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Abstract 

Background:  Allometric equations are used to estimate biomass and carbon stock of forests. In Ethiopia, despite the 
presence of large floral diversity, only a few site-specific allometric equations have been developed so far. This study 
was conducted in the Omo-Gibe woodland of south-western Ethiopia to develop an allometric equation to estimate 
the Above-ground Biomass (AGB) of the four Acacia species (Senegalia polyacantha,  Vachellia seyal, Vachellia etbaica 
and Vachellia tortilis). Fifty-four (54) Acacia trees were sampled and measured within 35 temporarily established square 
plots. In each plot, dendrometric variables were measured to derive the models based on combinations of Diam-
eter at Breast Height (DBH), height, and wood density as predictor variables. Model performance was evaluated using 
goodness-of-fit statistics. The biomass was compared using four allometric biomass models that have been widely 
used in the tropics.

Results:  The model containing DBH alone was more accurate to estimate AGB compared to the use of multiple pre-
dictor variables. This study, therefore, substantiated the importance of site-specific allometric equations in estimating 
the AGB of Acacia woodlands. This is because a site-specific allometric equation recognizes the environmental factors, 
vegetation types and management practices.

Conclusions:  The results of this study contribute to a better understanding of allometric equations and an accurate 
estimate of AGB of Acacia woodlands in Ethiopia and similar ecosystems elsewhere.
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Background
Allometric equations are widely used to estimate for-
est carbon stocks (C) [1]. Accurate estimates of biomass 
are crucial for the assessment of carbon stocks toward 
understanding carbon variations in response to world 
climate changes [2, 3], monitoring ecological processes 
such as wood production and nutrient cycling [4] and 
sustainable forest management [5].

Currently, various mechanisms have been proposed by 
the United Nations Framework Convention on Climate 

Change (UNFCCC) to reducing carbon emissions for cli-
mate change adaptation and mitigation. The major climate 
mitigation option is Reducing Emissions from Deforestation 
and Degradation (REDD+) by promoting conservation, sus-
tainable management of forests, and enhancing forest car-
bon stocks in developing countries [6]. One of the critical 
elements for the REDD+ mechanism is the capacity to know 
the carbon storage potential of forest ecosystems [7]. This 
can be achieved by establishing biomass allometric equa-
tions to reduce uncertainties in carbon accounting and car-
bon trading in the voluntary and mandatory markets [8, 9].

Different methods, ranging from the most generic 
to the site and species-specific allometric equations 
are available for estimating the biomass of a tree [10]. 
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Although the general allometric equations are used 
widely, they may not be able to predict local biomass 
accurately due to differences in the tree architecture such 
as several stems, height, age, diameter, stand density, 
cultivar, site conditions (climate and soils), and manage-
ment practices [11, 12]. For example, pruning and cop-
picing can affect the rate of biomass accumulation [13] 
as well as the change in biomass without changing the 
Diameter at Breast Height (DBH) [14, 15]. The model has 
shown a large prediction error based on the findings of 
Mugasha et al. [16] and Kachamba et al. [17] in miombo 
woodlands, Tesfaye et al. [18] and Ubuy et al. [19] in dry 
forests, and Lisboa et al. [20] in moist forests. Therefore, 
such types of generic equations may show a systematic 
error of up to 400% at the site level [15].

Site-specific models provide less bias than general 
models [21] because the local climatic, soil properties, 
altitude, and land-use history are affected by tree growth 
characteristics [22]. According to Mokria et al. [23], the 
lack of a site-specific allometric model for estimation of 
Above Ground Biomass (AGB) is the key reason for per-
sistent inaccuracy and low uncertainty in biomass esti-
mation in sub-Saharan Africa. Solomon et  al. [24] also 
stated that the precise estimation of biomass and carbon 
stock in a forest can be achieved using site-specific allo-
metric equations for the species and forest types.

In their review of biomass models in sub-Saharan 
Africa, Henry et al. found 63 models from Ethiopia [23]. 
These models included only six species and 70% were for 
Eucalyptus ssp. More recently, many authors have devel-
oped local species-specific allometric models to estimate 
tree AGB for different parts of Ethiopia [16, 23, 25–28]. 
However, they are not representative of all vegetation 
types and agro-ecosystems of Ethiopia.

