starts to show up with the depth
of 2000-3000 proteins, the majority of these proteins
are revealed with the depth of at least 4000 proteins
(Fig. S2). Thus, ultra-deep profiling is a prerequisite to
detect these protein changes in AD CSF proteome. In
summary, our CSF proteomic analysis covers the most
of previously reported AD CSF biomarkers and unveils
evident mitochondrial protein reduction in the AD
patients.

Integration of CSF and cortex proteomes discovers
consistent CSF biomarkers in Alzheimer’s disease across
independent studies

To investigate CSF protein changes that are associated
with AD pathology, we systematically integrated 4 co-
horts of cortex and 4 cohorts of CSF datasets from three
independent MS-based proteome profiling studies
(Fig. 3a). The cortex proteome covered majority of pro-
teins quantified in the CSF (Fig. 3b). We applied a cutoff
(Z value >2 and FDR <0.2) for all datasets, resulting in
1261 DE proteins in the CSF and 245 DE proteins in the
cortex; 44 out of them were changed in both proteomes
(Figs. 3b-d), with most of them showing increases in
both cortex and CSF (e.g. TGFB2, IGFBP5, and SLC5A3)
or increase in the cortex but decrease in CSF (e.g. DPYD
and S100A4, similar to the expression pattern of Ap42
peptide [60]). Interestingly, MDK, CTHRC1, and A,
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which were reported as the most significantly elevated
proteins in our AD brain cortex study [18], were not sig-
nificantly changed in the small cohort of CSF samples
(Fig. 3c). Superimposing these 44 proteins along with
APP and TAU onto STRING protein-protein interaction
database [61] elucidated 4 protein interaction modules
associated with amyloid pathology and mitochondrial
functions, while no TAU related protein interaction
module was identified with this small list (Fig. 3e). Not-
ably, most of these module proteins are correlated with
the amyloid level (Fig. S3).

To evaluate the reliability and reproducibility of these
44 DE proteins across laboratories, we compared our
CSF proteome with two independent MS-based CSF
proteomic studies [33, 34]. SMOC1 and CI1QTNF5
showed up in all three independent studies. OLFMLS3,
SPONT1, and SLIT2 stood out in this study and reference
study 1 (data vi) [33]. GPNMB emerged in this study
and reference study 2 (data viii) [34] (Fig. 3¢, d). All six
proteins were reported to be tightly associated with AD
pathogenesis [18]. While, SMOC1 and GPNMB have
been reported as putative CSF biomarkers in previous
studies [18, 33, 62], CIQTNF5, OLFML3, SPON1 and
SLIT2 are novel candidates that show reproducibility
across distinct laboratories and pipelines (e.g. depleted
vs undepleted CSF). Notably, the expression level of all
six proteins started to raise in the cortex of mild cogni-
tive impairment patients, implicating their potential as
early diagnosis biomarkers for Alzheimer’s disease
(Fig. 4a). Moreover, our CSF proteome profiling also dis-
covered potential AD biomarkers of low abundance that
were beyond the detection limits of other studies. For in-
stance, the abundance rankings of SLC5A3, BBOXI,
CAMK4, and CAMKK2 in the CSF were 3039, 3040,
4191, and 5787, respectively, all beyond the detecting
limits of previously reported studies (Figs. 3d, 4b). The
levels of CAMK4 and CAMKK2 were decreased in both
cortex and CSF. Finally, HTRAI, a possible genetic risk
factor for AD and an enzyme that degrades ApoE4 and
APP [63, 64], was also revealed as a novel DE protein in
our CSF proteome (Fig. 4b). Collectively, the integration
of CSF and cortex proteomes unveils consistent CSF
biomarker candidates in AD.

