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Abstract 

Purpose  The implementation of artificial intelligence (AI) in health care is gaining popularity. Many publications 
describe powerful AI-enabled algorithms. Yet there’s only scarce evidence for measurable value in terms of patient 
outcomes, clinical decision-making or socio-economic impact. Our aim was to investigate the significance of AI 
in the emergency treatment of wrist trauma patients.

Method  Two groups of physicians were confronted with twenty realistic cases of wrist trauma patients and had 
to find the correct diagnosis and provide a treatment recommendation. One group was assisted by an AI-enabled 
application which detects and localizes distal radius fractures (DRF) with near-to-perfect precision while the other 
group had no help. Primary outcome measurement was diagnostic accuracy. Secondary outcome measurements 
were required time, number of added CT scans and senior consultations, correctness of the treatment, subjective 
and objective stress levels.

Results  The AI-supported group was able to make a diagnosis without support (no additional CT, no senior con-
sultation) in significantly more of the cases than the control group (75% vs. 52%, p = 0.003). The AI-enhanced group 
detected DRF with superior sensitivity (1.00 vs. 0.96, p = 0.06) and specificity (0.99 vs. 0.93, p = 0.17), used significantly 
less additional CT scans to reach the correct diagnosis (14% vs. 28%, p = 0.02) and was subjectively significantly 
less stressed (p = 0.05).

Conclusion  The results indicate that physicians can diagnose wrist trauma more accurately and faster when aided 
by an AI-tool that lessens the need for extra diagnostic procedures. The AI-tool also seems to lower physicians’ stress 
levels while examining cases. We anticipate that these benefits will be amplified in larger studies as skepticism 
towards the new technology diminishes.
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Introduction
Conventional x-ray imaging is the cornerstone of fracture 
detection in emergency care units.

Decisions regarding further management rely on 
details revealed in the X-ray, including the presence of 
a fracture, any displacement, or involvement of the joint 
surface. Up to now, radiographs are usually interpreted 
by humans, mostly radiologists. However, several studies 
indicate a high number of diagnostic errors in radiograph 
interpretation with real-time error-rates of up to 3–5% in 
daily practice. [1–4]

Artificial intelligence (AI) is spreading in the medical 
field. Deep learning (DL) models are successfully used 
to detect skin cancer from photographs, breast cancer 
from mammography images, lung cancer from computed 
tomography (CT) scans or to identify diabetic retinopa-
thy from eye images. [5–8] In many of the mentioned 
fields, DL models achieve the accuracy of an expert.

The use of DL models for automated fracture detection 
in conventional radiography has been explored by several 
studies. The literature shows that DL models can reliably 
detect fractures in the upper limb, the lower limb, and 
the spine. According to some authors a paradigm shift in 
fracture detection can be observed currently. [9]

Even though many studies highlight the superiority of 
AI-enabled fracture detection models, the integration 
into clinical routine remains scarce. A potential barrier 
to embracing these technologies could be the absence 
of evidence in existing research connecting the use of AI 
tools to its benefits.

The aim of this study was to investigate how a reli-
able AI-enabled distal radius fracture detection model 
substantially influenced the treatment of wrist trauma 
patients in an emergency care unit. We intended to not 
only uncover potential effects on doctors’ decision-mak-
ing process and patient’s outcomes, but also to quantify 
these effects.

Material and methods
To investigate the potential impact of an AI-based frac-
ture detection model we designed an experiment with a 
special focus on recreating a close-to-reality scenario in 
an emergency care unit. Two groups of physicians were 
confronted with 20 virtual, but realistic cases of wrist 
trauma patients. The task of the participating doctors 
was to assess clinical information and radiographs, find 
the correct diagnosis and possibly provide a treatment 
recommendation according to the usual workflow in the 
hospital’s emergency care unit.

