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Abstract 

Objective  The aim of this study was to investigate whether Osteonectin/Secreted protein acidic and rich in cysteine 
(ON/SPARC) had a two-way dose-dependent regulatory effect on osteoblast mineralization and its molecular 
mechanism.

Methods  Initially, different concentrations of ON were added in osteoblasts, and the gene of bone sialoprotein (BSP), 
osteocalcin (OCN), osteopontin (OPN) and alkaline phosphatase (ALP) were detected using reverse‐transcription 
quantitative polymerase chain reaction (RT‐PCR). Secondly, based on the above results, the Optima and inhibitory 
concentration of ON for osteoblast mineralization were determined and regrouped, the Control group was also set 
up, and the gene detections of Collagen 1 (Col 1), Discoidin domain receptor 2 (DDR2) and p38 mitogen‑acti‑
vated protein kinase were added using RT‐PCR. In the third stage of the experiment, osteoblasts were pretreated 
with 0.4Mm ethyl-3,4-dihydroxybenzoate (DHB) (a specific inhibitor of collagen synthesis) for 3 h before adding 
the optima SPARC, the gene and protein expressions of OCN, OPN, BSP, ALP, DDR2, ALP, Col 1, DDR2 and P38 were 
detected by RT‑qPCR and western blot analysis, and the mineralized nodules were observed by alizarin red staining.

Results  The results showed that the expression of OCN, OPN, BSP, ALP, DDR2, ALP, Col 1, DDR2 and P38 genes 
and proteins in osteoblasts were significantly enhanced by 1 ug/ml ON, 100 ug/ml ON or 1 ug/ml ON added with 3,4 
DHB significantly inhibited the expressions of DDR2, P38 and the above-mentioned mineralization indexes, and sig‑
nificantly reduced the formation of mineralized nodules.

Conclusion  This study suggested that ON had a bidirectional dose-dependent regulatory effect on osteoblast 
mineralization, and the activation of P38 pathway by collagen binding to DDR2 was also an important molecular 
mechanism.
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Introduction
Extracellular matrix (ECM) mineralization is a key step 
in bone repair and remodeling. As an important non-
collagen protein, Osteonectin/Secreted protein acidic 
and rich in cysteine (ON/ SPARC) plays a critical role in 

the initiation and regulation of mineralization. ON regu-
lates the synthesis of ECM and collagen [1, 2], affects the 
differentiation, maturation and mineralization of osteo-
blasts [3–6], and has high affinity for type 1 collagen 
and hydroxylapatite (HA) [7]. Its importance to osteo-
blast mineralization has also been widely demonstrated 
in gene knockout animal experiments [8, 9]. Studies of 
biomimetic mineralization have also provided the same 
evidences that modeling of SPARC structural regions 
contributes to efficient apatite deposition [10] and that 
nanocomposite bound to SPARC effectively induce and 
permit the ordered growth of crystals in bone [11]. ON 
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is thought to be involved in the entire process of extracel-
lular matrix mineralization.

Non-collagen proteins regulate the composition of 
organic and mineralized substances, regulate cell activity 
and interactions with the cell matrix, which is the struc-
tural basis of maintaining the elasticity and mechanical 
resistance of mature tissues [12]. Non-collagen protein 
plays a central role in bone formation and bone turno-
ver, and its bidirectional regulation ensures the normal 
process of mineralization [13]. The transfer and miner-
alization of minerals on the surface of collagen fibers are 
closely related to the observed presence of non-collagen 
proteins, and these family members may act as accel-
erators or suppressors, its specific role depends on the 
concentration factor and temperature [14]. Similar stud-
ies have shown that ON has a negative effect on osteo-
blast mineralization. Several in  vitro experiments have 
shown that ON can inhibit HA formation [15, 16], and 
confirmed that at high concentrations, it shows alack of 
nucleating activity [13]. However, there have been few 
such experimental studies.