Integration of human and mouse CSF proteomes
identifies consistent mitochondrial protein decrease in
Alzheimer’s disease

CSF biomarkers that are conserved in human and mouse
models are valuable for the AD community to explore
AD-related molecular mechanism. Here we conducted
proteomic analysis to identify Ap-induced protein
changes in CSF from 5XxFAD mouse, in which mutant
APP and PSENI are overexpressed to generate a high
level of AP peptide. An 11-plex TMT-LC/LC-MS/MS
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value >2 and p value <0.05, Fig. 5a, b). Eleven out of
these 85 proteins were overlaid with the human CSF DE
proteins (Fig. 5c). Strikingly more than 50% of these

analysis (6 samples from 5xFAD and 5 samples from
age-matched wild type mice) allowed the quantification
of 1056 mouse CSF proteins, with 85 DE proteins (Z
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consistent DEs are from mitochondria, suggesting that
mitochondrial dysfunction is highly conserved in AD
and the 5xFAD mouse. Many of these mitochondrial
proteins were changed in AD cortex with an expression
pattern similar to AP42 peptide (i.e. increase in cortex
and decrease in CSF), such as HADHA and CYB5R3
(Fig. 5¢, d). We also discovered C4B and SPP1 that are
known to be tightly associated with AD pathogenesis
among the top DE proteins in the mouse CSF (Fig. 5b).
We detected the increase of C4B and SPP1 in AD cortex
but failed to detect their significant changes in our small
human CSF cohort (Fig. 5€). In summary, the integrative
analysis of mouse and human CSF elucidated Ap-
induced protein changes in mouse CSF and unveiled
consistent mitochondrial disorder in AD in both human
and mouse CSF.

Integration of CSF, serum, and cortex proteomes
indicates consistent mitochondrial signatures in
Alzheimer’s disease

Compared with CSF biomarkers, blood-based bio-
markers are more promising for first-line diagnosis and
are urgently needed. We systematically compared the
CSF, serum and cortex proteomes to investigate AD
pathogenesis signatures. An ultra-deep serum profiling
of 6 AD and 5 healthy control cases was performed to
quantify 4826 unique proteins [25]. As the serum sam-
ples are often contaminated by proteins from red blood
cells, we first corrected this variable by a linear regres-
sion model-based approach [49], and then defined 396
DE proteins (Z value >2 and p value < 0.05). Compari-
son with DE proteins in CSF and cortex led to 94 DE
proteins in serum and cortex, 107 DE proteins in serum
and CSF, and 37 proteins in all three layers of pro-
teomes. Strikingly, 22 out of these 37 proteins are mito-
chondrial proteins (Fig. 6a), highlighting mitochondrial
changes as the most consistent AD signature across cor-
tex, CSF and serum.

The DE analysis in serum identified several AD rele-
vant changes among the top DE proteins (e.g. GGT1
and ANO?2) (Fig. 6b). For example, a study has reported
a linear association between serum GGT concentration
and the risk of AD [65]. Interestingly, 4 out of the 6
mitochondrial proteins that decreased in AD in both hu-
man and mouse CSFs were also reduced in the AD
serum (i.e. ALDH6A1, ETFB, SOD2, and PRDX3),
highlighting their robustness as the AD biofluid signa-
ture (Fig. 6b, Fig. S4). We next investigated proteins that
were differentially expressed in both CSF and serum.
Fifty-two of total 107 DE proteins were mitochondrial
proteins, showing decreased levels in AD in both serum
and CSF (Fig. 6c). We further examined the total 94 DE
proteins in serum and cortex and found that most of
these proteins were increased in cortex and decreased in
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serum, including 21 mitochondrial proteins (Fig. 6d),
which is reminiscent of the distribution pattern of AP
peptides (higher in cortex and lower in serum in AD
cases) [66]. The accumulation of proteins in the cortex
may be resulted, at least partially, from prominent pro-
tein aggregation in the brain. Indeed, we previously iden-
tified the deposition of mitochondrial components in the
profiling of aggregated proteome in AD brain [67]. Inter-
estingly AD-correlated protein panel of CTHRC1, GFAP
and OLFM3 in brain [18] were revealed as top DE pro-
teins in AD serum (Fig. 6d, e). Together, the integrated
analysis shows mitochondrial protein changes as the
most consistent AD signature carried over from brain
cortex to CSF and serum.