Throughout the experiment, one group of physicians 
was supported by an AI-enabled fracture detection 
model while the other group was not. The participating 

physicians were volunteering residents recruited at one 
regional hospital site. All participants were either resi-
dents at the emergency care unit or at the orthopaedic 
department and gave written informed consent to partic-
ipate in the study. A description of the participants’ char-
acteristics is available in Table 1. Participants in Group A 
were slightly older and had more clinical experience.

This study was approved by the ethics committee of 
Northwestern and Central Switzerland (EKNZ) (BASEC-
Nr. 2023-01293). Our report follows the guidelines of the 
“CONSORT-AI extension” of the CONSORT 2010 state-
ment, which is a reporting guideline for clinical trials 
evaluating interventions with an AI component. [10]

Fracture detection model
The DL model used in the present experiment was devel-
oped by our study group within another research pro-
ject. [11] It is based on state-of-the-art machine learning 
methods used for object detection and was trained on 
our own dataset with the objective to detect and localize 
distal radius fractures in the dorso-palmar projection of 
conventional wrist radiographs. In an experimental envi-
ronment our best model achieved a diagnostic accuracy 
of 98.5% and an AUC of 0.995 (corresponding to a sen-
sitivity of 0.987 and a specificity of 0.987) regarding the 
classification task (“fracture present or not”).

The participants of our study who were allocated to 
group A were given the information that they are sup-
ported by “an artificial intelligence tool which detects dis-
tal radius fractures with a diagnostic accuracy of 98.5%”. 
This information was based on the performance metrics 
of our own distal radius fracture detection model and 
corresponds with similar models found in the literature. 

Table 1  Participants’ characteristics

Numbers are means; ± standard deviations

Characteristic Group A
(AI support)

Group B
(no AI support)

p value

Physicians in total 12 10

 Orthopedic physicians 6 5

 Emergency physicians 6 5

Female/male 5/7 4/6

Average age in years 31.3 ± 2.5 28.3 ± 1.3 0.002

Previous training in months

 Orthopedic surgery 18.5 ± 21.8 15.0 ± 23.2 0.72

 General surgery 7.8 ± 12.6 2.9 ± 7.6 0.30

 Internal medicine/geri-
atrics

11.3 ± 13.0 4.3 ± 5.1 0.13

 Emergency medicine 8.0 ± 9.3 2.7 ± 3.6 0.10

 Radiology 0 ± 0 0 ± 0 –

 Clinical medicine 45.5 ± 21.0 24.9 ± 19.4 0.03
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[12–17] The wrist radiographs from the patient cases, in 
which a fracture was present, were therefore augmented 
with a bounding box, clearly marking the presence and 
location of the distal radius fracture. (Fig. 1).

Experiment setup
The experiment took place in a Level II trauma center in 
a regional hospital in the northwestern part of Switzer-
land with a high number of trauma patients presenting to 
the emergency department.

All participants were initially randomly allocated to 
group A (AI-supported) or group B (no AI-support) 
using the envelope-method. All radiographic images 
used in our study were anonymized and originated from 
patients who had given informed general consent for fur-
ther use of their patient data within study frameworks.

After the allocation, each participant was confronted 
with 20 realistic, but virtual wrist trauma cases. All cases 
are based on real examples. The physicians received 
general information on each case, such as the patient’s 
age, gender, and a short description of how the injury 
occurred. In addition, they were given clinical findings 
and two projections of the corresponding wrist radio-
graph. The clinical information consisted of findings 
regarding swelling, pain, skin integrity, visible disloca-
tion, sensory and motor function.

Our patient sample had an even gender distribution (10 
females and 10 males) and an average age of 53 years (SD 
19.88). Of the 20 cases, 10 displayed distal radius frac-
tures whereas 10 exhibited non-fracture wrist trauma 
cases such as contusions or distorsions. For all cases, no 
other fractures than distal radius fractures were present. 
Within the fracture-cases, there was a variety in complex-
ity ranging from obviously displaced fractures to rather 
subtle undisplaced fractures. A corresponding computer 
tomography (CT) scan was available for each case. The 
correctness of the diagnosis was checked threefold, once 
by a radiologist and twice by different hand surgery spe-
cialists. The AI-based model identified all fractures cor-
rectly, which means there were neither any false positives 
nor false negatives.