Our previous studies have demonstrated that 1 ug/
ml of ON has a significant positive regulatory effect on 
osteoblast mineralization [17], and the activation of p38 
mitogen‑activated protein kinase (MAPK) pathway by 
Recombinant Discoidin Domain receptor 2 (DDR2) is 
its important molecular mechanism [18]. The aim of 
this study was to investigate whether ON had a two-way 
dose-dependent regulatory effect on osteoblast minerali-
zation and its molecular mechanism.

Materials and methods
Culture and identification of osteoblasts
Osteoblasts were purchased from Abace Biotechnology 
company, washed with phosphate‐buffered saline for two 
times, and suspended in α‐minimum essential medium 
(α‐MEM). After identified by alkaline phosphatase (ALP) 
staining and alizarin red staining (ARS), osteoblasts were 
cultured for subsequent experiments.

Cell grouping and induced mineralization
The second-generation osteoblasts were re-inoculated in 
a six‐well plate at a density of 2 × 105 cells/mL; they were 
then cultured in α‐MEM with 10% FBS. After mixing the 
cells, the original medium was aspirated, and the cells 
were randomly assigned to different groups and studied 
in three stages.

Stage one
A (Control) group, adding mineralized solution (contain-
ing 50  mg/L ascorbic acid, 10  mmol/L sodium glycer-
ophosphate, and 100 ml/L FBS α‐MEM culture solution); 
B group, adding mineralized solution + 1 μg/mL SPARC 

(SINO Biological 80,870‐R08H); C group, adding min-
eralized solution + 10  μg/mL SPARC; D group, adding 
mineralized solution + 100  μg/mL SPARC; and E group, 
adding mineralized solution + 500  μg/mL SPARC. The 
medium in each group was substituted every 2 days. The 
gene expressions of non-collagen proteins (BSP, bone 
sialoprotein; OCN, osteocalcin; and OPN, osteopontin) 
and ALP were detected by reverse‐transcription quan-
titative polymerase chain reaction (RT‐PCR) on the 5th 
day (according to the previous study [17]). The inhibi-
tory SPARC concentration was determined based on the 
above results.

Stage two
Control group, the osteoblasts were added with mineral-
ized solution; Optima group, the osteoblasts were added 
with mineralized solution + 1  µg/mL ON; Inhibitory 
group, the osteoblasts were added with mineralized solu-
tion + inhibitory SPARC. The medium was substituted 
every 2 days in each group. On day 5, the non-collagen 
protein (OPN, BSP, OCN), Col1 a1, Col1 a2, Ddr2 and 
P38 gene expressions were detected using RT-qPCR. The 
experiments were conducted in triplicates.

Stage three
Control group, the osteoblasts were added with mineral-
ized solution; Optima group, the osteoblasts were added 
with mineralized solution + 1  µg/mL ON; Inhibitor1 
group (inhibitory SPARC concentration group), the oste-
oblasts were added with mineralized solution + inhibitory 
SPARC; Inhibitor2 group, the osteoblasts were added 
with mineralized solution + 1 µg/mL ON + 0.4 Mm ethyl-
3,4-dihydroxybenzoate (DHB) (in this group, osteoblast 
was pretreated with 3,4-DHB for 3  h before adding the 
optima SPARC and mineralized solution). The medium 
was substituted every 2 days in each group. On day 5, the 
Col1 a1, Col1 a2, Ddr2, p38, OPN, BSP, OCN and ALP 
gene and protein expressions were determined using RT-
PCR and Western Blot. The experiments were conducted 
in triplicates. The mineralized nodules were stained using 
ARS.

RT‑qPCR
Cells were collected from each group, and the total ribo-
nucleic acid (RNA) was extracted using a Trizol reagent 
(No. 15596026; Ambion Company) in accordance with 
the manufacturer’s protocols. Next, 2  µg of total RNA 
was used for reverse transcription, and an RT‐PCR was 
performed using an RT‐PCR kit (No. RR037A; Takara 
Company) in accordance with the manufacturer’s instruc-
tions. The Col1 a1, Col1 a 2, Ddr2, P38, ALP, OPN, BSP, 
and OCN gene expression levels were analyzed using the 
Light Cycler® 96 real‐time PCR system (Roche), with 
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glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
as an internal control gene. The primer sequences are 
listed in Table 1. All real‐time PCRs were performed in 
triplicate, and the results after calibration with GAPDH 
expression were calculated using the ΔΔCT method; they 
are presented in fold increase and relative to the control.

