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Abstract
Background  Abdominal computed tomography (CT) scan is a crucial imaging modality for creating cross-sectional 
images of the abdominal area, particularly in cases of abdominal trauma, which is commonly encountered in 
traumatic injuries. However, interpreting CT images is a challenge, especially in emergency. Therefore, we developed a 
novel deep learning algorithm-based detection method for the initial screening of abdominal internal organ injuries.

Methods  We utilized a dataset provided by the Kaggle competition, comprising 3,147 patients, of which 855 were 
diagnosed with abdominal trauma, accounting for 27.16% of the total patient population. Following image data 
pre-processing, we employed a 2D semantic segmentation model to segment the images and constructed a 2.5D 
classification model to assess the probability of injury for each organ. Subsequently, we evaluated the algorithm’s 
performance using 5k-fold cross-validation.

Results  With particularly noteworthy performance in detecting renal injury on abdominal CT scans, we achieved an 
acceptable accuracy of 0.932 (with a positive predictive value (PPV) of 0.888, negative predictive value (NPV) of 0.943, 
sensitivity of 0.887, and specificity of 0.944). Furthermore, the accuracy for liver injury detection was 0.873 (with PPV of 
0.789, NPV of 0.895, sensitivity of 0.789, and specificity of 0.895), while for spleen injury, it was 0.771 (with PPV of 0.630, 
NPV of 0.814, sensitivity of 0.626, and specificity of 0.816).

Conclusions  The deep learning model demonstrated the capability to identify multiple organ injuries 
simultaneously on CT scans and holds potential for application in preliminary screening and adjunctive diagnosis of 
trauma cases beyond abdominal injuries.
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Introduction
Abdominal trauma is a serious health issue that affects 
the survival of the injured, especially those under age of 
45 years [1], it is a common occurrence in both peaceful 
and hostile environments, and it mainly involves the liver, 
spleen, and kidney. Among all types of bodily injuries, 
those to the abdomen comprise from 0.4% up to 1.8% [2, 
3].Despite the improvements in trauma management, 
abdominal trauma still poses a significant threat to the 
mortality of the injured, with a global variation of 1–20% 
[4–6]. Abdominal trauma involves a variety of injuries to 
the abdominal organs, which have different structures 
and functions. The main causes of death from abdominal 
trauma are massive bleeding and severe infection in the 
abdominal cavity. To reduce the mortality of abdominal 
trauma, it is essential to quickly and accurately assess the 
presence and extent of internal organ injury, the type and 
location of organ injury, and the appropriate treatment 
[7].The diagnosis of abdominal trauma is often challeng-
ing, as it may not be evident from physical examination, 
patient symptoms, or laboratory tests. The most widely 
adopted trauma evaluation system is the American Asso-
ciation for Surgery of Trauma-organ injury scale (AAST-
OIS), which was first introduced in 1989, and the latest 
update was in 2018. It categorizes the injuries from mild 
to severe into grades I to V, based on the alterations in 
the anatomical structure of the injured organ. This scale 
is considered as the gold standard for trauma classifica-
tion [8].

CT is indispensable for assessing suspected abdominal 
injuries in clinical practice, as it provides a comprehen-
sive view of the abdomen, with a unique role in evalu-
ating abdominal parenchymal organs, hollow organs, 
mesentery, omentum, and vascular injuries caused by 
trauma, especially when severe or multi-system inju-
ries are suspected [9]. Based on AAST-OIS criteria, the 
accurate display and interpretation of CT signs are cru-
cial for the clinical diagnosis and classification for trauma 
patients [10, 11]. Therefore, the standardization of CT 
scan images for the precise judgment of radiologists on 
injury signs, and the consistency of grading interpreta-
tion are essential in providing better information for 
therapeutic strategies.

However, explaining CT scanning on abdominal 
trauma typically is a complex and time-consuming pro-
cess. In clinical, several factors contribute to the like-
lihood of errors in abdominal trauma CT diagnosis. 
These include imaging backlog, understaffing, visual 
fatigue, and overnight shifts, especially when the case-
load exceeds the daily workload [12, 13]. Moreover, the 
complexity of the abdomen, with its multitude of organs, 
poses challenges for comprehensive diagnosis, especially 
in cases involving multiple injuries or active bleeding. 
Furthermore, anatomical variations and incorrect patient 

positioning can also lead to misdiagnosis [14]. Despite 
the involvement of a second radiologist in reviewing the 
diagnostic results, errors and missed diagnoses remain 
challenging in clinical practice.