For our experiment, it was important that the physi-
cians already encountered wrist-trauma-cases and were 
therefore familiar with the usual diagnostic procedure. 
They were asked to think of a situation in which they are 
alone in the emergency unit during a nightshift with no 
senior physician currently available.

All 22 participants were given one trial case equally 
constructed as the following 20 cases to clear any ques-
tions and get them familiarized with the experiment 
setup. Each physician was asked to find the correct diag-
nosis and provide a treatment recommendation based on 
the available information. (Fig. 2).

Fig. 1  Radiographs showing one example of a distal radius fracture used for a virtual patient case. a Dorsopalmar wrist radiograph. b 
Corresponding lateral projection. c Dorsopalmar wrist radiograph with a bounding box added by the AI-enabled fracture model marking 
the presence and location of a distal radius fracture. Only physicians from group A were provided with this image.
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For each case, four similar questions had to be 
answered in both groups. First, the participants needed 
to assess whether they had sufficient information avail-
able to provide a diagnosis and treatment or whether 
they wished to conduct a CT scan. Additionally, the 
physicians could decide to consult a senior physician, 
which meant that they were given the correct diagno-
sis by the experimenter to replicate the clinical set-
ting. Afterwards, the participants made a diagnosis and 
decided on the therapy options. Lastly, they indicated 
how secure they felt about their diagnosis and treat-
ment decisions. This sequence was repeated identically 
for all 20 cases.

Outcome measurements
Primary outcome measurements
Firstly, we evaluated the physicians’ ability to make a 
diagnosis. We distinguished between instances where 
they did not require additional assistance and cases 
where they opted for support either through a CT 
scan—participants received an extra CT image of the 
scan—or consultation with a senior physician—partici-
pants were provided with the accurate diagnosis.

Secondly, we examined the diagnosis provided by the 
physicians. For each case, they were tasked with selecting 
one of three diagnosis options: “contusion”, “distal radius 
fracture” or “I don’t know”. The assessment of the diag-
nostic outcomes was contingent on the physicians’ capa-
bility to discern between a fracture and a contusion.

The sensitivity and specificity statistics do not include 
the “I don’t know” responses. They are, however, 
included as a “false” answer in the mean diagnosis cor-
rectness statistics. Additionally, we conditioned the 
diagnosis outcome measure on the physicians’ ability 
to make a diagnosis. We did so because the physicians 
who received additional support from the CT or the 
senior physicians had a different information set than 
the ones who rendered the diagnosis by themselves.

Secondary outcome measurements
Therapy options  To create an authentic setting, we 
assessed the precision of physicians in selecting the appro-
priate therapy option. Five options were provided: symp-
tomatic therapy (pain killers and cooling), non-operative 
fracture therapy (casting), surgery, consultation with hand 
specialists and further diagnostics. The choices “Consul-
tation of a hand specialist” and “Further Diagnostics”, 
involving the performance of a CT scan, were consistently 
deemed incorrect answers, as they do not propose a suit-
able therapy option.

Confidence concerning  diagnosis and  treatment  After 
each case, the participants had to reflect on how confi-
dent they felt about their diagnosis and treatment. This 
was measured on an ordinal scale from 1 to 5, where 1 
equaled very low confidence and 5 very high confidence.

Time  We analyzed the time it took the participants 
to solve the overall case-set. This was automatically 
recorded by the survey-tool.

