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Abstract

Background: Osteoarthritis (OA) is a worldwide musculoskeletal disorder. However, disease-modifying therapies for
OA are not available. Here, we aimed to characterize the molecular signatures of OA and to identify novel
therapeutic targets and strategies to improve the treatment of OA.

Methods: We collected genome-wide transcriptome data performed on 132 OA and 74 normal human cartilage or
synovium tissues from 7 independent datasets. Differential gene expression analysis and functional enrichment
were performed to identify genes and pathways that were dysregulated in OA. The computational drug
repurposing method was used to uncover drugs that could be repurposed to treat OA.

Results: We identified several pathways associated with the development of OA, such as extracellular matrix
organization, inflammation, bone development, and ossification. By protein-protein interaction (PPI) network
analysis, we prioritized several hub genes, such as JUN, CDKN1A, VEGFA, and FOXO3. Moreover, we repurposed
several FDA-approved drugs, such as cardiac glycosides, that could be used in the treatment of OA.

Conclusions: We proposed that the hub genes we identified would play a role in cartilage homeostasis and could
be important diagnostic and therapeutic targets. Drugs such as cardiac glycosides provided new possibilities for the
treatment of OA.
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Background
Osteoarthritis (OA) is the most prevalent musculoskel-
etal disease and a leading cause of disability in the eld-
erly [1, 2]. OA is characterized by cartilage degeneration,
the formation of osteophytes, subchondral bone remod-
eling, and pathological changes of the meniscus and
synovitis [3]. It causes pain, joint stiffness, and disability
and leads to severe economic and social burden [4]. Pain
is the dominant symptom and a significant driver of
clinical decision-making [5]. Treatment of OA includes

alleviating pain, controlling inflammation, and slowing
down tissue degradation [6]. However, there is currently
no effective pharmaceutical treatment for OA that can
decelerate the progression of the disease since the pre-
cise mechanisms of the pathogenesis of OA remains
largely undetermined [7].
The integration of genome-scale transcriptomic profil-

ing of different patient cohorts improves the under-
standing of molecular changes during OA progression
and provides a scientific rationale for the development
of novel treatment strategies. RNA-seq and microarray
technology are widely used high-throughput genotyping
methods that measure the expression of genes on a
genome-wide scale with high accuracy and reliability [8–
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10]. Previously, it has been reported that during the
pathogenesis of OA, the molecular signature of articular
cartilage and synovial membrane underwent huge
changes [11]. Expression of genes involved in the mo-
lecular matrix components, cell–matrix adhesion, and
ossification had dramatic changes, which typically
marked different stages of endochondral ossification
or transient cartilage differentiation [11–13]. These
changes result in remodeling of the matrix and lead
to the impaired function of the tissue [14]. Notably,
local low-grade inflammation of articular cartilage and
synovial from patients with OA was also observed.
During the progression of OA, pro-inflammatory cy-
tokines such as IL-1, IL-6, TNF or interferon [15],
were secreted from diseased tissues, which further
damaged surrounding tissues and led to cartilage deg-
radation [7]. Therapeutic strategies aimed at counter-
ing inflammation is promising but does not arrest the
progressive degeneration of articular cartilage [14, 16,
17]. Thus, identifying the molecular basis of OA pro-
gression and the development of novel therapeutic
strategies to improve the treatment of OA remain the
key issues in OA research.
To characterize OA at the molecular level and to un-

cover the pathogenesis mechanisms, we collected and in-
tegrated transcriptome data of hundreds of OA and
normal tissues from 7 independent studies. By compar-
ing the gene expression pattern of OA samples with nor-
mal samples, we identified significantly differentially
expressed genes (DEGs) and investigated the enriched
signaling pathways of these DEGs. Using protein–pro-
tein interaction (PPI) network analysis, we discovered
several hub genes that function as critical regulators in
OA development and might be ideal drug targets. Fur-
thermore, we used a computational drug repurposing
method to uncover several drugs that could be repur-
posed to treat OA.