To overcome this challenge, artificial intelligence (AI) 
technology could facilitate the prompt diagnosis of such 
injuries and enhance the treatment and care of patients in 
emergency settings. Therefore, the medical community is 
increasingly interested in applying AI and machine learn-
ing (ML) to assist clinicians. By deploying AI model as 
virtual diagnostic assistants to serve as secondary image 
readers, the accuracy and dependability of radiological 
image interpretation can be significantly enhanced. This 
empowers radiologists with greater confidence in their 
diagnostic assessments. Leveraging the feature of AI in 
rapidly identifying image can expedite the diagnostic 
process and improve clinical efficiency [15].

In this study, we developed a novel assay based on deep 
learning to detect severe abdominal organ damage, locate 
the affected organs, such as the liver, spleen, kidneys, and 
intestines, and identify any active intra-abdominal bleed-
ing. The purpose of this study is to utilize AI technology 
to assist in the rapid diagnosis of abdominal trauma. Cli-
nicians can utilize the high-quality image results pro-
vided by our developed deep learning model, combined 
with patient medical history, symptoms and signs for 
comprehensive and accuracy analysis. This approach 
facilitates faster initial screening and triage, assisting to 
quickly identify genuine abdominal trauma patients.

Methods and materials
Data acquisitions and labelling
The datasets were acquired from RSNA Abdominal 
Trauma Detection AI Challenge (2023) [16], which is 
a competition database established by the Radiological 
Society of North America (RSNA) for machine learning 
model development, in which the images are collected 
from 23 sites of 14 countries in six continents of more 
than 4,000 CT scans of patients with various types of 
abdominal injuries.

For the present study, we picked up 3,147 patients’ data 
and labelled into six sections, including three parenchy-
matous organs (liver, spleen, kidney), one cavity organ 
(intestine), and other two parts of extravasation and any 
injury. Each section was divided into two categories: 
health or injury, showed in Table 1.

The required images were transformed from DCM 
(Digital Imaging and Communications in Medicine, 
DICOM) into Portable Network Graphics (PNG) for 
quantitatively simplification and visually optimization. 
Then, the screened images were cropped in abdomi-
nal organs on Z stacks for three-dimensional model 
establishment.
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Images segmentation on abdominal organs
For the rapidly segmentation and processing the liver, 
spleen, kidney, and intestine in CT images, we applied a 
2D semantic segmentation model named U-Net. In this 
model we divided and extracted the organs of each CT 
image on every patient. Based on these results, a spe-
cial semantic segmentation database for CT images was 
created, in which the mages were annotated on pixel-
by-pixel. Then, we trained the model by EfficientNetB0 
architecture based on the data set and relevant clinical 
knowledge, a U-Net 2D semantic segmentation model 
built on the EfficientNetB0 architecture was trained, and 
the 5kfold cross-validation was used to evaluate the mod-
el’s performance.

Rapid diagnosis and screening of abdominal organ trauma
We constructed a 2.5D semantic segmentation to 
enhance the analysis of spatial relationships among 
abdominal organs. The initial step involved identify-
ing the commencement and termination points within 
each serial section where these organs were visible. We 
selected 32 images from every section, ensuring each 
organ was represented in at least four images. Images 
have 512 × 512 pixels in RGB color model. These images 
were then processed through the EfficientNetB1 model, 
converting them into 1280-dimensional vectors. These 
vectors served as inputs for a two-way Long Short-Term 
Memory (LSTM) Networks, facilitating the extraction 
of spatial dimensional features. Through the LSTM net-
work, the feature vector of EfficientNetB1 was changed 
from 1280 to 512. Subsequently, we employed a Neck 
structure before subjecting the data to Multi-Label clas-
sification to compute the average injury probability for 
each organ, as showed in Fig. 1.

For evaluating how the accuracy of the algorithm 
model fit to the dataset, we induced the loss function, 
which was designed based on the weighted cross-entropy 
loss function for the individual organ calculation.

Statistical analysis
We performed statistical analysis with the Python librar-
ies NumPy, Pandas, and TensorFlow. We presented the 
model classification results in terms of accuracy, sen-
sitivity, and specificity using a confusion matrix. We 
also assessed the model performance using the receiver 
operating characteristic (ROC) curve and the area under 
the ROC curve (AUROC). We calculated the confi-
dence intervals of these metrics using the bootstrapping 
method. In addition, we use the Grad-CAM visualization 
algorithm to evaluate the model’s capabilities.