Subjective and objective stress level  In addition to the 
questionnaire, we examined subjective and objective 
stress levels of our participants. To determine objec-
tive stress-levels we analyzed the heart rate and blood 
pressure of each participant, which can indicate stress 
as described by [18] and [19]. The Polar H7 Heart Rate 
Sensor and Polar V800 Watch were used to measure the 
heart rate (HR). To determine the “rest heart rate” we 
recorded the HR in the introductory phase of the test. 
The HR measured during the execution of the 20 cases 
was classified as “stress heart rate”. We used the software 
KubiosHRV to compute the average heart rates, see [20]. 
To measure blood pressure we used the blood pressure 
monitor Omron M-300 which captured blood pressure 
every five minutes. To calculate the mean arterial blood 
pressure (MAP) we used the formula by DeMers and 
Daliah [21]:

Fig. 2  Questionnaire design
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where DP and SP denote diastolic and systolic blood 
pressure, respectively. We differentiated between blood 
pressure before starting the questionnaire and during fill-
ing the questionnaire.

To measure subjective stress levels, we apply the State-
Trait-Anxiety-Inventory (STAI), Form Y-1, devloped by 
Charles D. Spielberger, see [22]. All participants answered 
a questionnaire of 20 items in between the trial case and 
the first of the 20 cases, and after the last case.

Statistical analysis
For each outcome measure, we calculated group means 
and unbiased standard deviations and used a t-test to 
examine whether the means of the two groups are sta-
tistically different. We defined a statistically significant 
difference by the t-test’s p value being smaller or equal 
to 0.05. A two-tailed distribution and homoscedastic 

MAP = DP+ 1/3(SP− DP) variances of the two samples were chosen. We decided to 
do so by applying a rule of thumb that suggests choosing 
homoscedasticity in case the two sample variances being 
smaller than 4, which is the case for most of our outcome 
variables.

Results
The results of the experiment are depicted in Table 2.

Primary outcomes
We found that the physician’s ability to make a diagno-
sis without additional help by a CT or senior doctor is 
strongly affected by the use of the AI tool. The AI-sup-
ported group was able to make a diagnosis without sup-
port (no CT, no senior consultation) in 75% (SD = 0.13) 
of the cases, whereas the control group only made a diag-
nosis in 52% (SD = 0.18) of cases. This difference is statis-
tically significant (Diagnosis w/o support, P = 0.003). The 
group without AI support chose an additional CT scan 

Table 2  Results

Numbers are means; ± standard deviations

Outcomes Group A
(AI support)

Group B
(no AI support)