Integrating the rankings of ten individual datasets
through order statistics prioritizes top AD protein
signatures

Integration of multiple dimensions of data has proven
powerful for prioritizing core disease proteins and path-
ways [17, 18, 49]. Here we extended this idea by combin-
ing datasets from distinct AD tissue/biofluids and
independent studies to rank disease proteins and path-
ways using order statistics [53] and gene set enrichment
analysis (GSEA). The integration was carried out in a 3-
step manner. Specifically, discovery cohorts or reference
cohorts were separately combined. Proteomes of individ-
ual tissue/biofluids were then combined into cortex,
CSF, or serum datasets for ranking. Finally, the three
ranks were integrated into a final rank (Fig. 7a, Supple-
mental Table S7). SMOCI and tau proteins were ranked
the top 2 of the list, consistent with many previous AD
biomarker studies. Other proteins such as GFAP, NTNI1,
OLFM3, NPTX2, C1QTNF5, C4B, and SPP1 were also
showed up as top proteins, agreeing with our current
understanding of AD pathogenesis. Moreover, mito-
chondrial proteins were ranked high in the list as well
(e.g. SUCLG2, PRDX3, CPT2, HSD17B10, ALDH6A1,
GATM, and SOD2) (Fig. 7b). We prioritized signaling
pathways by GSEA and identified 10 major pathways
(FDR < 0.05; Fig. 7c) out of the 16 core pathways de-
tected in the deep AD cortex study [18]. Collectively
these 10 pathways can be classified into 4 major categor-
ies including mitochondrial functions, inflammation,
amyloid and tau pathway, and synaptic function. Finally,
we performed two alternative validation assays to con-
firm the MS discoveries. ELISA assay was used to
analyze the CSF samples of 7 healthy controls and 7 AD
cases, confirming the increase of the candidate bio-
marker GPNMB in the AD samples (Fig. 8a, b). Due to
the limitation of available ELISA kits, we also imple-
mented the TOMAHAQ-based targeted MS assay to val-
idate the change of two mitochondrial proteins (AK2
and PCK2) in the CSF samples. In this targeted MS
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Fig. 5 Integration of human and mouse CSF proteomes identifies consistent mitochondrial protein decrease in Alzheimer's disease. a Summary
of the DE analysis of mouse CSF proteome, and its integration with human CSF proteome. The analysis was carried out in 4 steps. 1) 1056
proteins were quantified in 6 5XFAD and 5 WT groups that were pooled from 32 mice. 2) 85 proteins were identified as DE proteins with a Z
score difference > 2 and p value < 0.05. 3) 11 out of these 85 proteins are differentially expressed in both human and mouse CSF samples. 4) 6
out of these 11 DE proteins are mitochondrial proteins. b Volcano plot for quantified mouse CSF proteome. X-axis shows the Z score transformed
log2 fold changes comparing AD to Ctl. Y-axis shows the -log10 p value. Top DE proteins in mice CSF are plotted in black and labeled. Proteins
that are differentially expressed in both human and mouse CSF are plotted in red, and mitochondrial proteins are further labeled. Red dashed
lines indicate the DE cutoff of p value < 0.05 and Z score difference > 2. ¢ Heatmap shows Z score, —log10 FDR value or p value of the 11 DE
proteins in mouse CSF, human CSF, and human cortex proteomes. d Expression levels of representative Mitochondrial DE proteins in human
cortex, human CSF and mouse CSF. Dot plots overlaid onto boxplots showing expression of representative DE proteins in panel ¢ and d. The p
values of the DE analyses between AD and healthy control are displayed on the top of the plots. DE analyses were carried out through the
LIMMA R package. X-axis shows sample groups, y-axis indicates Log2 transformed TMT intensity. Boxplot center line, median; box limits, upper
and lower quartiles; whiskers, 1.5x interquartile range; points, expression levels of each individual samples. e Expression levels of representative
top DE proteins in human cortex and mouse CSF. Dot plots overlaid onto boxplots showing expression of representative DE proteins in panel ¢
and d. The p values of the DE analyses between AD and healthy control are displayed on the top of the plots. DE analyses were carried out
through the LIMMA R package. X-axis shows sample groups, y-axis indicates Log2 transformed TMT intensity. Boxplot center line, median; box
limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, expression levels of each individual samples

assay, tryptic peptides in AK2 and PCK2 were synthe-
sized as internal standards to guide the quantification of
native corresponding peptides (Fig. 8c) [56]. Consist-
ently, both mitochondrial proteins were confirmed to
be reduced in the CSF AD samples (Fig. 8d-f). To-
gether, we prioritized a list of promising AD signa-
tures through a systems biology approach. These
rich data resources will serve as a foundation for fu-
ture large-scale biomarker validation studies for the
AD community.