Most of the previously developed allometric equations 
were based on the destructive method, which is costly 
and time-consuming to implement in the wide strata of 
a forest area [29, 30]. According to Henry et al. [31], the 
allometric equations in Ethiopia are developed based 
on a destructive sampling method, which does not obey 
environmental principles and is not feasible in large-
scale analysis [29]. There are also cultural, legal and pol-
icy aspects of applying the destructive method for tree 
sampling. In Ethiopia, the national legislation does not 
allow logging activities of the indigenous trees. Accord-
ing to Tesfaye et al. [18] cutting down an indigenous tree 
is prohibited by law, and this made it difficult to develop 
biomass allometric equations for the species. Recently, 
a semi-destructive method has been explored using Pic-
ard et al. [32] and satellite data [33] procedure. The semi-
destructive method can also help for easy measurement 
of the parameters without cutting the tree. Therefore, the 
semi-destructive sampling method was used for modeling 

the AGB of the indigenous trees, since it can be applied 
to degraded woodlands and in key conservation areas 
where cutting is prohibited [33]. Publications on semi-
destructive methods have been increasing in recent years 
in Ethiopia such as Wof-Washa dry Afromontane forest in 
Ethiopia [25], Biosphere Reserve forest of southwestern 
Ethiopia [27] and Mana Angetu moist Afromontane forest 
of Ethiopia [28] and Hill zone of Bangladesh [34].

In Ethiopia, several forest resource assessment cam-
paigns have been undertaken to understand the AGB 
status and management options of the forest resources 
[35]. However, achieving high-level accuracy of these 
assessments estimation remains to be challenging [23]. 
This is partly because of a high level of uncertainty ema-
nating from the nature of the allometric models used 
for biomass determination. Measurement errors and 
sample sizes are also major sources of uncertainty in the 
AGB assessment efforts [36, 37]. It is clear that site and 
species-specific models need to be developed and the 
suitability of the existing allometric equations needs to 
be evaluated to make accurate biomass assessment and 
make an informed decision. Several allometric equations 
are claimed to be suitable for ‘tropical forests. However, 
tropical forests are highly diverse in their ecology and 
vegetation composition, ranging from moist high forests 
to woodlands in arid climates. The high biological diver-
sity of tropical forests also makes it difficult to use a ‘one-
fits-all’ model. Particularly the Acacia woodlands, which 
are ecologically and economically of high value in Ethio-
pia, are given little research attention from the point of 
view of developing allometric models that are suitable for 
accurate forest biomass assessments.

Acacia woodland is an iconic ecosystem in Ethiopia, 
accounting for 11% dry land woodland of the country 
[38]. In this case, a woodland is defined as the type of 
land cover characterized by trees and shrubs with a tree 
crown cover of 5–10% of trees able to reach a height of 
5 m at maturity and a crown cover of more than 10% of 
trees not able to reach a height of 5 m at maturity, hav-
ing fewer species diversify [39]. More than 58 Acacia 
species are known to occur in Ethiopia, of which 49 are 
indigenous [40] and six of these are threatened species 
[41]. Acacia  (Vachellia and Senegalia genera) is widely 
distributed in the Omo Gibe valley of Ethiopia [42] and it 
provides paramount ecosystem services values, including 
food and habitats for a variety of animals, from hoofed 
mammals and birds to countless species of insects [43], 
nitrogen-fixing, and hydrological regulation.

Therefore, this research was set out to develop a species-
specific biomass allometric equation for estimating the AGB 
of the Acacia species (Vachellia and Senegalia genera)  in 
the woodland of Omo Gibe valley in Ethiopia. In fact, it is 
genus-specific because it included different Acacia species.
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Thus, this study contributes to the reliable estimate 
of AGB in the woodland ecosystems and contributes to 
informing decisions on woodland management and car-
bon accounting, further facilitating carbon trading and 
global climate change mitigation. The objectives of the 
study were, therefore, to: (1) derive and evaluate AGB 
models for  selected  Acacia species  (Vachellia and Sen-
egalia genera) in Omo Gibe valley, and (2) to compare 
performances of the widely used biomass equations in 
estimating biomass of Acacia woodland.

Methods
The study area
The Omo-Gibe woodland is located in the Omo gibe 
Basin, part of central highlands Ethiopia and 210  km 
away from Addis Ababa, the capital city of Ethiopia. 
The geographical bound of the area is within the coor-
dinates of 037° 40′–038° 10′ longitude E and 07° 50′–08° 
20′ N latitude (Fig. 1). It is situated in the headwaters of 
the Om-Gibe basin which is one of the most important 
river basins in the country. The elevation ranges between 
1096  m and 2153  m, and the mean altitude is 1735  m. 
The area is characterized by a wide range of topographic 
features, ranging from deep gorges (faults), through dis-
sected ridges to undulating plateaus. Due to the alti-
tudinal differences, there is a large variation in rainfall 
and temperature year to year in the study area [44]. The 
rainfall increases with altitude but temperature decreases 
[45]. Based on Ethiopian Meteorological Agency (EMA) 
data analysis, the annual average rainfall varies from 856 
to 1600 mm, with a bimodal distribution that allows two 
growing seasons [45, 46]. The main rainy season (mon-
soon rains) extend from June to September and the short 
season (Belg rains-spring) fall between March and April. 
The mean minimum and maximum temperatures are 
12.7 °C and 26.7 °C, respectively.