Hardware and software
We developed and tested the model on a workstation 
running Ubuntu 18.04 that included two Intel® Xeon® 
Gold 6258R CPUs operating at 2.70  GHz, 768 GB of 
RAM, and eight NVIDIA Tesla V100 (16GB) GPUs. We 
used Tensorflow v2.14.0 and Python v3.9.18 to create the 
full process. For picture preprocessing, we used Python 
packages like Pydicom and OpenCV. TensorFlow, pan-
das, and NumPy are Python libraries that we used to 
perform statistical analysis. Using a confusion matrix, 
we displayed the model’s classification results in terms of 
accuracy, sensitivity, and specificity. The ROC curve and 
the AUROC were also used to evaluate the model’s per-
formance. We used the bootstrapping approach to obtain 
these measures’ confidence intervals.

Results
Patients
The 3147 patients’ images were collected in the database, 
in which 855 (27.16%) of them had abdominal trauma. 
The patients who suffered from abdominal trauma 
were divided into the following categories: 321 patients 
(37.54%) had liver damage, 354 patients (41.40%) had 
spleen damage, 182 patients (21.29%) had kidney dam-
age, 64 patients (7.49%), and 200 patients (23.39%) had 
abdominal extravasation.

2D semantic segmentation model worked well in images 
segmentation
The model performs well in identifying the location and 
category of each organ, for the location accuracy was 
about 85%, and the category accuracy was higher than 
90%, that suggested the model can effectively accomplish 
the tasks of organ localization and categorization. The 
figure below demonstrates the organ localization using a 
2D semantic segmentation model. The left image is the 
original CT scan, and the right image is the segmented 
image. The results of the validation of the 2D semantic 
segmentation model in the 5kfold loop are shown in the 
following Table 2; Fig. 2.

Table 1  Classification of data
No. Organ status
1 Liver Healthy

Injury
2 Spleen Healthy

Injury
3 Kidney Healthy

Injury
4 Bowel Healthy

Injury
5 Extravasation Healthy

Injury
6 Any Injure Healthy

Injury
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The 2.5D classification approach performs well in 
abdominal organs injuries diagnosis
The 2.5D classification model assessed the injury prob-
ability for five organs: liver, spleen, kidney, intestine, and 
exosmosis. Additionally, an “any injury” category was 
included, representing the maximum probabilities across 
the five organs. Seven indexes were employed for model 

Table 2  The results of the validation of the 2D model
binary_focal_dice_loss f1-score iou_score precision recall
0.0884 0.9151 0.8516 0.9207 0.9128

Fig. 1  Working diagram on 2.5D model
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classification: area under the curve (AUC), accuracy, 
PPV, NPV, sensitivity, and specificity. Notably, specificity 
indicates the accuracy of identifying healthy organs when 
the sensitivity for detecting diseased organs is set at 90% 
in the 2.5D model. To evaluate the model’s capabilities, 
we applied the Grad-CAM visualization algorithm to the 
test set. The resulting visual heat maps demonstrated the 
model’s ability to detect organ damage. Figure  3 illus-
trates examples of the visualized results focusing on the 
liver, spleen, and kidney.

Liver diagnosis
The 2.5D classification model achieved high accuracy 
and sensitivity in diagnosing liver injury on CT scans. 
The specific results are shown in Table  3; Fig.  4A. The 
AUC and ACC were 0.817 (0.763–0.868) and 0.873 

(0.848–0.898), respectively. The PPV and NPV were 0.789 
(0.77–0.809) and 0.895 (0.885–0.904), respectively. The 
sensitivity and specificity were 0.789 (0.77–0.809) and 
0.895 (0.885–0.904), respectively. These results show that 
the model can effectively detect liver injury and facilitate 
clinical decision-making.

Spleen diagnosis
The 2.5D classification model showed moderate accu-
racy and sensitivity in detecting spleen injury on CT 
scans. The specific results are shown in Table 3; Fig. 4B. 
The AUC and ACC were 0.848 (0.795–0.895) and 0.771 
(0.74–0.803), respectively. The PPV and NPV were 0.63 
(0.61–0.65) and 0.814 (0.804–0.823), respectively. The 
sensitivity and specificity were 0.626 (0.606–0.645) and 
0.816 (0.807–0.826), respectively. These results indicate 

Fig. 3  Examples of visual results of liver injury, spleen injury and kidney injury detection. The model can accurately locate the damaged parts of liver, 
spleen and kidney

 

Fig. 2  Working diagram on 2D model
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that the model can reliably exclude spleen injury and save 
medical resources. However, the model has low PPV and 
sensitivity, and its performance in identifying positive 
cases can be improved.

Renal diagnosis
The 2.5D classification model achieved high performance 
in detecting kidney injury on CT scans. The specific 

results are shown in Table  3; Fig.  4C. The AUC and 
ACC were 0.882 (0.823–0.929) and 0.932 (0.911–0.951), 
respectively. The PPV and NPV were 0.888 (0.87–0.904) 
and 0.943 (0.935–0.952), respectively. The sensitivity and 
specificity were 0.887 (0.87–0.904) and 0.944 (0.935–
0.952), respectively. These results indicate that the model 
can effectively diagnose kidney injury and support clini-
cal decision-making.