Discussion

Recent breakthroughs, especially in-depth and large-
scale omics studies of brain tissue, have dramatically ex-
tended our discovery of molecular pathogenesis in AD
[18, 49]. New dysregulated genes/proteins/pathways have
been increasingly identified and linked to AD pathogen-
esis, suggesting of multifactorial pathologies in AD.
However, in-depth proteome discovery in the proximal
body fluids (e.g. CSF and serum/plasma) is still rare,
largely due to technical challenges to address the com-
plexity of CSF and serum/plasma proteomes. The rela-
tionship between diverse brain pathologies and protein
alterations in body fluids is not fully explored at the
proteome level. Furthermore, the variable results ob-
tained from studies evaluating proteins involving in
amyloid and tau pathology as disease biomarkers under-
lined the importance of novel biofluid biomarkers [68].
To meet the challenges to analyze CSF and serum/
plasma proteomes in AD, we have recently developed an
in-depth biofluid profiling platform [25] that combines
un-depleted biofluid sample processing, multiplexed
TMT labeling, extensive two-dimensional LC fraction-
ation and high-resolution tandem mass spectrometry.
The platform enables the quantification of 5941 and
4826 proteins in CSF and serum, respectively, providing

the most in-depth biofluid proteome landscape so far for
the AD community.

In addition to the issue of proteome coverage, repro-
ducibility is often another concern in many of previously
published AD biomarker studies. Even some novel CSF
protein biomarker candidates have been proposed, many
of them, however, are not successfully repeated across
different laboratories, distinct proteomic platform, and/
or independent cohorts, raising a substantial bottleneck
for selecting reliable candidates for large-scale validation.
To address this issue, we systematically integrated our
ultra-deep CSF proteome with two other discovery-
driven deep CSF proteomic studies in AD, resulting in 6
biomarker candidates that were repeatedly emerged in at
least two independent studies including SMOCI,
C1QTNF5, OLFML3, SPONI1, SLIT2 and GPNMB. Re-
markably, all of them were reported to be highly linked
to AD pathogenesis in brain tissue [18]. SMOC1 has
been shown to accumulate in plaque structures of AD in
brain. The expression levels of SMOC1, OLFMLS3,
SLIT2, and GPNMB were highly correlated with the A
level in AD brain, and these findings were also recapitu-
lated in the 5xFAD mouse model [18]. Consistently,
SMOC1 and GPNMB were reported to be CSF bio-
marker candidates for AD in other recent biomarker
studies [62, 69]. These proteins represent the most
promising CSF biomarker candidates of AD for future
large-scale studies.