The Acacia woodland of the Omo Gibe valley covers 
about 3,179,060  ha (40.02%) of the total land area [47]. 
The dominant species are Senegalia senegal (L.) Britton., 
Vachellia seyal (Delile) P.J.H. Hurter, Vachellia tortilis 
(Forssk.) Galasso & Banfi, Senegalia polyacantha (Willd.) 
Seigler & Ebinger, Vachellia etbaica (Schweinf.) Kyal. & 
Boatwr., Acacia mellifera (Vahl) Benth, Commiphora 
africana (A. Rich.) Engl., Commiphora myrrha (Nees) 
Engl., Cordia monoica Roxb., and Commiphora boranen-
sis (Voll). The area is among the most densely populated 
areas of the country, (283 people per square kilometre) 
and the major economic source is agricultural activities 
[42].

Biomass data collection method
A forest inventory was carried on 35 temporarily estab-
lished plots (50 × 50  m) using a systematic random 

sampling procedure. Acacia species were identified in 
the field using the tree identification manual developed 
by Bekele et  al. [48] and with the assistance of a skilled 
botanist. The samples were established based on the 
Nyman optimal allocation formula [49]. All trees with 
DBH > 10 cm within each plot were identified and DBH 
measurement of these trees was undertaken. Trees 
were stratified into 6 DBH classes for biomass analy-
sis (Table  1): < 20, 20.1–30, 30.1–40, 40.1–50, 50.1–
62.1, and > 62.1  cm. For the AGB model development, 
from each DBH class, two individual tree samples were 
taken from the three Vachellia  genera (Vachellia  seyal, 
Vachellia tortilis,   Vachellia etbaica) (6 DBH classes × 2 
trees × 3  genera  = 36 samples), and three tree samples 
were taken from one genera of Senegalia (Senegalia pol-
yacantha (6 DBH classes × 3 trees × 1 genera = 18 sam-
ples)). In total, 54 tree samples were selected and tagged 
properly. In case a plot was more diverse than others, 
we took two samples. In each sampling plot, DBH (cm) 
above ground from the uphill side of the standing tree 
was measured using a caliper and the total height of the 
tree was measured by climbing up at the top of the tree 
using a measuring tape. Moreover, the diameter and 
height of the untrimmed branches were measured in the 
field. Also, fresh biomass of trimmed small branches and 
leaves were measured in the field before sending the sam-
ples to the laboratory. The trimmed small branches and 
untrimmed branches were differentiated based on their 
diameter: trimmed small branches are those that have 
diameter < 10 cm and these were harvested (trimmed) for 
the analysis in the laboratory whereas untrimmed branch 
diameter > 10  cm. Moreover, we counted the number of 
large and small branches in the standing marked tree to 
calculate biomass for each of tree components later.

Biomass calculations
The total AGB of the standing tree was partitioned 
into four architectural components to apply the semi-
destructive approach. These are dry sections (stem and 
untrimmed large branch), untrimmed small branch, 
trimmed small branch (SB), and leaves (Table 2). Accord-
ing to Picard et al. [32], the procedure for obtaining the 
biomass of stem and the untrimmed large branch is the 
same. The dry weight of the large branches and stem (dry 
section) was obtained by using Eq. (1).

where, Bdrysection = biomass of the stem and untrimmed 
large branch, Vi = Volume of section i and ρ = density of 
wood (obtained from the ratio of the biomass of trimmed 
small branch to its volume, determine in the laboratory).

The volume (m3) of the stem and untrimmed large 
branches were calculated (Eq. 2) from the cross-sectional 

(1)Bdrysection = ρ × Vi
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Fig. 1  The geographic location of Omo Gibe woodland in Ethiopia. The map was produced in ArcGIS Desktop version 10.4 (https://​www.​esri.​com/​
en-​us/​arcgis/​produ​cts/​arcgis-​deskt​op/)

https://www.esri.com/en-us/arcgis/products/arcgis-desktop/
https://www.esri.com/en-us/arcgis/products/arcgis-desktop/
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measurements using Smalian’s formula [50], assuming 
that each of the measured stem and the large untrimmed 
branches was a cylindrical shape. The stem and the 
untrimmed large branches in each tree were subdivided 
in the section at the intervals of 2 m distance and the top 
end and the lower end of each section interval diameter 
was measured to obtain the volume of each section. Since 
the division was short (2  m), the shape of the sections 
was a bit different from a cone, with very little tapering; 
thus, volume determination using Smalian’s and other 
formulas may have very slight differences [32]. There-
fore, the mean volume of the stem and untrimmed large 
branch (dry section) was determined by the sum of the 
volume of each section’s diameter measurement at 2  m 
interval divided by the number of the section in the trunk 
and untrimmed large branch.

where, Vi = the volume of section i, Li is its length of the 
trunk and untrimmed large branch (m), and D1i and D2i 
are the diameters (cm) of the two extremities of section 
i. (i.e., D1i = diameter of the narrow end of the trunk (cm) 
and D2i = diameter of the large end of the trunk (cm)).