Methods
Literature search and data collection
We used the keywords “Osteoarthritis”, “RNA-seq or
microarray”, and “Dataset” on PubMed (https://www.
ncbi.nlm.nih.gov/pubmed/), GEO (http://www.ncbi.nlm.
nih.gov/geo/), or ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/) to find relevant publications or transcrip-
tome datasets of OA. Transcriptome data of synovial or
cartilage from OA patients were included in the analysis.
In the data filtering and quality control process, we se-
lected datasets with more than three replications for
each condition and measuring over 10,000 genes to en-
sure the coverage of genes. Altogether, we collected 132
OA samples and 74 normal samples from 7 independent
datasets for further analysis.

Data normalization and removal of batch effects
For the microarray data, raw “.CEL” file was down-
loaded. R program (version 3.5.1; http://www.r-project.
org) was used for data analysis. “oligo” [18] and “affy”
[19] R packages were applied for the data processing,
and then the Robust Multi-array Average (RMA)
method [20] was used for background correction,
normalization, and probe set summarization. For RNA-
Seq data, the sequence data were aligned to the human
reference genome hg38 using STAR (v2.5.3a). RSEM
(v1.2.28) was applied to map aligned reads and to gener-
ate a gene count matrix by default parameters. The ex-
pression matrix was normalized using the quantile
normalization method. Residual technical batch effects
arising due to heterogeneous data platforms were cor-
rected using the ComBat [21] function.

Filtering of differentially expressed genes
For microarray data, “limma” [22] was used to perform
the differential gene expression analysis of each dataset.
For RNA-seq data, differential expression analysis was
performed using Deseq2 [23]. False discovery rate (FDR)
was applied to carry out the correction of multiple test-
ing using the Benjamini and Hochberg (BH) method. In
this study, genes with |log2fold change (FC)| > 1.2 and
FDR < 0.1 were selected as the threshold for differen-
tially expressed genes (DEGs). Genes that were differen-
tially expressed in over half of the datasets with the
sample condition were selected and used for further ana-
lysis. Gene set enrichment analysis for DEGs was per-
formed using “MAGeCKFlute” R package [24].

Integration of the PPI network and hub gene
identification
The Search Tool for the Retrieval of Interacting Genes
(STRING) [25] is a biological database for predicting
protein interactions. The interactions between DEGs
were evaluated using STRING, and gene sets with a
combined score > 0.9 were defined as key DEGs. Subse-
quently, Cytoscape [26] (version 3.6.1; http://cytoscape.
org/) was used to visualize the PPI network of the key
DEGs that were identified. cytoHubba [27], a Cytoscape
plugin, was used to extract the hub genes. The central
elements were ranked by betweenness.

Identification of putative target genes of JUN
We searched public ChIP-seq data of JUN on the Cis-
trome Data Browser (http://cistrome.org/db) [28], a
website that collected and integrated thousands of public
ChIP-seq data of both human and mouse. We identified
and downloaded 25 processed ChIP-seq data of JUN on
Cistrome Data Browser. Genes with high RP scores had
high likelihoods to be the target genes of JUN. We se-
lected genes with mean RP scores > 1 as candidate target
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genes of JUN. For further filtering of these candidate
genes, we performed co-expression analysis to identify
genes that were co-expressed with JUN. Genes with ab-
solute correlation value > 0.5 in each dataset were se-
lected as co-expressed genes. Candidate target genes
that were co-expressed in over half of the expression
datasets were defined as putative target genes of JUN.

Drug repurposing analysis
Genes that were differentially expressed between OA
and normal from both synovial and cartilage tissues were
used for drug repurposing analysis. The probe name of
the upregulated and downregulated genes were used as
input on the cMap (https://portals.broadinstitute.org/
cmap/) website. The “quick query” mode of the cMap al-
gorithm was used for the drug repurposing analysis.

Statistical analysis
Statistical analyses were performed using the R software
(http://www.R-project.org/). Statistical analyses gathering
more than two groups were performed using ANOVA.
Otherwise, for two groups, statistical analyses were per-
formed using the unpaired t test. Multiple hypothesis
testing corrections were applied where multiple hypoth-
eses were tested and were indicated by the use of FDR.

Results
Outline of data analysis
The objective of this study was to use differentially
expressed genes (DEGs) to identify dysregulated genes
and pathways of OA and to uncover potential novel
pharmacological strategies. To achieve this purpose, we
collected hundreds of transcriptome data of patients
with OA and normal tissues from 7 independent data-
sets (Table 1). The subsequent analyses focused on pri-
oritizing key regulators by protein–protein interaction
(PPI) network and identifying potent drugs that can be
repurposed to treat OA by the computational drug re-
purposing method (Fig. 1).