Western blot analysis
The proteins extracted from osteoblasts were quantified 
using a bicinchoninic acid assay protein assay kit (Beyo-
time) in accordance with the manufacturer’s instruc-
tions. The cells cultured in the six-well plate were washed 
with PBS three times, and an appropriate amount of 
RIPA lysate (Beyotime) was added to phenylmethylsul-
fonyl fluoride (PMSF) (Amersco-0754-100G) within a 
few minutes before use (the sinal PMSF concentration 
was 1  mM). Then, 200 µL of pyrolysate was added to 
each hole and mixed well; after full decomposition and 
10,000 × g centrifuging for 5  min, the supernatant was 
taken. A suitable amount of BCA working fluid (P0011, 
Beyotime) was prepared by adding 50 volumes of BCA 
reagent A and 1 volume of BCA reagent B (50:1), the 
appropriate volume of the sample was added to a 1.5 mL 
centrifuge tube and supplemented with a 0.9% NaCL 
solution to 100 µL. Next, 1 mL of BCA working fluid was 
added to each hole and left at 37 °C for 30 min; the A562 
absorption value was then determined and the protein 

concentration calculated according to the standard curve. 
The protein of each group was loaded on sodium dode-
cyl sulfate‐polyacrylamide gel electrophoresis and trans-
ferred onto nitrocellulose membranes. The membranes 
were blocked with 5% skim milk in Tris-buffered saline 
with Tween 20 at room temperature for 1 h. They were 
then supplemented with the primary antibody (1:1000) 
and incubated at 4 °C for 12 h. The membranes were then 
incubated with a secondary antibody (1:2000) at room 
temperature for 2 h. Protein bands were developed using 
enhanced chemiluminescence reagents (Millipore), the 
gel gray scales were captured using the ImageJ (V1.8.0) 
software, and the relative expression quantity was calcu-
lated using the grayscale-to-GAPDH ratio.

ALP staining
The original culture medium was removed, and the cells 
were washed twice using PBS and fixed in 2.5% glutar-
aldehyde for 24  h. They were then washed three to five 
times with PBS and stained with an ALP solution (BCIP-
NBT, C3206, Beyotime) in the dark for 30  min. After 
removing the BCIP-NBT dyeing solution, the cells were 
washed in distilled water two to three times and observed 
under a microscope.

ARS
A volume of 1% alizarin red aqueous solution was 
obtained by dissolving 1 g of alizarin red powder (A5533, 
Sigma) in 100 mL of distilled water. Impurities were fil-
tered, the PH adjusted to 4.2 with 10% ammonia, and 
the solution stored at 4 °C for later use. After a two-week 
mineralized solution induction, the osteoblasts were 
washed with PBS and fixed with 95% ethanol for 30 min. 
After drying, the prepared ARS solution was added for 
15  min; the osteoblasts were then rinsed three times 
with distilled water, dewatered, sealed, and observed 
and photographed under a light microscope (Olympus) 
for calcification detection. ImageJ was used to calculate 
the image-field percentage of positive calcium nodule 
staining.