Mitochondrial function and energy metabolism are
known to be severely compromised processes repeatedly
reported in AD [18, 70]. Emerging lines of evidence sug-
gest the growing importance of mitochondria damage
and energy defects in AD pathogenesis [70], and mito-
chondrial deficit is proposed as a major hallmark of AD
pathogenesis besides amyloid and tau pathologies [70].
Studies in a C. elegans model expressing pan-neuronal
human AP show that metabolic stress is a primary
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Fig. 6 Integration of CSF, serum, and cortex datasets elucidates consistent mitochondrial signatures in Alzheimer's disease across proteomes. a
Summary of the DE analysis of serum proteome, and its integration with CSF and cortex proteome. Four thousand eight hundred twenty-six
proteins were quantified in AD serum samples. Three hundred ninety-five proteins were identified as differentially expressed proteins with a Z-
score transformed log?2 fold difference > 2 and p value < 0.05. One hundred seven out of these proteins are differentially expressed in both serum
and CSF proteomes, 94 of these proteins are differentially expressed in both serum and brain proteomes, 37 proteins are differentially expressed
in serum, CSF, and Cortex proteome. Twenty-two out of the 37 DE proteins are mitochondrial proteins. b Deep serum proteome analysis
identifies decrease of mitochondrial proteins. The X-axis of the volcano plot shows the Z score transformed log2 fold change comparing AD to
Ctl and Y-axis indicates -log10 p value. Top DE proteins in serum are plotted in black and labeled. Proteins that are differentially expressed in
human CSF, mouse CSF, and human serum proteomes are plotted in red and labeled. Red dashed lines indicate the DE cutoff of p value < 0.05
and Z value difference > 2. ¢ Integration of serum and CSF proteomes identifies consistent and massive mitochondrial protein decrease. Proteins
that are quantified in both serum and CSF are plotted as a function of their Z values comparing AD to Ctl in CSF (x-axis) and in serum (y-axis).
Fifty-five non-mitochondrial DE proteins with Z value difference > 2 and FDR < 0.2 in CSF or p value < 0.05 in serum are plotted in black, and 52
mitochondrial DE proteins are plotted in red. Names of two mitochondrial proteins that were applied for TOMAHAQ targeted MS assay (Fig. 8)
were labeled. Red dashed lines indicate Z value difference > 2 in CSF and serum. d Integration of serum and cortex proteomes unveils
mitochondrial protein changes and amyloid-correlated protein panel. Proteins that are quantified in both serum and cortex are plotted as a
function of their Z value change comparing AD to Ctl in cortex (x-axis) and in serum (y-axis). Seventy non-mitochondrial DE proteins with Z value
difference > 2 and FDR < 0.2 in cortex or p value < 0.05 in serum were plotted in black. Three top DE proteins that were reported in the amyloid-
correlated protein panel in previous cortex study were labeled. Twenty-four mitochondrial DE proteins are plotted in red. Red dashed lines
indicate Z value difference > 2 in serum and cortex. e Expression levels of representative DE proteins in cortex and serum. Dot plots overlaid onto
boxplots showing expression of representative DE proteins in cortex, CSF, and serum proteomes. The p values of the DE analyses between AD
and healthy control are displayed on the top of the plots. DE analyses were carried out through the LIMMA R package. X-axis shows sample
groups, y-axis indicates Log2 transformed TMT intensity. Boxplot center line, median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range; points, expression levels of each individual samples
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Fig. 7 Integrating the protein rankings in individual datasets though order statistics prioritizes top AD signatures. a Workflow for tiered
integration of individual proteome ranking by order statistics. Rank of each individual dataset was integrated by discovery or reference cohorts
separately first, and was then combined into cortex, CSF, or serum ranking. Lastly, the three ranks were integrated into a final integrative ranking.
b Top protein signatures of Alzheimer's disease prioritized through the integrated ranking. Heatmap shows the ranking of top AD signature
proteins with a final integrated ranking p value < 0.001 in each of the ten datasets. Protein ranks are labeled on the right side of the heatmap.
The rankings of proteins are shown by boxes of two-color gradients, with missing values indicated by grey boxes. ¢ Mitochondrial function is the
most significantly enriched pathway in the integrated ranking. Pathways are enriched by GSEA and further categorized into four groups. The
barcode plots represent the positions of proteins in the sorted integrated ranking

pathogenic event [71] and impaired mitochondrial cal-
cium efflux contributes to disease progression [72].
Enhanced mitochondrial proteostasis may reduce
amyloid-p proteotoxicity [73] and NAD+ supplementa-
tion normalizes key Alzheimer’s features and DNA dam-
age responses in an AD mouse model [74].

Mitochondria have gradually been recognized as a major
novel therapeutic target in AD [70]. In this study, we
identified consistent and evident mitochondrial protein
decreases in AD CSF and serum samples, which have
rarely reported until the availability of the deep CSF/
serum profiling (our reference datasets) [25, 33]. This is
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Fig. 8 Validation of MS discoveries by ELISA and TOMAHAQ assays a) Validation of MS discoveries by ELISA assay. Dots overlaid onto boxplots
showing expression level of the AD biomarker candidate GPNMB in CSF quantified by ELISA assay. Seven healthy control and 7 AD samples were
analyzed. The p value of the DE analysis between AD and healthy control by Student’s t-test is displayed on the top of the plots. X-axis shows
sample groups, y-axis indicates the ELISA measurement of GPNMB concentration in CSF (ng/ml). Boxplot center line, median; box limits, upper
and lower quartiles; whiskers, 1.5x interquartile range; points, expression levels of individual samples. b Scatter plot shows the correlation
between the ELISA and the discovery MS data. Pearson correlation coefficient (1) is displayed. X-axis shows the Log,TMT ion intensities of GPNMB
quantified by MS. Y-axis indicates the CSF concentration of GPNMB (ng/ml) quantified by ELISA. ¢ Workflow for the TOMAHAQ targeted MS
validation assay. A synthetic trigger peptide was spiked into the mixture of multiplexed samples to validate the quantification of a candidate
biomarker peptide. The synthetic peptide and native peptide were co-eluted, and the synthetic peptide was presented at high concentration,
triggering the MS instrument to quantify the native peptide by MS3 using a predefined isolation offset. MS3 ions were produced by pre-
determined y or b ions from targeted MS2 spectra, and the resulting reporter ions were applied for the quantification of the targeted biomarker
candidate. d Comparison of the TOMAHAQ results and the discovery MS data. e Scatter plot shows the correlation between the TOMAHAQ and
the discovery MS results of AK2 in the human CSF samples. Pearson correlation coefficient (1) is displayed. X- and Y- axes indicate the Log, TMT