Molecular characteristic of OA
To get a list of OA-related DEGs, we compared gene ex-
pression profiles of OA patients with those of normal
tissues. We collected transcriptome datasets from syn-
ovial or cartilage tissues of OA patients and healthy

donors. To distinguish DEGs between OA and normal,
we performed the differential analysis of each dataset.
Among the four transcriptome datasets of synovial tis-
sues, there were 579 DEGs from GSE1919, 2441 DEGs
from GSE12021, 2431 DEGs from GSE55235, and 2423
DEGs from GSE55457. The overlap of the DEGs be-
tween each dataset was shown in Fig. 2a. Genes that
were differentially expressed in two of the four datasets
were selected for gene set enrichment analysis. Genes as-
sociated with the lysosome, oxidative phosphorylation,
extracellular matrix organization, endopeptidase activity,
skeletal system development, and collagen-containing
extracellular matrix were upregulated in synovial tissues
of OA patients than healthy donors (Fig. 2b). In contrast,
compared with normal tissues, genes related to IL-17
signaling pathway, circadian rhythm, positive regulation
of p38mapk cascade, NOD-like receptor signaling path-
way, Foxo signaling pathway, cellular senescence, nega-
tive regulation of erk1 and erk2 cascade pathway, and
cellular response to hypoxia were downregulated in pa-
tients with OA (Fig. 2b).
To distinguish whether the cartilage tissues had differ-

ent gene expression patterns from what we have ob-
served in synovial tissues, we also collected three
transcriptome datasets from cartilage tissues. By com-
paring the gene expression pattern between patients
with OA and healthy donors, we obtained 6307 DEGs
from E-MTAB-6266, 6037 DEGs from GSE114007, and
1578 DEGs from GSE117999. The overlap of the DEGs
among these three datasets was shown in Fig. 2c. Genes
that were differentially expressed in two of the three
datasets were selected for further analysis. Gene ontol-
ogy analysis of the DEGs revealed that genes involved in
collagen-containing extracellular matrix, collagen bind-
ing, N-acetyglucosamine metabolic process, collagen fi-
bril organization, skeletal system development,
ossification, and osteoblast differentiation were upregu-
lated in OA samples (Fig. 2d); while biological processes,
including mTOR signaling pathway, Foxo signaling path-
way, regulation of cell proliferation, cellular senescence,
positive regulation of p38mapk cascade, and ERBB sig-
naling pathway, were downregulated in OA samples
(Fig. 2d). Although there were uniquely enriched path-
ways for synovial and cartilage tissues, we also found
some pathways that were enriched in both synovial and

Table 1 Information about the collected datasets

1 2 3 4 5 6 7

Data GSE55457 [29] GSE55235 [29] GSE12021 [30] GSE1919 [31] GSE117999 GSE114007 [32] E-MTAB-6266 [33]

Type Array Array Array Array Array RNA-Seq RNA-Seq

Tissue Synovial Synovial Synovial Synovial Cartilage Cartilage Cartilage

Normal 10 10 9 5 12 18 10

OA 10 10 10 5 12 20 65
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cartilage tissues. Such pathways might play essential
roles in the development and pathology of OA.
To better understand the differences between OA

and normal on the molecular expression pattern, we
focused on the genes that were differentially
expressed in both synovial and cartilage tissues for
further analysis. Among the 3036 DEGs of cartilage
and 2620 DEGs of synovial, there were 555 genes dif-
ferentially expressed in both tissues (Fig. 3a, Supple-
mentary table 1). Next, we performed functional
enrichment analysis for these 555 common DEGs.
Compared with normal tissues, genes involved in

glycine, serine and threonine metabolism, extracellular
matrix organization, regulation of T cell activation,
peptidase activator activity, bone development, ossifi-
cation, and collagen-containing extracellular matrix
were enriched in OA samples (Fig. 3b), while path-
ways related to negative regulation of erk1 and erk2
cascade, cellular senescence, response to hypoxia,
circadian rhythm, positive regulation of p38mapk cas-
cade, and HIF-1 signaling pathway were downregu-
lated in OA samples (Fig. 3c). Genes involved in
these pathways might be responsible for the cartilage
homeostasis and the pathology of OA.