(2)Vi =
π

8
Li
(

D2
li + D2

2i

)

Biomass of untrimmed small branch
The untrimmed branches are those that have a diam-
eter > 10 cm and these were not cut down in a standing 
tree. The biomass of the untrimmed small branch was 
calculated using a linear regression equation between 
the diameter of the untrimmed small branch and bio-
mass of the trimmed small branch (Eq.  3). The linear 
relationship was first established based on biomass meas-
urements from trimmed small branches and the corre-
sponding diameter of the untrimmed small branch. We 
then used the parameter estimates from the linear regres-
sion and used to estimate the untrimmed small branch 
biomass. To determine the total biomass of untrimmed 
small branches per tree, the calculated biomass of the 
untrimmed small branches were multiplied by the num-
ber of untrimmed small branches.

where, B = the biomass of the untrimmed small branches 
and D = the untrimmed diameter of the small branch 
(measured), a, b are model parameters (intercept and 
slope, respectively).

(3)Buntrimmed biomasssmall branch = a+ bD

Table 1  DBH class distribution (tree/ha) of Acacia species

Species DBH classes (cm) Total

< 20 20.1–30 30.1–40 40.1–50 50.1–62.1 > 62.1

Vachellia  seyal 36 45 34 37 25 14 191

 Vachellia tortilis 21 40 29 31 18 17 156

Vachellia  etbaica 18 32 42 30 37 19 178

Senegalia polyacantha 20 27 35 47 72 60 261

Table 2  Total biomass and tree components dendrometry variables of Acacia species (n = 54)

Dry section: Stem and large untrimmed branch (diameter > 20 cm); USB: Untrimmed small branch ((diameter 10–20 cm); TSB: Trimmed small branch (diameter < 10 cm); 
DBH: Diameter breast height; H: Height; volume: Volume of dry section (stem and untrimmed large branch); AGB: Total above-ground biomass and ρ : Wood density

Variables Senegalia polyanatha Vachellia  seyal Vachellia  etbaica Vachellia  tortilis

Mean Max Min Mean Max Min Mean Max Min mean Max Min

Dry section 2796 ± 184 4648 1575 2102 ± 172 3780 1000 2084 ± 152 3480 1250 2321 ± 157 5000 482

USB 7 ± 0.5 11 4 7 ± 0.7 10 3 2.6 ± 0.5 4 1 3 ± 0.5 6 1

TSB 1 ± 0.01 2.3 0.3 1 ± 0.01 1.19 0.07 1.1 ± 0.02 1.8 0.5 0.8 ± 0.07 1.4 0.5

Leave 0.09 ± 0.02 0.83 0.02 0.13 ± 0.02 0.23 0.07 0.15 ± 0.02 0.12 0.02 0.4 ± 0.02 0. 78 0.12

DBH 101 ± 5.6 155 14 76 ± 3.5 130 11 87 ± 4.05 91 12 77 ± 4.5 143 12

H 13 ± 1.3 22 7 8 ± 1 20 6 11 ± 1.6 19 8 10 ± 1 17 8

Volume 8 ± 0.7 16 4.5 5 ± 0.8 7 3.5 6 ± 1.2 8 3.5 6 ± 0.8 10 4

ρ (g/cm3) 0.36 ± 0.02 0.5 0.2 0.45 ± 0.03 0.63 0.25 0.38 ± 0.03 0.6 0.18 0.36 ± 0.04 0.58 0.12

AGB 2804 4649 1584 2087 3483 1252 2643 4649 1252 2711 4649 1252
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Biomass of trimmed small branch and leaves
The small branches of trees were trimmed using the local 
machete and the twigs and attached foliage were carefully 
separated from each trimmed small branch. Two small 
branches were trimmed for sampling from each tree for 
laboratory analysis. To determine the fresh weight of 
the trimmed small branch (wood aliquot) and leaves of 
each compartment, their biomass was measured using a 
spring hanging weighing scale of 5  kg capacity (0.02  kg 
precision).

The total biomass of the trimmed small branches was 
obtained from the number of small branches in the 
standing tree multiplied by the average biomass of the 
trimmed branch. Similarly, to obtain the total biomass of 
the leaves of a tree, the average leave biomass was multi-
plied by the total number of small branches per tree.

Laboratory analysis
Fresh sub-samples of 200–250  g for trimmed small 
branches and 150 g for leaves of each marking tree were 
transported to the laboratory to determine the mois-
ture content, wood density and volume of the trimmed 
components. For wood density (g/cm3) and volume 
(cm3) analysis, disc samples were cut using a hand saw 
from each trimmed small branch, and fresh weights of 
these samples were measured using spring hanging. The 
total number of discs were 72: two discs per species (36 
for Senegalia polyacantha and 36 discs for the three 
species altogether (Vachellia  seyal,  Vachellia  etbaica,  
Vachellia  tortilis)) and the Wolkite University labora-
tory was used for the analysis. Wood aliquot volume was 
determined using the water displacement method, as 
outlined in Vieilledent et al. [51]. The aliquots were then 
oven-dried (105 °C for 72 h.) to determine the moisture 
content. The determination of wood density for each ith 
discs collected from the jth sampled trees were estimated 
from the ratio of oven-dry weight (g) and volume (cm3). 
The mean wood density ( ρ ) for each tree was computed 
using Eq. 4.

where n = the number of samples, j = disc samples from 
72 trees.