discovery MS results of PCK2 in the human CSF samples

intensities from the discovery MS and TOMAHAQ assay, respectively. f Scatter plot shows the correlation between the TOMAHAQ and the

understandable because, as our analysis suggested, high
proteome coverage is a prerequisite to detect mitochon-
drial changes due to their low abundance, explaining
why they are missing in numerous previous biofluid
studies of shallow proteome coverage. Although the
causative factors of mitochondrial dysfunction in AD
are not fully understood, we believe that the mito-
chondrial changes in the cortex, CSF and serum are
highly associated in AD based on several lines of
evidence. Mitochondrial changes can co-occur with
amyloid deposition early in the brain of asymptom-
atic cases with amyloid pathology, as well as mild
cognitive impairment subjects [18, 33, 75]. Amyloid
peptides have been reported to directly aggregate in
mitochondrial compartment [75, 76]. Recently, vas-
cular deposits of AP peptides (amyloid angiopathy)
are increasingly recognized as a common pathology
in AD cases, supporting that AP peptides circulate
within the interstitial fluid, including CSF, and blood
vessels through perivascular (e.g. lymphatic) drainage
pathways during the crosstalk between the brain and
the vascular system [77]. As AP can form vascular de-
position, it is likely that AB could lead to mitochon-
drial damage in the vascular system. This local Ap-
induced mitochondrial damage may partially address
an important question — where is the origin of the
identified mitochondrial proteins? Interestingly, emer-
ging data suggest that mitochondria can be released
into extracellular space, and transferred between cells
[78], although mitochondria have traditionally been
known as the intracellular powerhouse. For instance,
neurons can transfer damaged mitochondria to astro-
cytes for disposal and recycling, and astrocytes can
also release mitochondria to neurons under stress
[79]. Astrocytic mitochondria may also be released
to the CSF as a biomarker for evaluating brain integ-
rity, with low CSF mitochondrial quantity and activ-
ity indicating brain damage [80]. Nevertheless, the
origin of the mitochondria proteins is worth future

investigation. We acknowledge that our results only
indicate a correlation between mitochondria changes
in proximal body fluids and brain lesions in AD.
Further studies are clearly required to understand
the mechanism behinds the associated mitochondrial
protein changes in the cortex, CSF and serum in
AD.

Here we demonstrate that a mitochondrial signature is
the most significant and consistent changes detected
across human brain cortex, CSF and serum in AD, and
it has been recapitulated in the 5XFAD mice as well. It
has been mentioned that these mitochondrial changes
can only be confidently detected in an ultra-deep prote-
omic setting. This exciting finding provides a strong ra-
tionale not only for the development of disease
diagnostic biomarkers but also the implementation of
novel prognostic biomarkers for therapeutic strategies
targeting mitochondria in AD.

Conclusions

In summary, we quantified 13,833, 5941, and 4826 pro-
teins from human cortex, CSF and serum respectively
through our newly established TMT-LC/LC-MS/MS
platform. We showed evident changes of many mito-
chondria proteins across AD cortex, CSF, and serum.
Through a series of integrated analyses of 10 AD tissue
and biofluids proteomic datasets from three independent
deep proteomic studies, we revealed a number of AD
biomarker candidates of high confidence, providing a
rich data resource not only for selecting reproducible
candidates for large-scale biomarker validation, but also
for exploring protein-mediated cortex-CSF-blood com-
munication during disease progression to reveal disease
mechanism that may guide the development of novel
therapeutic strategies.
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deep profiling depth is a prerequisite to detect evident mitochondrial sig-
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expression levels in the examined biofluids in both human and mouse
AD.
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Differential expression analysis of whole proteome from Human brain
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analysis of whole proteome profiling of Mouse CSF (data ix). S5.
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