p value

Primary outcomes

 Diagnosis w/o support 0.75 ± 0.13 0.52 ± 0.18 0.00

 Additional CT-scan 0.14 ± 0.09 0.28 ± 0.15 0.02

 Consultation senior doctor 0.11 ± 0.09 0.21 ± 0.26 0.25

 Sensitivity 1.00 ± 0.00 0.96 ± 0.07 0.06

 Specificity 0.99 ± 0.03 0.93 ± 0.14 0.17

 No diagnosis 0.04 ± 0.07 0.07 ± 0.05 0.41

 Mean diagnosis correctness (MDC) 0.95 ± 0.08 0.89 ± 0.10 0.08

 Mean diagnosis correctness fractures 1.00 ± 0.00 0.96 ± 0.17 0.06

 Mean diagnosis correctness contusions 0.91 ± 0.15 0.81 ± 0.17 0.16

Primary outcomes conditional measures

 Correct diagnosis|medical history 1.00 ± 0.00 0.92 ± 0.09 0.01

 Specificity|medical history 1.00 ± 0.00 0.92 ± 0.13 0.04

 Sensitivity|medical history 1.00 ± 0.00 0.96 ± 0.09 0.15

 Correct DiagnosisExtra CT scan 0.72 ± 0.40 0.77 ± 0.20 0.76

 Specificity|Extra CT scan 0.97 ± 0.08 0.88 ± 0.31 0.38

 Sensitivity|Extra CT scan 1.00 ± 0.00 0.77 ± 0.11 0.40

Secondary outcomes

 Correct therapy 0.52 ± 0.12 0.50 ± 0.14 0.77

 Confidence 3.86 ± 0.57 3.66 ± 0.65 0.45

 Time (seconds) 1793 ± 512 1971 ± 515 0.43

 STAI before test 29.42 ± 8.08 33.50 ± 10.73 0.32

 STAI after test 28.83 ± 7.46 37.30 ± 11.58 0.05

 HR before test (bpm) 76.00 ± 9.91 72.67 ± 12.78 0.51

 HR after test (bpm) 74.50 ± 9.39 70.90 ± 12.34 0.45

 MAP before test 101.9 ± 11.5 101.8 ± 11.4 0.99

 MAP after test 98.05 ± 9.12 92.84 ± 6.98 0.15
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in 28% (SD = 0.15) of cases whereas the group with sup-
port only did so in 14% (SD = 0.09) of cases (Additional 
CT-Scan, P = 0.02). On average, the AI group also chose 
to consult a senior doctor less often, even though this 
difference is not significant (Consultation senior doctor; 
Group A: Mean = 0.11, SD = 0.09; Group B: Mean = 0.21, 
SD = 0.15; P = 0.25).

Regarding the ability to make a correct diagnosis, the 
use of the AI tool increased the sensitivity from 96 to 
100% ( SDA = 0, SDB = 0.07, P = 0.06 ) and the specific-
ity from 93 to 99% ( SDA = 0.03, SDB = 0.14, P = 0.17 ), 
however, neither of the statistics are significantly differ-
ent. Also, if we included the “I don’t know” (No Diag-
nosis) responses as “false” answers, the ability to make 
a correct diagnosis increased on average: the mean cor-
rectness of the diagnosis increased from 89% (SD = 0.1) 
to 95% (SD = 0.08, P = 0.08) if all 20 cases were considered 
(Mean Diagnosis Correctness), from 96% (SD = 0.07) to 
100 (SD = 0.0, P = 0.06) if only the fractures were consid-
ered (Mean Diagnosis Correctness Fractures), and from 
81% (SD = 0.17) to 91% (SD = 0.15, P = 0.16) if only the 
contusions were considered (Mean Diagnosis Correctness 
Contusions). None of the increases in the means were 
statistically significant.

Primary outcomes: conditional measures
Only considering the cases where the participants pro-
vided the diagnosis solely based on the medical his-
tory and x-ray (Correct Diagnosis|Medical history), we 
found that the AI group always made the right diagno-
sis, whereas the non-AI group only did so with a prob-
ability of 92% (SD = 0.09). The difference is significant 
(p = 0.01). Participants were more likely to identify a 
contusion correctly if they received support from the 
AI tool (Specificity|Medical history; Group A: Mean = 1, 
SD = 0; Group B: Mean = 0.92, SD = 0.13; p = 0.04). 
Regarding the correct identification of a fracture, we did 
not find a significant difference (Sensitivity|Medical his-
tory; Group A: Mean = 1, SD = 0; Group B: Mean = 0.96, 
SD = 0.09; p = 0.15). Lastly, only considering the cases 
where the participants chose to perform an additional 
CT scan, we did not find significant difference between 
the AI supported group and the control group (Correct 
Diagnosis|Extra CT Scan: p = 0.76; Specificity|Extra CT 
Scan = 0.38; Sensitivity|Extra CT Scan: p = 0.40).

Secondary outcomes
Subjective stress level—We found the AI-supported group 
to be significantly less stressed compared to the control 
group (STAI after Test; Group A: Mean = 28.83, SD = 7.5; 
Group B: Mean = 37.3, SD = 11.6; p = 0.05).

The differences regarding the remaining secondary out-
come measurements were not statistically significant.

Discussion
Distal radius fractures are the most frequent fractures in 
human and account for 17.5% of all fractures in adults 
[23]. Radiographic images are the cornerstone of finding 
the correct diagnosis in wrist trauma patients. Usually, 
radiographs are interpreted by humans, mostly radiolo-
gists. However, several studies indicate a high number of 
diagnostic errors in radiograph interpretation with real-
time error-rates of up to 3–5% in daily practice. [1–4]

In contrast, the literature indicates that AI-enabled 
fracture detection models can match expert accuracy in 
detecting fractures [9]. Nevertheless, widespread adop-
tion in clinical practice remains limited. A potential bar-
rier to embracing these technologies could be the absence 
of evidence in existing research connecting the use of AI 
tools to valuable benefits in terms of physician workload, 
patient clinical outcomes, or economic impacts.