Fig. 1 Overview of data processing step. a Transcriptomic data from 7 independent studies were selected, which included 132 OA and 74
normal samples. b Quality control and normalization for each data set. c Differential gene expression analysis of OA compared with normal was
performed using “Limma” (for microarray data) or “Deseq2” (for RNA-seq data). d Strategies for integrated analysis
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Protein–protein interaction network of DEGs
To discover potential critical regulators of OA from
DEGs, we performed protein–protein interaction (PPI)
network analysis (Fig. 4a). We used cytoHubba, a Cytos-
cape plugin, to extract the hub genes in the network.
The top 10 hub genes were JUN, ITGB1, VEGFA,
CDKN1A, CDK2, PSMD3, CUL2, FOXO3, SGK1, and
INSR (Fig.4b). These hub genes might associate with the
development and pathogenesis of OA. JUN is a tran-
scription factor that plays an essential role in regulating
cellular proliferation and apoptosis. JUN is in the center
of the network and interacts with a large number of
DEGs in the network, suggesting the crucial role of JUN
in regulating the expression of these DEGs. Integrins are
major surface receptors of chondrocytes, and integrin β1
(ITGB1) has been proven to suppress chondrocyte
hypertrophy and accelerate chondrocyte proliferation by
in vitro studies and mouse models [34–37], suggesting
that ITGB1 is involved in OA progression and OA-
induced cartilage degradation. VEGF-A is the founding
member of the VEGF family and is classically referred to
as VEGF [38]. As reported, the expression levels of
VEGF were associated with OA progression and OA-
specific pathologies, such as cartilage degeneration,
osteophyte formation, synovitis, and pain. Moreover, a

wide range of studies suggested that inhibition of VEGF
signaling reduces OA progression and benefits patients
with OA [39]. CDKN1A encodes a potent cyclin-
dependent kinase inhibitor and functions as a regulator
of cell cycle progression at G1. Shinsuke et al. reported
that CDKN1A-deficient mice were more susceptible to
OA-related changes in vivo, suggesting that CDKN1A
modulation might constitute a possible therapeutic strat-
egy for OA treatment [40]. FOXO3 belongs to the fork-
head family of transcription factors, which are
characterized by a distinct forkhead domain [41].
FOXO3 functions as a trigger for apoptosis by regulating
the expression of genes necessary for cell death [42].
Akasaki et al. reported that normal articular cartilage
had a tissue-specific signature of FOXO1 and FOXO3
but not FOXO4 proteins. In OA cartilage, chondrocytes
showed altered FOXO activation, which suggested FOXO
might play a role in OA progression [43]. SGK1 belongs
to the serine/threonine-protein kinase subfamily, which
contributes to the regulation of a wide variety of physio-
logical activities, such as membrane transports, cell
growth, proliferation, and apoptosis [44]. Knockdown of
SGK1 alleviates the IL-1β-induced chondrocyte anabolic
and catabolic imbalance by activating autophagy in hu-
man chondrocytes [45]. Downregulation of SGK1