The total AGB (kg/tree) of a standing tree is, therefore, 
the sum of all components biomass of the tree. That is the 
sum of the biomass of the dry section, untrimmed small 
branch, and trimmed small branch and leaves (Table 2).

Construction and evaluation of allometric equations
Before establishing the allometric equation, data were 
evaluated for outliers and then the sources of these 

(4)ρ =

j=72
∑

j=1

ρj/n

outliers were investigated. Eventually, measurement 
errors were detected to be the source of the outlier data. 
The outliers were, therefore, removed and data were col-
lected again to replace the wrong and removed data. 
Six non-linear regressions were used to test the best-fit 
model for the total AGB and tree components biomass 
such as dry section, untrimmed small branch, trimmed 
small branch and leaves.

The models and the corresponding variables used were: 
Model 1 (DBH only), Model 2 and 6 (DBH in combination 
with height), Model 3 (DBH in combination with density of 
wood), and Model 4 and 5 (DBH combination of H and ρ ) 
(Table 3). The statistical analysis was conducted in R soft-
ware, using a package of ‘NLS tools’[52].

Model diagnostics were performed using goodness-of-fit 
statistics, namely, Corrected Akaike Information Criterion 
(AICC) (Eq. 5), Root Means Square Error (RMSE) (Eq. (8)), 
and Residual Standard Error (RSE) [53]. The best species-
specific biomass allometric equation showed the lowest 
AICC and Residual Standard Error (RSE) [17]. Based on 
these diagnostics, the models were ranked (1 to 6) accord-
ing to each goodness-of-fit statistic [54]. The RMPE and 
MPE were conducted in excel using the corresponding 
Eqs.  6 and 7, respectively, which were used to show the 
models performance. All the advanced statistical analyses 
such as AIC and RSE were done using R software.

Model validation was carried out using the leave-one-
out cross-validation (LOOCV) procedure [55] and results 
were assessed using the adjusted coefficient of determina-
tion (R2

adj) and Root Mean Square Error (RMSE) statis-
tics, using Eqs. 8 & 9. The LOOCV followed the algorithm 
as reported by Ji et al. [56]. A single plot was withheld as 
a validation sample and the remaining plots were used to 
train the models. The advantage of the LOOCV technique 
is providing an unbiased estimation of the prediction error 
and to increase the robustness in the results [57].

Table 3  Models used for estimating the AGB of Acacia species

AGB: Total above-ground biomass of tree (kg/tree), α : Intercepted, DBH: The 
diameter at the breast height (cm), H: Height (m) and ρ: Wood density (g/cm3) 
and β0β0,β1,β2 and β3  are the regression coefficient attributed to their scaling 
parameter

Model Combination of variables

1 AGB = α × (DBH)β1

2 AGB = α × DBH
β1 × H

β2

3 AGB = α × DBH
β1 × ρ

β3

4 AGB = α × DBH
β1

× H
β2 × ρ

β3

5 AGB = α × (DBH2
× H × ρ)β3

6 AGB = α × DBH
2
× H

β2
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where, AIC (unitless) = Akaike’s Information Crite-
rion, RMPE = Relative Mean Prediction Error (%), 
RMSE = Root mean Square Error, MPE = Mean Pre-
diction Error (%), R2 = Adjusted coefficient of deter-
mination,AGB est,i = Predicted AGB and AGB 
obs,i = Observed total AGB of individually measured tree 
i and Y = the average of observed total AGB (kg/ tree), 
n = the total number of sampled trees, and p = the num-
ber of parameters in the tested model.

Comparison of biomass allometric equation
A comparison of the allometric equation was undertaken 
to estimate AGB (Table  4). A large number of regres-
sion models have already been published; however, this 
study focused on four equations, which are widely used 
in Ethiopia for biomass assessment. The four equations 
considered in our comparisons are Brown [58] allomet-
ric equation, which was developed based on data from 
the moist tropical forest; Henry et al. [31], who used data 
from the dry land forest of East Africa; Chave et al. [15], 
using data from the tropical dry forest and Guedes et al. 
[59] from the dry land ecosystem in Mozambique. We 
compared the performance and validity of the allometric 
equations developed in Omo Gibe woodland comparing 
with the four published allometric equations using MPE 

(5)

AICC = nlog

(

n
∑

i=1

(

AGBest,i − AGBobs,i

)2

n

)

+ 2p

(6)RMPE =

n
∑

i=1

MPE

Y
× 100

(7)MPE =

(

AGBest,i − AGBobs,i

)

n

(8)RMSEi =

√

∑n
j=1 (obs,i −meanest,i)

2

n

(9)R2Adj =
1−

∑

(obs,i −meanest,i )
2

∑

(obs,i −meanest,i )2

and RMPE [17]. For validation, the AGB collected in 
the field (observed) and the predicted biomass using the 
existed allometric equations were used.