Table 3  The results of diagnosis
No. Metrics/

Organs
Liver Spleen Kidney Bowel Extravasation Any Injury

1 AUC 0.817 0.848 0.882 0.83 0.757 0.843
95% CI 0.763–0.868 0.795–0.895 0.823–0.929 0.699–0.942 0.67–0.833 0.803–0.88

2 ACC 0.873 0.771 0.932 0.978 0.935 0.795
95% CI 0.848–0.898 0.74–0.803 0.911–0.951 0.965–0.989 0.916–0.952 0.762–0.827

3 PPV 0.789 0.63 0.888 0.056 0.114 0.438
95% CI 0.77–0.809 0.61–0.65 0.87–0.904 0.027–0.091 0.082–0.149 0.387–0.488

4 NPV 0.895 0.814 0.943 0.98 0.941 0.852
95% CI 0.885–0.904 0.804–0.823 0.935–0.952 0.969–0.99 0.925–0.958 0.825–0.878

5 Sensitivity 0.789 0.626 0.887 0.149 0.247 0.653
95% CI 0.77–0.809 0.606–0.645 0.87–0.904 0.104–0.203 0.209–0.29 0.611–0.696

6 Specificity 0.895 0.816 0.944 0.943 0.863 0.705
95% CI 0.885–0.904 0.807–0.826 0.935–0.952 0.939–0.947 0.855–0.87 0.685–0.724

Fig. 4  The results of confusion matrix and ROC-AUC.
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Intestinal diagnosis
The 2.5D classification model showed high NPV and 
specificity in excluding intestinal injury on CT scans. The 
specific results are shown in Table 3; Fig. 4D. The AUC 
and ACC were 0.83 (0.699–0.942) and 0.978 (0.965–
0.989), respectively. The PPV and NPV were 0.056 
(0.027–0.091) and 0.98 (0.969–0.99), respectively. The 
sensitivity and specificity were 0.149 (0.104–0.203) and 
0.943 (0.939–0.947), respectively. These results suggest 
that the model can reliably rule out intestinal injury, but 
has low PPV and sensitivity in detecting positive cases.

Extravasation diagnosis
The 2.5D classification model showed high NPV and 
specificity in excluding extravasation on CT scans. The 
specific results are shown in Table  3; Fig.  4E. The AUC 
and ACC were 0.757 (0.67–0.833) and 0.935 (0.916–
0.952), respectively. The PPV and NPV were 0.114 
(0.082–0.149) and 0.941 (0.925–0.958), respectively. The 
sensitivity and specificity were 0.247 (0.209–0.29) and 
0.863 (0.855–0.87), respectively. These results suggest 
that the model can reliably rule out extravasation, but 
the low PPV and sensitivity in detecting positive cases. 
The low AUC and high ACC indicate that the data set of 
extravasation was imbalanced, with a large proportion of 
negative cases, leading to the model misclassifying some 
positive cases as negative.

Arbitrary damage diagnosis
The 2.5D classification model showed high NPV and 
specificity in excluding any injury on CT scans. The spe-
cific results are shown in Table 3; Fig. 4F. The AUC and 
ACC were 0.843 (0.803–0.88) and 0.795 (0.762–0.827), 
respectively. The PPV and NPV were 0.438 (0.387–0.488) 
and 0.852 (0.825–0.878), respectively. The sensitivity and 
specificity were 0.653 (0.611–0.696) and 0.705 (0.685–
0.724), respectively. These results suggest that the model 
can reliably rule out any injury, but has low PPV and 
sensitivity in detecting positive cases. We hypothesized 
that the low PPV and sensitivity were related to the low 
performance of the model in diagnosing intestinal and 
extravasation injuries.

Discussion
In this study, we developed an algorithm that can detect 
injuries in five abdominal organs: liver, spleen, kidney, 
intestine, and extravasation. Our results demonstrate 
that the algorithm can accurately diagnose parenchymal 
organ injuries. The algorithm can localize the abdominal 
organs and then detect the injuries in each organ simul-
taneously, which can assist clinicians in efficient screen-
ing and triage, facilitate the treatment of trauma patients, 
and avoid the waste of medical resources.