Table 2 Top 15 drugs predicted by cMap

Rank cMap name Enrichment p Specificity Percent non-
null

Description

1 MG-262 − 0.992 0 0 100 Inhibitor of the chymotryptic activity of the proteasome

2 Anisomycin − 0.981 0 0.0085 100 Antibiotic, inhibiting eukaryotic protein synthesis

3 Digoxin − 0.978 0 0 100 Cardiac glycoside, inhibiting the Na+/K+ ATPase

4 Ouabain − 0.977 0 0.0088 100 Cardiac glycoside, inhibiting the Na+/K+ ATPase

5 Cephaeline − 0.955 0 0.0121 100 Inducing vomiting by stimulating the stomach lining

6 Emetine − 0.953 0 0.0118 100 Inducing vomiting by stimulating the stomach lining

7 Mebendazole − 0.943 0 0 100 Broad-spectrum antihelminthic

8 Phenoxybenzamine − 0.941 0 0.0091 100 Alpha-adrenoceptor antagonist, used as an anti-hypertensive

9 Digitoxigenin − 0.937 0 0 100 Cardiac glycoside, inhibiting the Na+/K+ ATPase

10 Thioridazine − 0.701 0 0.043 80 A first generation antipsychotic drug

11 15-Delta prostaglandin
J2

− 0.634 0 0.0301 86 Anti-inflammatory lipid mediator

12 LY-294002 − 0.323 0.00002 0.2945 54 PI3K-AKT inhibitor

13 Lomustine − 0.921 0.00006 0 100 An alkylating nitrosourea compound used in chemotherapy

14 Digoxigenin − 0.879 0.00008 0 100 Derivative of the cardiac glycoside digoxin

15 Thapsigargin − 0.964 0.00012 0.0258 100 An inhibitor of sarco endoplasmic reticulum Ca2+ ATPase
(SERCA)

Enrichment: Positive enrichment scores represent that the biological state induced by the signature are sought. Likewise, if reversal or repression of the biological
state encoded in the query signature is required, the enrichment scores were negative.
p: The Kolmogorov-Smirnov statistic is used for the significance analysis.
Specificity: Specificity measures the uniqueness of the connection between a perturbagen and the signature of interest. High values mean that many signatures
show good connectivity with these instances. This may indicate that the connectivity is unexceptional.
The non-null percentage: The non-null percentage is defined as the percentage of all instances in a set of instances that share the majority non-null category of
connectivity score. For example, if a perturbagen is represented by five instances, and three of those instances have a positive connectivity score, one instance
has a null connectivity score and one instance has a negative connectivity score, the non-null percentage for that perturbagen in that result is 60%.
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attenuates OA progression [46]. The biological role of
these hub genes in the development and progression of
OA had been studied previously, suggesting that target-
ing these hub genes might be an optimal novel treat-
ment for OA. However, more experiments were needed
to better elucidate the mechanism of action of these hub
genes.

JUN functions as a key TF that associated with the
development of OA
Since JUN was in the central of the network (Fig. 4a), we
focused on JUN for further analysis. We found that most
genes interacting with JUN directly in the PPI network
were differentially expressed between OA and normal
(Fig. 5a and b), suggesting the importance of JUN in
regulating the expression of these DEGs. To identify the
potential target genes that were regulated by JUN, we
downloaded the processed ChIP-seq data of JUN on the

Cistrome Data Browser (http://cistrome.org/db) [28].
Cistrome Data Browser collected thousands of human
and mouse samples with ChIP-seq data and facilitated
searches for putative target genes of transcription factors
by regulatory potential model [47]. Regulatory potential
(RP) score for each gene was calculated, reflecting the
likelihood of the transcription factor being a direct regu-
lator of that gene, and genes with high RP scores were
putative targets of the transcription factor. By analyzing
25 public ChIP-seq data of JUN, we selected 3250 genes
(Supplementary table 2) with mean RP scores > 1 as
candidate target genes of JUN. For further filtering of
the candidate genes, we performed co-expression ana-
lysis. Among the 3250 candidate targets, 214 genes had
high correlations with JUN, which were selected for fur-
ther analysis (Supplementary table 3). Functional enrich-
ment analysis of the selected 214 genes revealed that
pathways including the ATF-2 transcription factor

Fig. 2 Gene ontology analysis of DEGs from synovial and cartilage tissues. a Venn plot of DEGs from synovial transcriptome datasets. b Gene
ontology analysis of genes that were differentially expressed in more than two of the four synovial transcriptome datasets. “MAGeCKFlute” R
package was applied to perform the enrichment analysis. c Venn plot of DEGs from cartilage transcriptome datasets. d Gene ontology analysis of
genes that were differentially expressed in more than two of the three cartilage transcriptome datasets. “MAGeCKFlute” R package was applied to
perform the enrichment analysis
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network (part of the AP-1 complex), AP-1 transcription
factor network, TGF-β signaling pathway, osteoclast dif-
ferentiation, and ERBB1 downstream signaling were
enriched (Fig. 5c). JUN was in the AP-1 protein family,
and the top 2 enriched pathways were associated with
the AP-1 family network, which suggested the creditabil-
ity of our data analysis method. Among these, the TGF-
β signaling pathway has been reported to play a critical
role in the development and progression of OA by driv-
ing chondrocytes toward hypertrophy, promoting osteo-
progenitor cell differentiation into osteoblasts, mediating
synthesis of cartilage-specific extracellular matrix com-
ponents, and angiogenesis in subchondral bone [48].
The effects of TGF-β on the modulation of extracellular
matrix components were dependent on the activation of
JNK (c-Jun N-terminal Kinase), which in turn modulates
the activity of c-Jun [49]. Thus, JUN might serve as a
critical regulator of the development of OA by regulat-
ing the activity of TGF-β.