Results
Tree density
To understand the AGB per hectare, tree density (num-
ber of trees per unit area of land) analysis was conducted 
and accordingly, Senegalia polyacantha was found to 
have higher tree density (261 ± 2.3 trees/ha), followed by 
Vachellia seyal (191 ± 1.5 trees/ha) and Vachellia etbaica 
(178 ± 1.2 trees/ha). The Vachellia tortilis was found to 
be of lower tree density (156 ± 1.1 trees/ha) (Table 1).

AGB estimates and models
The observed mean AGB in the Omo Gibe woodland 
was 2397 ± 192  kg/tree. The mean AGB for Senegalia 
polyacantha, Vachellia tortilis, Vachellia etbaica and 
Vachellia seyal was 2804 ± 165  kg/tree, 2326 ± 154  kg/
tree, 2087 ± 133 kg/tree, and 2111 ± 142 kg/tree, respec-
tively (Additional file  1: Table  S1). Based on goodness-
of-fit statistics and LOOCV analysis, the model based on 
DBH alone (y = αDBHβ in model 1) provided the best fit 
for AGB estimation. Across all equations, the parameter 
β1 describing the influence of DBH was statistically sig-
nificant (p = 0.0041) in each model. Similarly, the model 
parameter β2 describing the influence of height was also 
statistically significant (p = 0.0053). The parameter β3, 
showing the influence of wood density, however, was not 
significant (p = 0.0072) (Additional file 1: Table S2).

The AGB of each tree component expressed as a func-
tion of DBH only in model 1 had a lower AIC (494) and 
RSE (52  kg/tree), which indicates a very good perfor-
mance of the model. The performance of Model 2 in esti-
mating AGB was shown to be second to that of Model 1 
and the influence of DBH and height in predicting AGB 
(parameters β1 and β2) were significant (p = 0.0076), with 
AIC and RSE values of 501 and 61 kg/tree, respectively, 
(Additional file 1: Table S2). Model 6 ranking third, hav-
ing AIC and RSE values of 525 and 74  kg/tree, respec-
tively. Model parameter β3 was, however, non-significant 
(p = 0.182). Models 4 and 5 had approximate AIC and 
RSE values and ranked the fourth and fifth, respectively. 

Table 4  Suggested published allometric models used to compare the study site-specific allometric equation

Suggested allometric equations Sources DBH (cm) Location and forest types

1. AGB = exp (− 2.134 + 2.430 × ln(DBH)) Brown [58] 4–148 Moist forest (pantropical)

2. AGB = 0.0673 (ρ(DBH)2H)0.976 Chave et al. [15] 5–156 Dry forest (pantropical)

3. AGB = 0.0983 + 0.000002 * (DBH)2.4307 *(H)1.5607 Henry et al. [31] 1–200 East Africa dry forest

4. AGB = 0.1754 × DBH2.3238 Guedes et al. [59] 5–53 woodland in Mozambique



Page 8 of 13Aneseyee et al. Carbon Balance Manage           (2021) 16:34 

Model 3 had the highest AIC and RSE, ranking 6th. The 
model parameter of wood density (β2) was non-signifi-
cant (p = 0.063). Adding wood density as a predictor vari-
able in the model with a combination of DBH and height 
did not improve the performance of the models. Cor-
relation analysis of predictor variables shows that there 
is a strong relationship between DBH and tree height 
(R2 = 0.87, r = 0.83) (Fig.  2a) and volume (R2 = 0.83, 
r = 0.77) of the trees (Fig. 2b).

The LOOCV validations among the six evaluated 
models confirm that the similarity and highly reliable 
relationships between predicted and observed data for 
the models, with no substantial trends in the prediction 
errors. For each model prediction, the cross-validation 
revealed no differences between RMSE and RMSEcv 
(Table 5). The adjusted R2 also did not show a significant 
difference between the normal and the LOOCV analysis 
of the models.

Comparison of allometric equations
The average AGB estimate based on the equation devel-
oped in this study was 2940 ± 195  kg/tree. Estimates 
based on Henry et  al., and Guedes et  al., models were 

2521 ± 171  kg/tree and 3240 ± 203  kg/tree, respectively. 
The pan-tropical models developed by Chave et  al. [15] 
and Brown [58], which are currently being widely used in 
Ethiopia for biomass and carbon stock assessments, are 
shown to have a large variability of prediction and over-
estimating the AGB of Acacia woodland in the study area 
(Fig. 3). Statistically, no significant difference (p = 0.0072) 
was observed among the AGB estimate based on our 
model and those based on Henry et al. [31] and Guedes 
et al. [59]. However, a comparison of our model with that 
of the Pan-tropical models: Brown [58] and Chave et al. 
[15], shows a significant difference in AGB estimates 
(Fig. 4).