Statistical analysis
All data were tested for normality and homogeneity of 
variance; the measurement data were presented with the 
mean ± standard deviation (SD). A one-way analysis of 
variance was conducted for the comparison among mul-
tiple groups, and tests on the least significant difference 
(Student–Newman–Keuls test or q test) were conducted 
for the comparison between two groups with homo-
geneity of variance; comparisons between two groups 
without homogeneity of variance were highlighted using 
Tamhane’s T2 test. A P value of < 0.05 was considered 

Table 1  Primer sequences for RT‐qPCR

COL1: Collagen 1; DDR2: Disk protein domain receptor 2; P38: P38 mitogen‐
activated protein kinase; BSP: Bone sialoprotein; OCN: Osteocalcin; OPN: 
osteopontin; ALP, alkaline phosphatase; F: Forward; R: Reverse; RT‐qPCR: Reverse 
transcription quantitative polymerase chain reaction

Target gene Primer sequence (5′– 3′)

Mouse COL1 a1 F: GAC​GCC​ATC​AAG​GTC​TAC​TG

R: ACG​GGA​ATC​CAT​CGG​TCA​

Mouse COL1 a2 F: GGA​GGG​AAC​GGT​CCA​CGA​T

R: GAG​TCC​GCG​TAT​CCA​CAA​

Mouse DDR2 F: CTC​CCA​GAA​TTT​GCT​CCA​G

R: GCC​ACA​TCT​TTT​CCT​GAG​A

Mouse P38 F: GGA​TAT​TTG​GTC​CGT​GGG​CT

R: CCG​TCA​GAC​GCA​TTA​TCT​GC

Mouse OPN F: CCA​GCC​AAG​GAC​CAA​CTA​CA

R: AGT​GTT​TGC​TGT​AAT​GCG​CC

Mouse BSP F: AGA​AAG​AGC​AGC​ACG​GTT​GA

R: AAT​CCT​GAC​CCT​CGT​AGC​CT

Mouse OCN F: ATT​GTG​ACG​AGC​TAG​CGG​AC

R: TCG​AGT​CCT​GGA​GAG​TAG​CC

Mouse ALP F: GAT​GTG​GAG​TAT​GAG​AGT​GACG​

R: GGT​CAA​GGG​TCA​GGA​GTT​C

Mouse GAPDH F: CCT​GCA​CCA​CCA​ACT​GCT​TA

R: CAT​CAC​GCC​ACA​GCT​TTC​CA
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statistically significant. All statistical analyses were per-
formed using the SPSS (17.0) software.

Results
100 μg/ml SPARC had significant negative effects 
on the expression of osteoblast mineralization genes
In the first stage of the experiment, the osteoblasts 
were divided into five groups. On day 5, RT‐qPCR 
was conducted to measure the mRNA expressions of 
BSP、OCN、OPN and ALP.

The results showed that, compared with Group A, the 
BSP, OCN, OPN and ALP expressions were significantly 
increased in the group B and C (Group B: ALP, P < 0.01; 
OPN, P < 0.001; BSP, P < 0.01; OCN, P < 0.01. Group C: 
ALP, P < 0.01; OPN, P < 0.01; BSP, P < 0.05; OCN, P < 0.01), 
while significantly inhibited in group D and E (Group 
D: ALP, P < 0.001; OPN, P < 0.001; BSP, P < 0.01; OCN, 
P < 0.001. Group E: ALP, P < 0.001; OPN, P < 0.001; BSP, 
P < 0.001; OCN, P < 0.001). There was no significant dif-
ference between Group B and Group C (ALP/OPN/
OCN, P > 0.05; BSP, P < 0.05), and between Group D and 
Group E(ALP/OPN/OCN/BSP, P > 0.05) (Fig. 1).

Based on the above results, 1  μg/ml SPARC was 
selected as the Optima concentration and 100  μg/ml 
SPARC as the inhibitory concentration.

The inhibitory concentration of ON reduced the gene 
expression of Ddr2 and P38
In the second stage of the experiment, RT‐qPCR was 
conducted to measure the mRNA expressions of Col1 a1, 
Col1 a2, Ddr2 and P38.

Compared with the Control group, the gene expression 
of Ddr2 and P38 increased significantly in the optimal 
group (Ddr2/P38, P < 0.01) and decreased significantly in 
the inhibitory group (Ddr2, P < 0.01; P38, P < 0.001), while 
the Col1 a1, Col1 a2 gene expression increased obviously 
in both groups (Group Optima: Col1 a1/ a2, P < 0.01. 
Group Inhibitory: Col1 a1, P < 0.01; Col1 a2, P < 0.001) 
(Fig. 2).