Drug repurposing for OA
Since there are no effective interventions to decelerate
the progression of OA now, drug repurposing of the
Food and Drug Administration (FDA)-approved

therapeutic agents is a particularly attractive approach to
improve the treatment of OA. Computational techniques
for predictive repurposing offer a relatively efficient and
authentic method of identifying testable hypotheses that
may be translated into the clinic [50]. The Connectivity
Map (cMap), which was established by the Broad Insti-
tute, consists of gene expression data generated by dos-
ing of more than 1300 compounds in hundreds of cell
lines [51]. cMap (https://portals.broadinstitute.org/
cmap/) has been successfully used to make drug repur-
posing predictions for a number of disease conditions
[50]. We applied cMap to explore potential drug reposi-
tioning opportunities for OA. Among the top 15 listed
drugs, MG-262 ranked first (Table 2). MG-262 is a po-
tent proteasome inhibitor that selectively and reversibly
inhibits the chymotryptic activity of the proteasome [52,
53]. The proteasome inhibitors have shown anti-
inflammatory activities in the animal models of arthritis,
psoriasis, colitis, and other inflammatory conditions [54].
Some studies discovered that proteasome inhibitors pro-
moted bone growth in a cell-based screen [55]. Although
the biological function of MG-262 in the treatment of
OA still remains an unexploited field, this analysis pro-
vided new possibilities for the treatment of OA. Of note,

Fig. 3 Gene ontology analysis of common DEGs from synovial and cartilage tissues. a Venn plot of DEGs from synovial and cartilage
transcriptome datasets. b Gene ontology analysis of genes that were upregulated in both synovial and cartilage transcriptome datasets
comparing OA with normal. “MAGeCKFlute” R package was applied to perform the enrichment analysis. c Gene ontology analysis of genes that
were downregulated in both synovial and cartilage transcriptome datasets comparing OA with normal. “MAGeCKFlute” R package was applied to
perform the enrichment analysis
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among the top 15 drugs, there were four drugs classified
as cardiac glycosides, such as ouabain and digoxin, sug-
gesting the potential clinical implications of cardiac gly-
cosides in OA. Cardiac glycosides function by inhibiting
the Na+/K+ ATPase (NKA) [56]. In addition, cardiac gly-
cosides have been found to decrease inflammatory
symptoms in different animal models of acute and
chronic inflammation [57]. Thus, cardiac glycosides
might have therapeutic benefit in the treatment of OA
by countering the inflammation-induced articular cartil-
age degradation. Since the safety of FDA-approved drugs

has been sufficiently verified, drug repurposing for ap-
proved drugs offers a less risky and more rapid potential
for the investment of novel therapeutic strategies.

Discussion
Here, we used a large-scale data integration method to
characterize the molecular signatures of OA, which ex-
tended our understanding of the disease mechanisms.
We also identified several essential regulators of OA,
such as JUN, VEGFA, and FOXO3, which might provide
a scientific rationale for the development of novel

Fig. 4 Protein–protein interaction network of DEGs. a STRING was used to evaluate protein interaction of DEGs between OA and normal. The
interaction was visualized by Cytoscape. b Top 10 hub genes ranked by betweenness. cytoHubba was used to extract the hub genes in
the network
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pharmacological therapies. Of note, we found JUN, a
crucial dysregulated transcription factor, plays a central
role in regulating the aberrant gene expression pattern
in OA. Moreover, we used a computational drug repur-
posing method to identify potential FDA-approved drugs
that can be repurposed to improve the treatment of OA.
In this study, we integrated and analyzed multiple