The comparison of the allometric equations showed a 
large variation of accuracy in terms of RMPE and MPE. 
The RMPE and MPE value of the allometric equations 
developed in this study was 0.06% and 0.26%, respec-
tively. The RMPE and MPE values for Guedes et al. [59] 
and Henry et  al. [31] were close to those calculated for 
the equations developed in this study (respectively, 
RMPE and MPE values of 0.08%, and 1.91% for Henry 
et al. and 0.09% and 2.21% for Guedes et al. The largest 
RMPE and MPE values were those calculated for Brown 

Fig. 2  Diameter relationship with height (a) and volume (b)

Table 5  leave-one-out cross-validation (LOOCV) of AGB estimation

RMSE norm: Root-mean-square error normal; RMSEcv: Root-mean-square error for cross-validation; R2
adj-norm:  Adjusted R square normal; R2

adj cv: Adjusted R square 
for cross-validation

Model types RMSE-norm R2 adj-norm RMSE cv R2 adj cv R2 adj difference RMSE 
difference

model 1 0.82 0.85 0.9 0.88 0.03 0.08

model 2 1.31 0.83 1.38 0.87 0.04 0.07

model 3 1.92 0.7 2.13 0.78 0.08 0.21

model 4 1.53 0.73 1.74 0.84 0.11 0.21

model 5 1.56 0.74 1.66 0.82 0.08 0.1

model 6 1.4 0.77 1.49 0.83 0.06 0.09
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[58] (respectively, − 1.74% and − 83%), and followed 
by Chave et al. [15] (RMPE and MPE of-1.2 and − 60%, 
respectively). These values were by far higher than the 
values obtained using the allometric equation developed 
in this study.

Discussion
In this study, we evaluated the performance of allomet-
ric equations to estimate tree AGB in Acacia woodlands 
using multiple predictor variables (DBH, Height (H) and 
wood density).In agreement with many similar studies, 

Fig. 3  Box plot comparison of biomass in the study site and previously published models

Fig. 4  Relationships between estimated and measured AGB of sample trees in tone (t) per tree (n = 35). R^2, RMPE% and MPE% show error 
produced in the estimation of the biomass
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our findings demonstrated that the use of DBH alone 
would provide a more accurate estimate of the total AGB 
than using two or more parameters which is in agree-
ment with many other studies [15, 24, 60, 61]. This is con-
venient because DBH is a variable that is easy to measure, 
compared to wood density and height. Height and wood 
density is, perhaps, more prone to measurement errors 
than DBH, which could influence model performances. 
Contrary to our findings, several other studies reported 
that the inclusion of multiple predictors, such as wood 
density, in combination with DBH and height, provides 
a better estimate of tree biomass [62–64]. However, due 
to the time-consuming nature and high cost involved in 
measuring height and wood density, the practical appli-
cability of these variables in biomass assessment of a 
large tract of forest areas could be limited.

The correlations investigated show that AGB was signif-
icantly and positively correlated with DBH (r = 0.81) and 
height (r = 0.59) but not with wood density (r = 0.069) 
(Additional file  1: Table  S3). The lack of correlation 
between the AGB and wood density indicates that wood 
density is not considered a potential-dependent variable 
in the model. Based on the global wood density database, 
wood density can vary widely among individual trees 
within a species in a given region [65]. Wood density can 
vary depending on tree density and environmental fac-
tors such as climate, soil type and altitude [59]. Therefore, 
according to Zanne et al. [65] and Chave et al. [66], the 
wood density ranges from 0.1 to 1.5 g/cm3 among tropi-
cal trees and the Acacia species wood density in Africa 
also ranged from 0.48 g/cm3 to 0.826 g/cm3, with an aver-
age of 0.612 g/cm 3 [67] whereas, in this study, the Acacia 
species’ mean wood density was 0.39 g/cm3, ranged from 
0.12 to 0.63 g/cm3. In this study, wood density was recog-
nized as a predicting variable to test AGB predictions and 
tree components. However, it did not improve the per-
formance of models and were not significantly different 
in the biomass estimation (p = 0.0091) in all tested mod-
els. This is supported by findings from other researches 
such as that of Lisboa et al. [20] and Paul et al. [68].

The leaf size of the Acacia species is very small, com-
pared to many other broad-leaved tree species and, hence 
it is not expected to have substantial contributions to the 
total biomass estimation. The moisture content of the 
leaves is high and the dry weight is understandably low. 
This implies that the contribution of leaves for the total 
AGB is minimal which is helpful to select the simplest 
model in our study area. This is supported by Mate [69], 
the contribution of leaves to the total AGB was only 3% 
in the Miombo woodlands of Mozambique.