The inhibitor of collagen synthesis and the inhibitory 
concentration of ON have obvious negative regulatory 
effect on osteoblast mineralization
In the third stage of the experiment, 3,4-DHB was added 
into the Optima group, 3,4-DHB is a specific inhibitor 
of collagen synthesis. The Col1 a1, Col1 a2, Ddr2, p38, 
OPN, BSP, OCN and ALP gene and protein expressions 
were determined using RT-qPCR and western blot. The 
mineralized nodules were stained using ARS.

Fig. 1  Different concentrations of ON had different effects 
on the expression of osteoblast mineralization genes. the mRNA 
expressions of BSP、OCN、OPN and ALP were quantified by RT‐
qPCR; *P < .05, **P < .01, ***P < .001 versus the A group; #P < .05, 
##P < .01, ###P < .001 Comparison between Group B and C/ Group 
D and E; the experiments were conducted in triplicates; data 
were expressed by means ± standard deviation (SD). ON/SPARC, 
osteonectin/secreted protein acidic and rich incysteine; ALP, 
alkaline phosphatase; BSP, bone sialoprotein; OCN, osteocalcin; 
OPN, osteopontin; RT‐qPCR: reverse transfection quantitative 
polymerase chain reaction; Group A: adding mineralized solution; 
Group B: adding mineralized solution + 1 μg/ml SPARC; Group C: 
adding mineralized solution + 10 μg/ml SPARC; Group D: adding 
mineralized solution + 100 μg/ml SPARC; Group E: adding mineralized 
solution + 500 μg/ml SPARC​

Fig. 2  The inhibitory concentration ON reduced the gene 
expression of DDR2 and P38. the mRNA expressions of t Col1 a1, 
Col1 a2, DDR2 P38、BSP、OCN、OPN and ALP were quantified 
by RT‐qPCR; *P < .05, **P < .01, ***P < .001 versus the Con group; 
the experiments were conducted in triplicates; data were expressed 
by means ± standard deviation (SD). ON/SPARC, osteonectin/
secreted protein acidic and rich incysteine; COL1: collagen 1; 
DDR2: the disk protein domain receptor 2; P38: p38 mitogen‐
activated protein kinase; ALP, alkaline phosphatase; BSP, bone 
sialoprotein; OCN, osteocalcin; OPN, osteopontin; RT‐qPCR: reverse 
transfection quantitative polymerase chain reaction; CON group: 
adding mineralized solution; Optima group: adding mineralized 
solution + 1ug/ml SPARC; Inhibitory group: adding mineralized 
solution + 100ug/ml SPARC​
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Compared with the Control group, the OPN, BSP, 
OCN, ALP, Ddr2 and P38 gene and protein expres-
sions were both observably increased in the Optima 
group (mRNA: OPN/BSP/OCN/ALP/Ddr2, P < 0.001; 

P38, P < 0.01. protein: DDR2/P-DDR2/BSP, P < 0.01; 
P38/P-P38/ALP/ OPN/OCN, P < 0.001), and were obvi-
ously decreased in inhibitor1 and inhibitor2 group (all, 
P < 0.01). Furthermore, the expressions of Col1 a1 and 