published datasets. We were able to find genes that were
consistently differentially expressed between OA and
normal among different datasets and different tissues.
Our analysis confirmed some findings from previous
studies using genome-wide gene expression analyses.
Common findings of these studies are the differential ex-
pression of genes involved in matrix-degrading enzymes
(MMPs, ADAMTS), collagen organization, and inflam-
mation [7, 58]. In our analysis, we also found increased
expression of genes associated with collagen-containing
extracellular matrix (DPT, GPC4, COL8A2, FBLN5,
COL3A1), ossification (CDH11, COL1A1, SPARC,
KAZALD1), and bone development (DYM, PTGER4,
SPARC, SULF) in patients with OA, which is suggestive
of active remodeling of cartilage homeostasis during OA
pathogenesis. During the early stages of OA, the

molecular composition and organization of the extracel-
lular matrix are altered first [59]. The articular chondro-
cytes exhibit increased cell proliferation and matrix
synthesis for the purpose of initiating repairing for
pathological injury [59, 60]. Changes in the composition
and structure of the articular cartilage further stimulate
chondrocytes to produce more catabolic factors involved
in cartilage degradation. Thus, the expression of genes
involved in the carbohydrate metabolism and extracellu-
lar matrix components were upregulated. Moreover,
chronic low-grade inflammation has also been found to
contribute to the development and progression of OA
[61]. During OA progression, the entire synovial joints
were involved in the inflammation process [62]. Pro-
inflammatory factors, such as IL-1β and TNF-α, as well
as chemokines, were reported to contribute to the sys-
temic inflammation that led to the activation of NF-κB
signaling in both synovial cells and chondrocytes [63].
Based on these studies, multiple novel pharmacological
strategies have emerged, including anti-inflammatory
mediators (anti-IL-1 [64], anti-TNF-α [65], and anti-IL-6
[66]) and inhibition of catabolic pathways (Wnt, ADAM
TS, and cathepsin K) [67]. Apart from these findings, we

Fig. 5 JUN functions as a key TF that associated with the development of OA. a A subnetwork of the first-neighbored genes with JUN. b The
expression level of genes in the subnetwork in (a). Values represent mean ± s.d. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 by Student’s t
test. c Gene ontology for putative target genes of JUN. “MAGeCKFlute” R package was applied to perform the enrichment analysis
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were able to find some essential regulators that might
associate with the pathogenesis of OA, such as ITGB1,
PSMD3, CUL2, and INSR. Since the association of these
hub genes with the development of OA has been re-
ported, they could serve as important diagnostic and/or
therapeutic targets for OA. However, more mechanistic
interpretation and clinical trial data are needed to clarify
the efficacy in the treatment of OA.
Since synovial and cartilage play different roles in the

bone homeostasis and pathology of OA, we compared
the gene expression pattern between OA and normal
using transcriptome datasets of each tissue separately.
This analysis identified some tissue-specific DEGs be-
tween OA and normal. Gene sets associated with N-
acetylglucosamine metabolic process, glycosaminoglycan
biosynthesis and metabolism, NF-KB transcription factor
activity, ERBB signaling pathway, P53 signaling pathway,
and mTOR signaling pathway were uniquely differen-
tially expressed in cartilage tissues. While biological
pathways involved in lysosome, oxidative phosphoryl-
ation, endopeptidase activity, Nod-like receptor signaling
pathway, and IL-17 signaling pathway were uniquely dif-
ferentially expressed in synovial tissues. In the develop-
ment of OA, the pathological changes of synovial and
cartilage were different. The histological pattern of syno-
vium in OA patients is characterized by synovial lining
hyperplasia, increased vascularity, and sublining fibrosis
[68] with the phenotypic shift of chondrocytes, including
surface fibrillation, degradation of cartilage matrix, chon-
drocyte clusters appearance, and vascular penetration
from the subchondral bone [69]. The different pheno-
typic changes of synovial and cartilage might explain the
different OA-related DEGs between these two tissues.
Our study also identified JUN, a transcription factor,