While the biomass estimates based on our equation 
significantly differed from those based on Brown [58] and 

Chave et al. [15], possibly, the observed biomass signifi-
cant differences could arise from the fact that the Omo 
Gibe Acacia woodland ecosystem is different from the 
Chave et  al. and Brown models development ecosystem 
[31], on the other hand, the model developed using data 
Henry et  al. [31] from the dry forest of East Africa and 
Guedes et al. [59] equations, which were developed in the 
dry woodland ecosystem of Mozambique were more sim-
ilar to our study area (at least from climate perspectives). 
No statistically significant difference (p > 0.05) and less 
error were observed among the allometric model devel-
oped in the Omo Gibe woodland and those by Henry 
et  al. [31] and Guedes et  al. [59]. Moreover, Henry had 
taken vegetation data from Ethiopia during model devel-
opment and the Guedes model was also used widely in 
the dryland forest of Africa. The results of RMPE and 
MPE analysis indicate that the model developed from 
Mozambique woodlands and East Africa dry forest can 
predict the AGB in woodlands of Omo Gibe in Ethio-
pia. This could be due to having a similar agro-ecological 
zone of the equation’s developments.

Soromessa [70] also reported the overestimation of bio-
mass when Brown [58] was applied to their observed data 
of Juniperus procera (Hochst. Ex. Endl.) and Podocarpus 
falcatus (Thunb.) Mirb. in Ethiopia. The findings of Won-
drade et al. [71], and Tesfaye et al. [18] are also in agree-
ment with our study. Yet, Chave et  al. [15] and Brown 
[58] allometric equations are widely used in Ethiopia for 
carbon stock assessment and they resulted in uncertainty 
and unreliable estimation of the biomass [71].

The findings from these comparisons imply that the 
choice of an appropriate allometric equation in a given 
set of environmental conditions and tree species is 
essential for accurate estimating the AGB of a tree and 
generating reliable information. Studies also showed 
that provincial differences in tree diameter and height 
are important sources of uncertainties in estimating 
biomass using allometric equations [72]. The sample 
trees used by Brown [58] and Chave et al. [15] were, for 
instance, typically tall trees and large diameter size that 
may grow much more than 20 m in the moist evergreen 
forest, while woodland in Omo Gibe of southwest Ethio-
pia is dominated by lower height and diameter species, 
which results in lower AGB for trees in the woodlands. 
It is also evident that both Brown [58] and Chave et  al. 
[15] sample data were not collected from within Ethio-
pian woodland areas. Thus, site-specific models need to 
be developed to obtain a reliable allometric equation for 
biomass assessment and carbon stock estimates for use 
in a wide range of environmental and ecological applica-
tions, including REDD+. Hence, the accuracy of carbon 
sequestration potential estimation for Ethiopian forests 
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using site-specific allometric could be improved if allo-
metric equations are rigorously tested and developed for 
the major forest ecosystems of the country.

The allometric equation developed in this study could 
be a substantial contribution to efforts being made to 
improve the accuracy of biomass and carbon seques-
tration estimates of Acacia woodland in Ethiopia. The 
equation may also be usable in other similar ecosystems 
elsewhere, particularly in data-scarce regions and where 
robust allometric equations are lacking. However, the 
performance of the models in other similar ecosystems of 
Acacia woodland may need to be further tested. Future 
studies may also consider the influence of environmental 
variables such as climate and topography on the perfor-
mances of different models and the influence of different 
predictor variables on AGB.

Conclusion
The study has developed site- and species-specific mod-
els for estimating AGB of Acacia species, particularly 
the two genera (Vachellia and Senegalia), in Omo Gibe 
woodland of Ethiopia. The newly developed models 
can be used for generating reliable information on car-
bon stock estimation and Monitoring, Reporting, and 
Verification (MRV) component of REDD+ particularly, 
in Acacia woodlands of Ethiopia. The model based on 
DBH alone as predictor variables and a combination of 
DBH and H was found to be better performing models 
in predicting AGB, compared to the other alternative 
models. The power model with DBH alone was shown 
to perform best in terms of model performance meas-
urement (AIC, RMSE, RMPE, and MPE). Conversely, 
the model based on height combined with DBH was 
found to be the second better predictor variable. Wood 
density did not improve the performance of all tested 
models. Therefore, the finding did not encourage the 
use of multiple predictor variables for the estimation of 
AGB of Acacia species. The costs and time involved in 
measuring several variables are also essential in choos-
ing an appropriate allometric equation. Moreover, the 
site-specific model is a precise estimator of AGB since 
it considers the environmental factors and the semi-
destructive method can apply in the wider area of a 
forest, degraded land, threaten species and cutting pro-
hibited areas of the forest. In sum, our study concludes 
that the inclusion of multiple predicting variables may 
not necessarily lead to considerable improvements for 
predicting the AGB but a single variable such as DBH 
may provide biomass estimates at a sufficient accuracy 
level.
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