Fig. 3  The inhibitor of collagen synthesis and the inhibitory concentration ON down-regulated the gene and protein expressions of DDR2, p38, 
OPN, BSP, OCN and ALP. (a) the mRNA expressions of Col1 a1, Col1 a2, DDR2, p38, OPN, BSP, OCN and ALP quantified by RT‐qPCR in response 
to the treatment of Con, Optima, Inhibitor1, and Inhibitor 2 group; (b) the gray value of protein bands and protein levels of Col1 a1, Col1 a2, 
DDR2, P-DDR2, p38, P-P38, OPN, BSP, OCN and ALP quantified by western blot analysis in response to the treatment of of Con, Optima, Inhibitor1, 
and Inhibitor 2 group;; *P < .05, **P < .01, ***P < .001 versus the Con group; #P < .05, ##P < .01, ###P < .001 versus the Optima group; the experiments 
were conducted in triplicates; data were expressed by means ± standard deviation (SD). ON/SPARC, osteonectin/secreted protein acidic and rich 
incysteine; COL1: collagen 1; DDR2: the disk protein domain receptor 2; P-DDR2: phosphorylated DDR2; P38: p38 mitogen‐activated protein kinase; 
P-P38: phosphorylated p38; OPN, osteopontin; BSP, bone sialoprotein; OCN, osteocalcin; RT‐qPCR: reverse transfection quantitative polymerase 
chain reaction; CON group: adding mineralized solution; Optima group: adding mineralized solution + 1ug/ml SPARC; Inhibitor1 group: adding 
mineralized solution + 100ug/ml SPARC; Inhibitor2 group: adding mineralized solution + 1ug/ml SPARC + 0.4 Mm ethyl-3,4-dihydroxybenzoate (DHB) 
(a specific inhibitor of collagen synthesis)
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Col1 a2 genes and proteins were significantly increased 
in Optima group and inhibitor 1 group (versus the Con 
group: all, P < 0.01), but were significantly decreased in 
inhibitor 2 group (versus the Con group: all, P < 0.01) 
(Fig. 3).

The area of mineralized nodules in the Optima group 
was significantly larger than that in the control group 
(P < 0.001), while in the inhibitor1 and inhibitor2 group 
were significantly smaller than that in the control group 
(P < 0.001) (Fig. 4).

Fig. 4  The inhibitor of collagen synthesis and the inhibitory concentration ON reduced the formation of mineralized nodules. a Calcium 
nodules observation stained with alizarin red under a microscope (× 100) after induced mineralization for 14 days in response to the treatment 
of Con, Optima, Inhibitor1 and Inhibitor2 group; b quantitative analysis of calcium nodules in each group. Bars, a 200 μm, *P < .05, **P < .01, 
***P < .001 versus the Con group; #p < .05, ##p < .01, ###p < .001 versus the Optima group; three samples in each group were observed; data were 
expressed by means ± standard deviation (SD); Con group: adding mineralized solution; Optima group: adding mineralized solution + 1ug/ml 
SPARC; Inhibitor1 group: adding mineralized solution + 100ug/ml SPARC; Inhibitor2 group: adding mineralized solution + 1ug/ml SPARC + 0.4Mm 
ethyl-3,4-dihydroxybenzoate (DHB) (a specific inhibitor of collagen synthesis)
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Discussion
Collagen and non-collagen proteins secreted by oste-
oblasts have a direct effect on extracellular matrix 
mineralization. Collagen provides the framework for 
mineralization, while non-collagen regulates the direc-
tion, size, and progress of crystal nucleation [19]. ON can 
promote collagen synthesis and conformational changes 
to initiate and promote mineralization [20]. However, it 
has also been reported that ON has a negative regulatory 
effect. The charge and orientation of the acid residues 
(glutamate and l-L-Aspartic Acid) of ON can inter-
fere with HA formation [15, 16]. In order to investigate 
whether there is a dose-dependent effect of ON on osteo-
blast mineralization, the groups were divided according 
to the different concentrations of ON in the first stage of 
this experiment. The results showed that 1 ug/ml ON sig-
nificantly increased osteoblast mineralization, which was 
consistent with our previous results [17], whereas 100 
ug/ml ON significantly inhibited osteoblast mineraliza-
tion. Related studies have provided similar results. 0.1–
0.3 ug/ml of ON can obviously promote the formation of 
collagen fiber bundles and accelerate the mineralization 
of collagen [21], while at a concentration of 100 ug/ml, 
it will lose its nucleation activity [13]. The above results 
confirmed that ON has a two-way dose-dependent regu-
lation on osteoblast mineralization.