as a key regulator of these DEGs. JUN is one of the
members of the Activator protein 1 (AP-1) family pro-
teins [70]. AP-1 family proteins are basic leucine zipper
(bZIP) transcription factors that consist of Jun (c-Jun,
JunB, and JunD), Fos (c-Fos, FosB, Fra-1, and Fra-2), Jun
dimerization partners (JDP1 and JDP2), and the closely
related activating transcription factors (ATF2, LRF1/
ATF3, and B-ATF) subfamilies [71]. AP-1 family pro-
teins are implicated in the regulation of a variety of cel-
lular processes, including proliferation and survival,
differentiation, apoptosis, cell migration, and transform-
ation [72]. JUN has been reported to play a crucial role
in regulating cell proliferation and apoptosis [73]. Ven-
tura et al. reported that the c-Jun NH2-terminal kinase
JNK signaling pathway contributes to the regulation of
TGF-β-mediated biological responses [74]. TGF-β is cru-
cial for cartilage maintenance, and the lack of TGF-β re-
sults in OA-like changes [74]. Thus, JUN might regulate
the development of OA by coordinating with TGF-β
signaling.

Drug discovery is a time-consuming, laborious, costly,
and high-risk process. Drug repositioning is efficient,
economical, and low-risk compared with the traditional
drug development process. There are multiple drug re-
purposing methods generated, including computational
approaches, biological experimental approaches, and
mixed approaches. Among these, computational drug re-
purposing is the most powerful and the most widely
used. Previously, Soul et al. constructed a data portal
that provides an exploration and comparison platform
for analyzed skeletal transcriptomics data [75]. This data
portal also provides data repurposing mode using L1000
data, one of the cMap project resources. Using a compu-
tational drug repurposing method, we found cardiac gly-
cosides might be repurposed in the treatment of OA.
Cardiac glycosides are drugs that inhibit the Na+/K+

ATPases and are applied to treat heart failure and cer-
tain irregular heartbeats. However, recent studies re-
ported that cardiac glycosides are a novel class of broad-
spectrum senolytics for therapeutic applications in many
age-related disorders [76], including osteoarthritis. Car-
diac glycosides were capable of reducing the number of
senescent cells, diminishing the level of local inflamma-
tion, and improved some metabolic and physical fitness
parameters that decline with aging in some animal
models [77, 78]. Drug repurposing can be highly attract-
ive as a potentially cheaper and faster route to market.
However, successful drug repositioning requires a deep
understanding of biological mechanisms—from known
overlaps of mechanisms to re-innovation of a new mol-
ecule, to find a new mechanism, dosing, route of admin-
istration, and new target. Although our drug
repurposing analysis offers novel and valuable options
for developing strategies to treat OA, the effectiveness of
the predicted drugs in treating OA, such as cardiac gly-
cosides, needs more systemic and detailed validation.
There are several limitations of our studies. First,

osteoarthritis is typically described as a heterogeneous
disease with complex pathogenesis. Different patients
might have different mechanistic pathways, such that the
mechanisms of OA in the elderly might be different
from those after a joint injury in a younger adult or in
obese individuals. The molecular signatures we discov-
ered in this study by transcriptome data analysis might
not be representative in some subtypes of OA patients.
Integrated analysis of multi-omics data, including epi-
genetics (DNA methylation, histone post-translational
modification, and/or non-coding RNA), metabolomics,
and proteomics (by LC-MS) data, are needed to better
elucidate the heterogeneity of OA. Such detailed and
systematic analyses offer important mechanistic and po-
tentially therapeutic insights into OA. Finally, we have
highlighted several essential regulators and uncovered
that cardiac glycosides might benefit the patients with
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OA by countering the inflammation. However, further
experimental studies are needed to validate their clinical
implications.
Our study integrated multiple public transcriptome

data sets together, which provides more comprehensive
and reliable insights into the genetic alterations associ-
ated with the disease phenotype. Moreover, we used a
computational drug repurposing method to identify po-
tent drug candidates to improve the treatment of OA.

Conclusion
In summary, we used bioinformatics analysis to identify
a group of differentially expressed genes between OA
and normal tissues. By protein–protein interaction net-
work analysis, we identified several osteoarthritis-related
hub genes, which might be potential diagnostic or thera-
peutic targets for osteoarthritis. In addition, we found
JUN, a transcription factor, functions as a crucial regula-
tor by the analysis of public ChIP-seq data and co-
expression analysis. Moreover, we used a computational
drug repurposing method to identify potent drugs that
can be repurposed to treat OA.
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