Furthermore, the algorithm performed best in iden-
tifying kidney injury on abdominal CT scans, with an 
ACC of 0.932 (PPV: 0.888; NPV: 0.943; Sensitivity: 0.887; 
Specificity: 0.944). It also showed good performance 
in diagnosing liver and spleen injuries, with an ACC of 
0.873 (PPV: 0.789; NPV: 0.895; Sensitivity: 0.789; Speci-
ficity: 0.895) and 0.771 (PPV: 0.63; NPV: 0.814; Sensitiv-
ity: 0.626; Specificity: 0.816), respectively.

In clinical practice, radiologists’ diagnostic focus and 
efficiency can be impacted by various factors, includ-
ing fatigue and time pressure. Studies have shown that 
the error rates of radiologists in abdominal CT diagno-
sis fluctuate throughout the day and week. Specifically, 
during the workweek, error rates are highest later in 
the morning and at the end of the workday, with Mon-
days showing higher rates compared to other days [17]. 
Additionally, there are notable variations in expertise 
and experience among radiologists of different ages and 
qualifications. Studies have found that less experienced 
radiologists may have error rates as high as 32% in diag-
nosing abdominal solid organ CT images under busy 
conditions [18–20]. In contrast, diagnostic models based 
on deep learning exhibit robust stability and rapid speed, 
unaffected by subjective or objective factors, which can 
operate continuously for 24 h a day. During our study, we 
uploaded 3,147 patients’ CT images for the model learn-
ing, which cost about 5 h until the diagnosis completion. 
For individual patient, it takes seconds or minutes to fin-
ish the analysis, the time depends on the difference and 
quality of each CT image.

Previous studies have applied deep learning algorithms 
to diagnose specific abdominal injuries, such as kidney 
segmentation [21], splenic laceration [22], liver laceration 
[23, 24], and abdominal hemorrhage [25]. However, none 
of these studies have attempted to detect multiple organ 
injuries in trauma patients. Therefore, we developed a 
deep learning algorithm that can detect injuries in five 
different abdominal organs at once. We used a 2D seman-
tic segmentation model to extract the organs from the 
CT images, and then a 2.5D classification model to pre-
dict the injury probability of each organ. This approach 
improved the speed and accuracy of the algorithm.

We developed an algorithm that requires large 
amounts of accurately labeled data to achieve high per-
formance, to facilitate the labeling process for the clini-
cians and enhance the results of the automatic detection 
algorithm. The dataset for CT examinations in this study 
included both conventional and enhanced CT scans. We 
conducted a normalization on the data to avoid the effect 
of the contrast agent usage in patient before uploaded to 
the model. A 2.5D classification model had been intro-
duced instead of a 3D model, which could recognize the 
small data sets, for reduction parameters numbers and 
prevention the overfitting while preserving the model 
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performance. The LSTM was included as well, for the 
components could performed spatial analysis on the 
input serial CT images and capture the spatial relation-
ships among the images.

To improve the diversity and quality of the data set and 
address the data imbalance issue, we applied various data 
augmentation techniques that mimic different scenarios 
that can affect the quality of CT images and help the 
model cope with reality variations. With the basic geo-
metric transformations, such as horizontal and vertical 
flipping, which helped to distinguish the same anatomi-
cal structures in different orientation caused by scanning 
angles.

The Geometric transformation technology, blur tech-
nology and random Gaussian noise was applied for data 
enhancement, which can effectively enrich the train-
ing data set, resist the occurrence of over-fitting, and 
enable the model to make correct fitting when facing 
new images, instead of blindly limiting it to some known 
images.

Over all, deep learning has been widely applied to clini-
cal data analysis, especially in image processing [26]. It 
has advanced the field of medical imaging by enabling 
the identification, classification, and quantification of 
patterns in various modalities [27], and quantitative 
assessment of blunt liver trauma in children [28], which 
can provide clinicians with accurate and fast diagnostic 
assistant [29]. Our deep learning model provided a high-
quality image analysis result that helps clinicians per-
form quick screening and triage, identify patients with 
abdominal trauma, to improve medical efficiency and 
save medical resources when in natural disasters or mass 
accidents. Moreover, the model has the potential to be 
applied to the CT diagnosis of other diseases.

Conclusions
This deep learning model can be used to identify mul-
tiple organ injuries simultaneously on CT, and may be 
further applied to the preliminary screening and auxiliary 
diagnosis of other trauma scenes. While our model has 
shown promising results, it still has limitations. One of 
the main areas for improvement is the need for a larger 
dataset of CT images for more robust algorithm train-
ing. Additionally, we aim to explore methods for optimiz-
ing the algorithm to enhance the predictive ability of the 
model. Moving forward, our focus will be on continu-
ally augmenting the dataset by incorporating more CT 
images to further enhance the accuracy and speed of the 
model.
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