ON and P38 have extensive correlation in cell growth 
and metabolism. The overexpression of ON-activated 
p38 MAPK-HSP27 signal pathway is the current hotspot 
in the diagnosis and treatment of malignant tumors [22–
24]. The mechanism of ON-activated p38 MAPK path-
way has also been widely demonstrated in the research of 
promoting Endothelium proliferation, corneal epithelial 
cell differentiation, and ectopic ossification [25–27]. Our 
previous studies have also confirmed that ON regulates 
osteoblast mineralization through the P38 pathway [17]. 
The discoid domain receptor, DDR, is a tyrosine kinase 
receptor that is widely expressed on the cell surface and 
can be activated slowly and continuously by triple-helix 
collagen, which is essential for bone development and 
regeneration [28, 29]. ON has the functional and struc-
tural basis of activating the binding of collagen to DDR2, 
which can promote collagen synthesis and induce col-
lagen conformational changes. Genetic studies provide 
evidence of the importance of DDR2 in bone develop-
ment. Mutations or deletions of DDR2 can lead to devel-
opmental deformities or severe defects in bone formation 
[30–32]. Activation of the DDR receptor is involved in 
the regulation of biological behavior between cells and 
ECM, involving the p38 MAPK pathway. Activation 
of DDR-2 receptor can induce pathological changes in 
chondrocytes, stimulate osteoblast differentiation and 
bone formation through p38 MAPK pathway [33, 34]. 

The mechanism by which collagen-binding DDR2 acti-
vates p38 MAPK pathway, a downstream of ERK/MAP 
kinase proliferation, is thought to be an essential signal-
ing pathway required for normal skeletal development 
[35, 36]. Our previous experiments also confirmed that 
collagen-DDR2-activated P38 pathway was an important 
mechanism for ON positively regulating osteoblast min-
eralization [18]. In order to confirm whether this pathway 
was also affected in the Inhibitory concentration group, 
genetic detection of collagen, Ddr2 and P38 was added in 
the second stage. The results showed that the expression 
of Ddr2-P38 pathway was indeed  significantly inhibited 
in the Inhibitory concentration group.

Type I collagen is the main protein of bone matrix and 
serves as a template in the process of apatite minerali-
zation [19]. Although the Ddr2-P38 pathway was inhib-
ited in the Inhibitory concentration ON group, collagen 
synthesis was still significantly increased. 3,4-DHB is a 
competitive prolyl hydroxylase inhibitor, which can spe-
cifically block collagen synthesis [37]. To further confirm 
the role of collagen in ON regulation of osteoblast min-
eralization, 3,4-DHB was added to the Optima concen-
tration of ON in the third stage of the experiment. The 
results showed that the synthesis of type 1 collagen in the 
Inhibitor2 group (added with 3,4DHB) was significantly 
reduced, and the positive regulation of Optima ON on 
mineralization was significantly inhibited, which sug-
gested that collagen was still a key factor in the regula-
tion of osteoblast mineralization by ON. However, the 
reason why collagen synthesis was increased but miner-
alization was inhibited in the Inhibitory concentration 
ON group remains to be further explored. Osteoblast 
mineralization is a complex physiological process involv-
ing multiple cytokines and different pathways. Although 
collagen synthesis is increased, ON has a strong ability 
to bind collagen, and its premature excessive binding to 
collagen may instead be a potential reason for inhibit-
ing mineralization. In addition, DDR2 and ON have the 
same GVMGFO motif and a common pattern of collagen 
recognition [38], excessive ON may also compete with 
DDR2 to bind collagen, thus preventing DDR2 from acti-
vating P38. Of course, the exact mechanism needs fur-
ther experimental confirmation.

In conclusion, this study confirmed that ON had a 
bidirectional dose-dependent regulatory effect on oste-
oblast mineralization, and the activation of P38 path-
way by collagen binding to DDR2 was also an important 
molecular mechanism. This study provides a new target 
for precisely regulating bone matrix mineralization, 
and may provide effective means and objective experi-
mental basis for future animal experiments and clinical 
application of bone repair and reconstruction.
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