We found that the AI tool increased the physicians’ 
diagnostic accuracy. The mean sensitivity rose from 96 
to 100% and the mean specificity increased from 93 to 
99% when employing the AI tool. However, the increase 
is not statistically significant. Notably, in situations where 
physicians made decisions independently, without addi-
tional support from a CT scan or a senior physician, the 
accuracy of the diagnosis significantly improved from 92 
to 100%. Comparing our findings to the literature, [24] 
investigated the use of an AI tool by physicians in detect-
ing of appendicular skeletal fractures and found that that 
AI assistance improved the sensitivity by 8.7% points, 
while the specificity increased by 4.1% points.

The increase in sensitivity and specificity we observed 
has potentially crucial implications for clinical routines. 
Firstly, the AI tool can facilitate more precise diagnosis 
in emergency units. Moreover, in settings with a lack of 
experts, such as family or general practitioners, the AI 
tool can serve as initial assistance for making further 
clinical decisions that might be challenging without the 
tool. Furthermore, in emergency units, junior physicians 
often conduct the initial interpretation of radiographs 
and subsequently consult senior physicians. The AI tool 
can enhance this process.

Our findings indicate that the presence of the AI tool 
led to a 50% reduction in the need for additional CT 
scans. This holds particular significance in clinical set-
tings, as it substantially diminishes the requirement for 
additional CT scans. Consequently, this not only mini-
mizes radiation exposure for patients but also results in 
cost savings for emergency units.

While not statistically significant, our study shows a 5% 
boost in diagnostic confidence among physicians using 
AI, being in line with Hoppe et al.’s [25] findings that AI 
support makes physicians feel more secure in evaluating 
X-rays. This increased confidence could decrease reliance 
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on further diagnostics like CT scans or senior consulta-
tions and aid in training junior doctors through ongoing 
feedback.

Additionally, AI assistance led to a 9% reduction in 
time to complete tasks, offering potential benefits such as 
lighter physician workloads, shorter patient wait times, 
and less crowded emergency rooms. However, it is note-
worthy that the observed difference is not statistically 
significant, as also found by Hoppe et al. [25]. This could 
be attributed to a potential lack of confidence in the AI 
tool among physicians, which might lessen with more 
familiarity, prolonged exposure or more regular use of 
the AI tool.

Physicians using AI also reported 23% lower stress lev-
els, suggesting AI integration could ease the strain on 
doctors, particularly beneficial amid increasing demands 
on juniors.

Our findings position AI as a supportive tool rather 
than a replacement, aligning with previous studies that 
view AI as a "second reader" or “safety net”. [8] Our 
study has the potential to lay the foundation for further 
research on AI in clinical settings.

Our study has several limitations. Physicians had dif-
ferent levels of clinical and radiological experience. Nota-
bly, those using the AI tool generally had greater clinical 
experience. With random group assignment, controlling 
for experience disparities was not feasible. This likely 
influenced the results, as greater experience with radio-
logical interpretation tends to improve diagnostic accu-
racy, an aspect not accounted for in our evaluation. The 
study involved a relatively small number of participating 
physicians, and the experiment’s duration was limited. 
The external validity of the study could be enhanced with 
more participants.

Additionally, being under observation might have influ-
enced physician behavior, potentially leading to more 
meticulous case analysis than usual—a phenomenon 
referred to as the “Hawthorne effect.”. [26]

Finally, accurately mirroring the complexity of real-life 
clinical settings poses significant challenges, which ren-
ders our findings more suggestive than definitive.

Conclusion
We demonstrated that employing an AI tool for diagnos-
ing distal radius fractures could lead to less unnecessary 
additional CT scans, reduced consultations of senior 
doctors, enhanced accuracy in the diagnosis when phy-
sicians make the diagnosis without additional help and 
potentially lower stress-levels.
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